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Abstract
In this paper, we show the global existence of classical solutions to the
incompressible elastodynamics equations with a damping mechanism on the stress
tensor in dimension three for sufficiently small initial data on periodic boxes, that is,
with periodic boundary conditions. The approach is based on a time-weighted
energy estimate, under the assumptions that the initial deformation tensor is a small
perturbation around an equilibrium state and the initial data have some symmetry.
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1 Introduction
The Oldroyd model for an incompressible viscoelastic fluid is governed by the following
system of equations in R

3:

⎧
⎪⎪⎨

⎪⎪⎩

ut + u · ∇u + ∇p = μ�u + div(FFT),

Ft + u · ∇F = F · ∇u,

div u = 0.

(1.1)

Here u denotes the fluid velocity, F := (Fij)3×3 stands for the deformation tensor, p repre-
sents the fluids pressure, and μ > 0 is a viscosity constant. The system (1.1) is also called as
the viscoelastic Navier–Stokes equations. It have been studied by many authors (see [1–7]
and the references cited therein) since the pioneering work of Renardy [8] and Baranger et
al. [9]. There have been several interesting works on the initial value problem of (1.1), for
instance, the short time existence of a smooth solution and the global existence of a smooth
solution that is initially small have been established in various settings [10–12]. For large
(rough) initial data, the global existence of weak solutions to (1.1) has been achieved by
[13, 14] in dimension two. Recently, Jiang and Jiang [15] proved the global well-posedness
of strong solutions for (1.1) in some classes of large data in dimension three.

The main difficulty in proving the global existence result of the viscoelastic Navier–
Stokes equations lies in the equation of the stress tensor F in (1.1), which does not show
any dissipative mechanism. In pursuing global weak solutions of (1.1), the authors of [11]
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proposed the following system as a way of approximating solutions of (1.1):

⎧
⎪⎪⎨

⎪⎪⎩

ut + u · ∇u + ∇p = μ�u + div(FFT),

Ft + u · ∇F = ν�F + F · ∇u,

div u = 0,

(1.2)

where ν > 0 is a damping constant. We call (1.2) the viscoelastic Navier–Stokes equations
with damping. It is not hard to establish the existence of a global in time weak solution
of (1.2) by following the scheme of [16] on the incompressible Navier–Stokes equations.
There are many studies about behaviors of solutions to (1.2), for example, partial regularity
of weak solutions and forward self-similar solutions of (1.2) have been obtained in [17] and
[18], respectively. Chemin and Masmoudi [19] established the global existence of small
solutions to the Cauchy problem. Guillopé and Saut [20] also studied the initial-boundary
value problem of this modified system (1.2). Finally, we would like to mention that the
classical inviscid case of (1.2), i.e., μ = 0, is a challenging problem to show the existence of
global classical solutions. In this article, we are interested in studying the Cauchy problem
only with the initial deformation that is a small displacement from equilibrium and the
initial data have some symmetry.

Motivated by [15, 21], we investigate the global existence of the classical solutions to the
following Cauchy problem in R

3:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ut + u · ∇u + ∇p = div(FFT),

Ft + u · ∇F – ν�F = F · ∇u,

div u = 0,

u(0, x) = u0(x), F(0, x) = F0(x),

(1.3)

with periodic boundary conditions

x ∈ [–π ,π ]3 = T
3. (1.4)

In what follows, we will make a fundamental simplification and assume that

div FT = 0. (1.5)

This means that the deformation F has divergence-free columns. It can be obtained by
taking the divergence of the second equation in (1.3), which yields the following equation:

∂t
(
div FT)

+ (u · ∇)
(
div FT)

= ν�
(
div FT)

.

From the above transport equation, we can obtain that if div FT(x, 0) = 0, then div FT = 0
for any t > 0.

