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Abstract
Let S be a self-mapping on a normed space X . In this paper, we introduce three new
classes of mappings satisfying the following conditions:

max
0≤k≤m
k even

∥
∥Skx – Sky

∥
∥ = max

0≤k≤m
k odd

∥
∥Skx – Sky

∥
∥,

max
0≤k≤m
k even

∥
∥Skx – Sky

∥
∥ ≤ max

0≤k≤m
k odd

∥
∥Skx – Sky

∥
∥,

max
0≤k≤m
k even

∥
∥Skx – Sky

∥
∥ ≥ max

0≤k≤m
k odd

∥
∥Skx – Sky

∥
∥,

for all x, y ∈X , wherem is a positive integer. We prove some properties of these
classes of mappings.
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1 Introduction
The notion of an m-isometry in the setting of Hilbert spaces was introduced by Agler [1]:
a bounded linear operator T on a Hilbert space H is an m-isometry (integer m ≥ 1) if

m
∑

k=0

(–1)m–k
(

m
k

)

T∗kTk = 0, (1.1)

where T∗ denotes the adjoint operator of T . It is clear that (1.1) is equivalent to

m
∑

k=0

(–1)m–k
(

m
k

)
∥
∥Tkx

∥
∥

2 = 0 (x ∈H). (1.2)
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A 1-isometry is an isometry and vice versa. We refer the reader to the trilogy [1–3] by
Agler and Stankus for the fundamentals of the theory of m-isometries.

In the last years, a generalization of m-isometries to operators on general Banach
spaces has been presented by several authors. Bayart [5] introduced the notion of (m, p)-
isometries on general (real or complex) Banach spaces. An operator T on a Banach space
X is called an (m, p)-isometry if there exist an integer m ≥ 1 and p ∈ [1,∞) with

m
∑

k=0

(–1)m–k
(

m
k

)
∥
∥Tkx

∥
∥

p = 0 (x ∈H). (1.3)

In [11] the authors took off the restriction p ≥ 1. They considered equation (1.3) for p ∈
(0,∞) and studied the role of the second parameter p and also discussed the case p = ∞.

Let m ∈ N. An operator T acting on a Banach space X is called an (m,∞)-isometry (or
(m,∞)-isometric operator) if

max
k∈{0,1,...,m}

k even

∥
∥Tkx

∥
∥ = max

k∈{0,1,...,m}
k odd

∥
∥Tkx

∥
∥, ∀x ∈X .

(See [8, 11].)
Let X and Y be metric spaces. A mapping S : X −→ Y is called an isometry if it satisfies

dY (Sx, Sy) = dX(x, y) for all x, y ∈ X, where dX(·, ·) and dY (·, ·) denote the metrics in the
spaces X and Y , respectively.

In [6] the authors introduced the concept of (m, q)-isometry for maps on a metric space
(X, dX) as follows: a mapping S : X → X is called an (m, q)-isometry for integer m ≥ 1 and
real q > 0 if it satisfies

m
∑

k=0

(–1)k
(

m
k

)

dX
(

Sm–kx, Sm–ky
)q = 0, ∀x, y ∈ X.

Very recently, in [4] the present author studied a class of mappings, called (m,∞)-
isometries, acting on a metric space. A mapping S acting on a metric space (X, dX) is called
an (m,∞)-isometry for some positive integer m if for all x, y ∈ X,

max
0≤k≤m
k even

dX
(

Skx, Sky
)

= max
0≤k≤m

k odd

dX
(

Skx, Sky
)

.

In [9] the author considers A(m, p)-isometries, where for an operator A ∈ B(X ), T ∈
B(X ) (the algebra of bounded linear operators) is A(m, p)-isometric if

β (p)
m (T , A, x) :=

m
∑

k=0

(–1)m–k
(

m
k

)
∥
∥ATkx

∥
∥

p = 0 (x ∈X ). (1.4)

Evidently, an I(m, p)-isometry is an (m, p)-isometry; if X = H is a Hilbert space, then

m
∑

k=0

(–1)m–k
(

m
k

)
∥
∥ATkx

∥
∥

p = 0 ⇐⇒
m

∑

k=0

(–1)m–k
(

m
k

)
∥
∥|A|Tkx

∥
∥

p = 0 (x ∈X ).
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If β
(p)
m (T , A, x) ≤ 0 (resp., β

(p)
m (T , A, x) ≥ 0) for x ∈ X , then T is said to be (A, m, p)-

expansive (resp., (A, m, p)-contractive). We refer the interested reader to [10, 13] for de-
tails.