And we assume that

Fi,j(0, x) is even periodic with respect to x3, i = j,

Fi,j(0, x) is odd periodic with respect to x3, i �= j, (1.6)
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moreover,

∫

T3
u(0) dx = 0,

∫

T3
Fij(0)δij dx = α �= 0. (1.7)

Before stating our main result, we shall introduce some simplified notations in this article:
(1) Sobolev’s spaces and norms:

Lp := Lp(�) = W 0,p(�), Hk := W k,2(�), ‖ · ‖k := ‖ · ‖Hk ,

a � b means that a ≤ cb for some positive constant c,

where 1 < p ≤ ∞ and k are nonnegative integers;
(2) Estimates of the product of functions in Sobolev spaces (denoted as product esti-

mates):

‖fg‖j �

⎧
⎪⎪⎨

⎪⎪⎩

‖f ‖1‖g‖1 for j = 0;

‖f ‖j‖g‖2 for 0 ≤ j ≤ 2;

‖f ‖2‖g‖j + ‖f ‖j‖g‖2 for 3 ≤ j ≤ 5,

(1.8)

which can be easily verified by Hölder’s inequality and the embedding inequality (see [22,
Theorem 4.12]).

Under the assumptions of (1.6) and (1.7), now we can state our main result in the fol-
lowing theorem.

Theorem 1.1 Consider the 3D elastodynamic system (1.3) and (1.4) with initial data satis-
fying the conditions (1.6) and (1.7). Assume that (u0, F0) ∈ H3(T3) with div u0 = div FT

0 = 0.
Then there exists a small constant ε > 0 depending on α such that system (1.3) admits a
global classical solution provided that

‖u0‖3 + ‖∇F0‖2 ≤ ε. (1.9)

Without loss of generality, we assume that α = (2π )3, as our results do not change qual-
itatively as ν > 0 is varied, so we set

ν = 1.

Obviously, (0, I) is an equilibrium-state solution of the system (1.3). Now, we denote the
perturbation quantities by

u = u – 0, U = F – I,

where I denotes an identity matrix. By (1.7), we have

∫

T3
u(0) dx =

∫

T3
U(0) dx = 0. (1.10)
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Then, (u, U) satisfies the perturbation equations:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Ut + u · ∇U – �U = ∇u + U · ∇u,

ut + u · ∇u + ∇p = div(U + UUT),

div u = 0, div UT = 0,

u(0, x) = u0(x), U(0, x) = U0(x).

(1.11)

And the properties of initial data (1.6) and (1.7) persist. Indeed,

Ui,j(t, x) is even periodic with respect to x3, i = j,

Ui,j(t, x) is odd periodic with respect to x3, i �= j, (1.12)

and
∫

T3
u dx =

∫

T3

U dx = 0. (1.13)

Setting Uj := Uej for j = 1, 2, 3, from the assumption div UT = 0, we have

div
(
UUT)

=
3∑

k=1

(Uk · ∇)Uk . (1.14)

For the system (1.11), now we define the following weighted energies which will enable
us to achieve our desired estimates:

E0(t) = sup
0≤τ≤t

(∥
∥u(τ )

∥
∥2

3 +
∥
∥U(τ )

∥
∥2

3

)
+

∫ t

0

(∥
∥U(τ )

∥
∥2

4 +
∥
∥∇u(τ )

∥
∥2

2

)
dτ ,

E1(t) = sup
0≤τ≤t

(1 + τ )2(∥∥u(τ )
∥
∥2

1 +
∥
∥U(τ )

∥
∥2

1

)

+
∫ t

0
(1 + τ )2(∥∥U(τ )

∥
∥2

2 +
∥
∥∇u(τ )

∥
∥2

0

)
dτ . (1.15)

The energies above are defined on the domain R
+ ×T

3.
The rest of this paper is organized as follows. In Sect. 2, we will derive a priori estimates

of the higher order energy E0 and lower order energy E1, and we only need to consider the
highest-order norms in each energy estimate due to the condition (1.13) and the Poincaré
inequality. And in Sect. 3, we will prove Theorem 1.1.

2 Energy estimate
First, we will deal with the higher-order energy E0. It shows that the highest-order norm
H3(T3) of u(t, ·) and U(t, ·) can be bounded uniformly.

Lemma 2.1 Under the condition (1.10), it holds that

E0(t) � E0(0) + E3/2
0 (t). (2.1)
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Proof We divide the proof into two parts. Instead of deriving the estimate of E0(t) directly,
we will first get the uniform bound of E0,1 which is defined by

E0,1(t) = sup
0≤τ≤t

(∥
∥u(τ )

∥
∥2

3 +
∥
∥U(τ )

∥
∥2

3

)
+

∫ t

0

∥
∥U(τ )

∥
∥2

4 dτ . (2.2)

First, to get the estimate of E0,1, we apply the ∇3 derivative on system (1.11). Then, we
take the inner product with ∇3U in the first equation of (1.11) and also the inner product
with ∇3u in the second equation of the same system. Adding them up, we get

1
2

d
dt

(‖U‖2
Ḣ3 + ‖u‖2

Ḣ3
)

+ ‖U‖2
Ḣ4 = M1 + M2 + M3 + M4 + M5, (2.3)

where

M1 = –
∫

T3
u · ∇∇3u∇3u + u · ∇∇3U∇3U dx,

M2 =
∫

T3
div∇3U∇3u + ∇∇3u∇3U dx,

M3 =
3∑

k=1

Ck
3

∫

T3
∇kU · ∇∇3–ku∇3U – ∇ku · ∇∇3–kU∇3U dx,

M4 = –
3∑

k=1

Ck
3

∫

T3
∇ku · ∇∇3–ku∇3u dx,

M5 =
∫

T3
U · ∇∇3u∇3U + ∇3 div

(
UUT)∇3u dx.

First, for the term M1, using integration by parts and the divergence-free condition, we
have

M1 = 0. (2.4)

For the M2, by integration by parts, we get

M2 =
∫

T3
div∇3U∇3u – ∇3u div∇3U dx. (2.5)

By using the Hölder’s inequality, we have

|M2| �
∥
∥div∇3U

∥
∥

0

∥
∥∇3u

∥
∥

0 � ‖U‖4‖u‖3. (2.6)

Then applying div to (1.11)T
1 , where T represents the transpose of the matrix, we find that

–�u = div(U · ∇u – u · ∇U)T, (2.7)

where we have used the condition div UT = 0. From the regularity theory of elliptic equa-
tions [23, 24], thus we get

‖u‖3 � ‖U · ∇u‖2 + ‖u · ∇U‖2,

� ‖U‖3‖u‖3. (2.8)
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Substituting the above inequality into (2.6), we obtain that

|M2| � ‖U‖2
4‖u‖3. (2.9)

Thus, from (2.9), we obtain

∫ t

0
|M2|dτ � sup

0≤τ≤t

∥
∥u(τ )

∥
∥

3

∫ t

0

∥
∥U(τ )

∥
∥2

4 dτ

� E3/2
0 (t). (2.10)

For the term M3, by using the Hölder’s inequality and product estimates, we obtain

|M3| �
(∥
∥∇U∇3u

∥
∥

0 +
∥
∥∇u∇3U

∥
∥

0 +
∥
∥∇2u∇2U

∥
∥

0

)∥
∥∇3U

∥
∥

0

�
(∥
∥∇3u

∥
∥

0‖∇U‖2 + ‖∇u‖1
∥
∥∇3U

∥
∥

1 +
∥
∥∇2u

∥
∥

1

∥
∥∇2U

∥
∥

1

)∥
∥∇3U

∥
∥

0

� ‖u‖3‖U‖2
4.

Hence,

∫ t

0
|M3|dτ � sup

0≤τ≤t

∥
∥u(τ )

∥
∥

3

∫ t

0

∥
∥U(τ )

∥
∥2

4 dτ

� E3/2
0 (t). (2.11)

For the estimate of M4, using the Hölder’s inequality and product estimates, we have

|M4| � ‖u‖3
(∥
∥∇u · ∇3u

∥
∥

0 +
∥
∥∇2u · ∇2u

∥
∥

0

)

� ‖u‖3
(‖∇u‖2

∥
∥∇3u

∥
∥

0 +
∥
∥∇2u

∥
∥

1

∥
∥∇2u

∥
∥

1

)

� ‖u‖3‖∇u‖2
2, (2.12)

Hence,

∫ t

0
|M4|dτ

� sup
0≤τ≤t

∥
∥u(τ )

∥
∥

3

∫ t

0

∥
∥∇u(τ )

∥
∥2

2 dτ

� E3/2
0 . (2.13)

For the last term M5, by integration by parts, we can obtain

M5 = –
∫

T3
div U · ∇3u∇3U + U · ∇3u div∇3U dx +

∫

T3
∇3 div

(
UUT)∇3u dx. (2.14)

By the Hölder’s inequality and product estimates, we have

|M5| �
∥
∥∇3u

∥
∥

0

(∥
∥∇U∇3U

∥
∥

0 +
∥
∥U∇4U

∥
∥

0 +
∥
∥∇3 div

(
UUT)∥

∥
0

)

�
∥
∥∇3u

∥
∥

0

(‖∇U‖2
∥
∥∇3U

∥
∥

0 +
∥
∥∇4U

∥
∥

0‖U‖2 +
∥
∥UUT∥

∥
4

)
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�
∥
∥∇3u

∥
∥

0

(‖U‖2
4 + ‖U‖2

∥
∥UT∥

∥
4 + ‖U‖4

∥
∥UT∥

∥
2

)

� ‖U‖2
4‖u‖3, (2.15)

thus, we can obtain that

∫ t

0

∣
∣M5(τ )

∣
∣dτ � sup

0≤τ≤t

∥
∥u(τ )

∥
∥

3

∫ t

0

∥
∥U(τ )

∥
∥2

4 dτ

� E3/2
0 . (2.16)

Summing up the estimates for M1–M5, i.e., (2.4), (2.10), (2.11), (2.13), and (2.16), then
integrating (2.3) with respect to time, we now get the estimate of E0,1(t) which is defined
in (2.2) as

E0,1 � E0(0) + E3/2
0 . (2.17)

Here, we have used the Poincaré inequality to consider the highest-order norm only.
Next, we work with the left term in E0(t). Applying the ∇2 derivative on the first equation

of system (1.11), and taking the inner product with ∇2∇u, we get

‖∇u‖2
Ḣ2 = M6 + M7 + M8, (2.18)

where

M6 =
∫

T3
∇2(u · ∇U – U · ∇u)∇2∇u dx,

M7 = –
∫

T3
∇2�U∇2∇u dx,

M8 =
∫

T3
∇2Ut∇2∇u dx.

As when getting the estimate of E0,1, we shall derive the estimate of the each term on the
right-hand side of (2.18).

For M6, by the Hölder’s inequality and product estimates, we get

|M6| �
∥
∥∇3u

∥
∥

0

(∥
∥∇2(u · ∇U)

∥
∥

0 +
∥
∥∇2(U · ∇u)

∥
∥

0

)

� ‖∇u‖2
(‖u · ∇U‖2 + ‖U · ∇u‖2

)

� ‖∇u‖2
(‖u‖2‖∇U‖2 + ‖U‖2‖∇u‖2

)

� ‖∇u‖2
2‖U‖4, (2.19)

where we have used the Poincaré inequality in the last inequality.
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Thus, we conclude

∫ t

0

∣
∣M6(τ )

∣
∣dτ

� sup
0≤τ≤t

∥
∥U(τ )

∥
∥

4

∫ t

0

∥
∥∇u(τ )

∥
∥2

2 dτ

� E3/2
0 . (2.20)

The estimate for M7 is almost the same, by using the Hölder’s inequality, we can obtain
that

∫ t

0

∣
∣M7(τ )

∣
∣dτ �

∫ t

0
‖U‖4‖∇u‖2 dτ

�
(∫

∥
∥U(τ )

∥
∥2

4 dτ

)1/2(∫ t

0

∥
∥∇u(τ )

∥
∥2

2 dτ

)1/2

� E1/2
0,1 (t)

(∫ t

0

∥
∥∇u(τ )

∥
∥2

2 dτ

)1/2

. (2.21)

For the last term M8, using integration by parts, we can write this term as

M8 =
d
dt

∫

T3
∇2U∇∇2u dx +

∫

T3
∇2 div U∇2ut dx. (2.22)

By (1.11)2, we can obtain

M8 =
d
dt

∫

T3
∇2U∇∇2u dx +

∫

T3
div∇2U∇2(div

(
U + UUT)

– ∇p – u · ∇u
)

dx

=: K1 + K2. (2.23)

First, by using the product estimates, we get

∫ t

0

∣
∣K1(τ )

∣
∣dτ � ‖U‖2‖u‖3 � E0,1(t). (2.24)

On the other hand, by the Hölder’s inequality and product estimates, we get

|K2| �
∥
∥∇3U

∥
∥

0

(‖U‖3 +
∥
∥UUT∥

∥
3 +

∥
∥∇3p

∥
∥

0 +
∥
∥∇2(u · ∇u)

∥
∥

0

)

� ‖U‖3
(‖U‖3 + ‖U‖2

3 + ‖p‖3 +
∥
∥∇2u · ∇u

∥
∥

0 +
∥
∥u · ∇3u

∥
∥

0

)

� ‖U‖3
(‖U‖3 + ‖U‖2

3 + ‖p‖3 + ‖∇u‖2
∥
∥∇2u

∥
∥

0 +
∥
∥∇3u

∥
∥

0‖u‖2
)

� ‖U‖3
(‖U‖3 + ‖U‖2

3 + ‖p‖3 + ‖∇u‖2
2
)
, (2.25)

where we have used the Poincaré inequality in the last inequality.
Now, applying div to (1.11)2, we get

�p = div
(
–u · ∇u + div

(
U + UUT))

, (2.26)
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thus, from the regularity theory of elliptic equations and product estimates, we get

‖p‖3 � ‖u · ∇u‖2 + ‖U‖3 +
∥
∥UUT∥

∥
3

� ‖∇u‖2‖u‖2 + ‖U‖3 + ‖U‖3
∥
∥UT∥

∥
2 + ‖U‖2

∥
∥UT∥

∥
3

� ‖U‖3 + ‖U‖2
3 + ‖∇u‖2

2, (2.27)

where we have used Poincaré inequality in the last inequality. Thus, we can get

|K2| � ‖U‖3
(‖U‖3 + ‖U‖2

3 + ‖∇u‖2
2
)

(2.28)

and so

∫ t

0
|K2|dτ �

∫ t

0

∥
∥U(τ )

∥
∥2

3 dτ + sup
0≤τ≤t

∥
∥U(τ )

∥
∥

3

∫ t

0

∥
∥U(τ )

∥
∥2

3 dτ

+ sup
0≤τ≤t

∥
∥U(τ )

∥
∥

3

∫ t

0

∥
∥∇u(τ )

∥
∥2

2 dτ

� E0,1(t) + E3/2
0 (t). (2.29)

By (2.24) and (2.29), we have

∫ t

0

∣
∣M8(τ )

∣
∣dτ � E0,1(t) + E3/2

0 (t). (2.30)

Integrating (2.18) with respect to time, using the estimates of (2.20), (2.21), (2.30), and
Young’s inequality, we obtain

∫ t

0

∥
∥∇u(τ )

∥
∥2

2 dτ � E0,1(t) + E3/2
0 (t). (2.31)

Multiplying (2.17) by a suitably large number and adding (2.31), we then complete the
proof of Lemma 2.1. �

Next, we want to give the estimate of the lower-order energy E1(t) defined in (1.15). The
result is given in the following lemma.

Lemma 2.2 Under the condition (1.10), it holds that

E1(t) � E1(0) + E1/2
0 (t)E1/2

1 (t) + E1/2
0 (t)E1(t) + E3/2

1 (t). (2.32)

Proof Like the proof Lemma of 2.1, we divide this proof into two parts. Also, we will first
get the estimate of E1,1 which is defined by the following:

E1,1(t) = sup
0≤τ≤t

(1 + τ )2(∥∥u(τ )
∥
∥2

1 +
∥
∥U(τ )

∥
∥2

1

)
+

∫ t

0
(1 + τ )2∥∥U(τ )

∥
∥2

2 dτ .

Now apply ∇ derivative on system (1.11), take the inner product with ∇U in the first
equation of (1.11), and also take the inner product with ∇u in the second equation of
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(1.11). Adding them up and multiplying by the time weight (1 + t)2, we get

1
2

d
dt

(1 + t)2(‖U‖2
Ḣ1 + ‖u‖2

Ḣ1
)

+ (1 + t)2‖U‖2
Ḣ2 = N1 + N2 + N3 + N4, (2.33)

where

N1 = (1 + t)
(‖U‖2

Ḣ1 + ‖u‖2
Ḣ1

)
,

N2 = (1 + t)2
∫

T3
∇(U · ∇u – u · ∇U + ∇u)∇U dx,

N3 = (1 + t)2
∫

T3
∇ div

(
U + UUT)∇u dx,

N4 = –(1 + t)2
∫

T3
∇(u · ∇u)∇u dx,

First, the term N1 is equivalent to the following form:

N1 = (1 + t)
(‖∇U‖2

0 + ‖∇u‖2
0
)
.

Thus,

|N1| � (1 + t)
(‖U‖4‖U‖2 + ‖∇u‖0‖∇u‖2

)
,

hence, by using the Hölder’s inequality, we can get

∫ t

0
|N1|dτ

�
(∫ t

0

∥
∥U(τ )

∥
∥2

4 dτ

)1/2

·
(∫ t

0
(1 + τ )2∥∥U(τ )

∥
∥2

2 dτ

)1/2

+
(∫ t

0

∥
∥∇u(τ )

∥
∥2

2 dτ

)1/2

·
(∫ t

0
(1 + τ )2∥∥∇u(τ )

∥
∥2

0 dτ

)1/2

� E1/2
0 (t)E1/2

1 (t). (2.34)

For the term N2, by using integrating by parts and Hölder’s inequality, we can get

|N2| � (1 + t)2(‖U · ∇u‖0 + ‖u · ∇U‖0 + ‖∇u‖0
)∥
∥∇2U

∥
∥

0. (2.35)

Firstly, by (2.7) and the product estimates, we can obtain that

‖∇u‖1 � ‖U · ∇u‖1 + ‖u · ∇U‖1 � ‖U‖2‖u‖2, (2.36)

then putting (2.36) into (2.35), we obtain

|N2| � (1 + t)2(‖∇u‖0‖U‖2 + ‖u‖1‖∇U‖1 + ‖U‖2‖u‖2
)‖U‖2

� (1 + t)2(‖∇u‖0‖U‖2
2 + ‖u‖2‖U‖2

2
)

� (1 + t)2‖u‖2‖U‖2
2. (2.37)
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Hence, we get

∫ t

0

∣
∣N2(τ )

∣
∣dτ � sup

0≤τ≤t

∥
∥u(τ )

∥
∥

2

∫ t

0
(1 + τ )2∥∥U(τ )

∥
∥2

2 dτ

� E1/2
0 (t)E1(t). (2.38)

Also for the term N3, by using the Hölder’s inequality and product estimates, we obtain

|N3| � (1 + t)2‖U‖2
2‖u‖2 + (1 + t)2‖U‖2‖∇u‖0. (2.39)

By (2.36), we have

|N3| � (1 + t)2‖U‖2
2‖u‖2.

Thus, we get

∫ t

0

∣
∣N3(τ )

∣
∣dτ � sup

0≤τ≤t

∥
∥u(τ )

∥
∥

2

∫ t

0
(1 + τ )2∥∥U(τ )

∥
∥2

2 dτ

� E1/2
0 E1(t). (2.40)

Next, we turn to estimating the last term N4. By using integration by parts, we have

N4 = –(1 + τ )2
∫

T3
∇u · ∇u∇u + u · ∇∇u∇u dx

= –(1 + τ )2
∫

T3
∇u · ∇u∇u dx, (2.41)

thus, by using the product estimates, we get

|N4| � (1 + t)2‖∇u · ∇u‖0‖∇u‖0

� (1 + t)2‖u‖3‖∇u‖2
0. (2.42)

Hence,

∫ t

0

∣
∣N4(τ )

∣
∣dτ

� sup
0≤τ≤t

∥
∥u(τ )

∥
∥

3

∫ t

0
(1 + τ )2∥∥∇u(τ )

∥
∥2

0 dτ

� E1/2
0 E1(t). (2.43)

Now, summing up the estimates for N1–N4, i.e., (2.34), (2.38), (2.40), and (2.43), and
integrating (2.33) with respect to time, we get the estimate of E1,1,

E1,1(t) � E1(0) + E1/2
0 (t)E1/2

1 (t) + E1/2
0 (t)E1(t). (2.44)

Here, we have used the Poincaré inequality to consider the highest-order norm only.
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By an identical argument as in the proof of Lemma 2.1, multiplying the first equation of
(1.11) by ∇u and taking the inner product, then multiplying by the time weight (1 + t)2,
we get

(1 + t)2‖∇u‖2
0 = N5 + N6 + N7, (2.45)

where

N5 = (1 + t)2
∫

T3
(u · ∇U – U · ∇u)∇u dx,

N6 = –(1 + t)2
∫

T3
�U∇u dx,

N7 = (1 + t)2
∫

T3
Ut∇u dx.

Using the product estimates, we obtain

|N5| � (1 + t)2‖u‖2‖U‖2‖∇u‖0,

hence, we conclude that

∫ t

0

∣
∣N5(τ )

∣
∣dτ

� sup
0≤τ≤t

∥
∥u(τ )

∥
∥

2

∫ t

0
(1 + τ )2∥∥U(τ )

∥
∥

2

∥
∥∇u(τ )

∥
∥

0 dτ

� sup
0≤τ≤t

∥
∥u(τ )

∥
∥

2

(∫ t

0
(1 + τ )2∥∥U(τ )

∥
∥2

2 dτ

)1/2(∫ t

0

∥
∥(1 + τ )2∇u(τ )

∥
∥2

0 dτ

)1/2

� E1/2
0 E1(t). (2.46)

Similarly, we have

|N6| � (1 + t)2‖U‖2‖∇u‖0,

thus,

∫ t

0

∣
∣N6(τ )

∣
∣dτ �

∫ t

0
(1 + t)2‖U‖2‖∇u‖0 dτ

�
(∫ t

0
(1 + τ )2∥∥U(τ )

∥
∥2

2 dτ

)1/2(∫ t

0
(1 + τ )2∥∥∇u(τ )

∥
∥2

0 dτ

)1/2

� E1/2
1,1 (t)

(∫ t

0
(1 + τ )2∥∥∇u(τ )

∥
∥2

0 dτ

)1/2

. (2.47)



Liu and Lin Journal of Inequalities and Applications         (2021) 2021:88 Page 13 of 15

For the last term N7, we first rewrite it using integration by parts and have

N7 = (1 + t)2
∫

T3
Ut∇u dx

=
d
dt

[

(1 + t)2
∫

T3
U∇u dx

]

– 2(1 + t)
∫

T3
U∇u dx

+ (1 + t)2
∫

T3
div Uut := J1 + J2 + J3, (2.48)

thus, by using the product estimates, we get

∫ t

0

∣
∣J1(τ )

∣
∣ +

∣
∣J2(τ )

∣
∣dτ

� sup
0≤τ≤t

(1 + τ )2∥∥U(τ )
∥
∥

0

∥
∥∇u(τ )

∥
∥

0 +
∫ t

0
(1 + τ )

∥
∥U(τ )

∥
∥

0

∥
∥∇u(τ )

∥
∥

0 dτ

� E1,1(t) +
(∫ t

0
(1 + τ )2∥∥U(τ )

∥
∥2

0 dτ

)1/2(∫ t

0

∥
∥∇u(τ )

∥
∥2

0 dτ

)1/2

� E1,1(t) + E1/2
0 E1/2

1 (t). (2.49)

On the other hand, by using (1.11)2, we get

J3 = (1 + t)2
∫

T3
div U

[
div

(
U + UUT)

– ∇p – u · ∇u
]

dx. (2.50)

Thus, by the product estimates, we get

|J3| � (1 + t)2‖U‖1
(‖U‖1 + ‖U‖2

2 + ‖∇p‖0 + ‖∇u‖0‖u‖2
)
. (2.51)

Now, by (2.26), we get

‖p‖2 � ‖∇u∇u‖0 + ‖U‖2 + ‖U‖2
2

� ‖∇u‖0‖u‖3 + ‖U‖2 + ‖U‖2
2, (2.52)

thus,

|J3| � (1 + t)2‖U‖1
(‖U‖2 + ‖U‖2

2 + ‖∇u‖0‖u‖3
)
. (2.53)

Hence, we obtain

∫ t

0

∣
∣J3(τ )

∣
∣dτ

�
∫ t

0
(1 + τ )2∥∥U(τ )

∥
∥

1

∥
∥U(τ )

∥
∥

2 dτ +
∫ t

0
(1 + τ )2∥∥U(τ )

∥
∥

1

∥
∥U(τ )

∥
∥2

2 dτ

+
∫ t

0
(1 + τ )2∥∥U(τ )

∥
∥

1

∥
∥∇u(τ )

∥
∥

0

∥
∥u(τ )

∥
∥

3 dτ
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�
∫ t

0
(1 + τ )2∥∥U(τ )

∥
∥2

2 dτ + sup
0≤τ≤t

∥
∥U(τ )

∥
∥

1

∫ τ

0
(1 + τ )2∥∥U(τ )

∥
∥2

2 dτ

+ sup
0≤τ≤t

∥
∥u(τ )

∥
∥

3

(∫ t

0

∥
∥(1 + τ )2U(τ )

∥
∥2

1 dτ

)1/2(∫ t

0
(1 + τ )2‖∇u‖2

0 dτ

)1/2

,

thus, we get

∫ t

0

∣
∣J3(τ )

∣
∣dτ � E1,1(t) + E3/2

1 (t) + E1/2
0 E1(t). (2.54)

By (2.49) and (2.54), we get

∫ t

0

∣
∣N7(τ )

∣
∣dτ � E1,1(t) + E1/2

0 E1/2
1 (t) + E3/2

1 (t) + E1/2
0 E1(t). (2.55)

Integrating (2.45) with respect to time, using (2.46), (2.47), (2.55), and Young’s inequality,
we get

∫ t

0
(1 + τ )2∥∥∇u(τ )

∥
∥2

0 dτ � E1,1(t) + E3/2
1 (t) + E1/2

0 (t)E1/2
1 (t) + E1/2

0 E1(t). (2.56)

Now, multiplying (2.44) by a suitably large number and adding (2.56), using the Young’s
inequality, we complete the proof of Lemma 2.2. �

3 Proof of Theorem 1.1
Now, we will combine the above a priori estimates of all the energies defined in (1.15)
together, and give the proof of Theorem 1.1. First, we define the total energy as follows:

E(t) = E0(t) + E1(t).

Multiplying (2.1) and (2.32) in the above two lemmas by a different suitable number and
summing them up, we can get the following inequality:

E(t) ≤ C1E(0) + C1E3/2(t), (3.1)

for some positive constant C1.
Under the setting of initial data (1.9), there exists a positive constant C2 such that the

initial total energy satisfies

E(0) ≤ C2ε. (3.2)

According to the standard local well-posedness theory which can be obtained by classical
arguments, there exists a positive time T such that for C3 = C1C2,

E(t) ≤ 2C3ε, ∀t ∈ [0, T]. (3.3)

Let T∗ be the largest possible time of T satisfying (3.3), it is then left to show that T∗ = ∞.
Noticing the estimate (3.1), we can use a standard continuation argument to show that
T∗ = ∞ provided that ε is small enough. We omit the details here. Hence, we finish the
proof of Theorem 1.1.
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