A mapping S (not necessarily linear) on a normed space X [12] is an (m, p)-isometry for
integer m ≥ 1 and real p > 0 if for all x, y ∈X ,

β (p)
m (S, x, y) :=

m
∑

k=0

(–1)m–k
(

m
k

)
∥
∥Skx – Sky

∥
∥

p = 0. (1.5)

When m = 1, (1.5) is equivalent to ‖Sx – Sy‖ = ‖x – y‖ for x, y ∈ X , and when m = 2, (1.5)
is equivalent to

∥
∥S2x – S2y

∥
∥

p – 2‖Sx – Sy‖p + ‖x – y‖p = 0, x, y ∈X .

After a short introduction and some connections with known results in this context, we
present the main results of the paper as follows. In Sect. 2, we introduce and study some
properties of (m,∞)-isometric mappings. Exactly, we give conditions under which a self-
mapping S is an (m,∞)-isometry (Proposition 2.5, Corollary 2.7, Proposition 2.16). An
(m,∞)-isometry becomes isometry (Theorems 2.10 and 2.20). An (m,∞)-isometric map-
ping becomes an (m + 1,∞)-isometric mapping. The product of two (m,∞)-isometries is
an (m,∞)-isometry (Theorem 2.17), and a power of a (2,∞)-isometry is again a (2,∞)-
isometry (Theorem 2.18). In Sect. 3, we present a parallel study of the classes of nonlinear
(m,∞)-expansive and (m,∞)-contractive mappings.

2 Nonlinear (m, ∞)-isometric mappings
This section is devoted to the study of some basic properties of the class of (m,∞)-
isometric mappings (not necessary linear) on a normed space X . Our inspiration comes
from the papers [7, 11], and [14].

Let S : X −→X be an (m, p)-isometric mapping. It obvious that

β (p)
m (S, x, y) = 0

⇐⇒
∑

0≤k≤m
k even

(
m
k

)
∥
∥Skx – Sky

∥
∥

p =
∑

0≤k≤m
k odd

(
m
k

)
∥
∥Skx – Sky

∥
∥

p

⇐⇒
(

∑

0≤k≤m
k even

(
m
k

)
∥
∥Skx – Sky

∥
∥

p
) 1

p
=

(
∑

0≤k≤m
k odd

(
m
k

)
∥
∥Skx – Sky

∥
∥

p
) 1

p
.

By taking the limit as p → ∞ we arrive at the following definition of an (m,∞)-isometric
nonlinear mapping.

Definition 2.1 A nonlinear mapping S : X −→X is said to be an (m,∞)-isometric map-
ping for some positive integer m if for all x, y ∈X ,

max
0≤k≤m
k even

∥
∥Skx – Sky

∥
∥ = max

0≤k≤m
k odd

∥
∥Skx – Sky

∥
∥. (2.1)
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Remark 2.2 (1) A self-mapping S on X is an (1,∞)-isometry if for all x, y ∈X ,

‖x – y‖ = ‖Sx – Sy‖.

(2) A self-mapping S on X is a (2,∞)-isometry if for all x, y ∈X ,

‖Sx – Sy‖ = max
{∥
∥S2x – S2y

∥
∥,‖x – y‖}.

(3) A self-mapping S on X is a (3,∞)-isometry if for all x, y ∈X ,

max
{‖Sx – Sy‖,

∥
∥S3x – S3y

∥
∥
}

= max
{∥
∥S2x – S2y

∥
∥,‖x – y‖}.

Remark 2.3 The following remarks are obvious consequences of Definition 2.1.
(1) Every (1,∞)-isometry is an isometry and vice versa.
(2) Every isometric mapping is an (m,∞)-isometric mapping for all m ≥ 1.
Indeed, the classes of (m,∞)-isometries is a generalization of the class of
isometries.
(3) If S is an (m,∞)-isometry that satisfies S2 = I (the identity map), then S
is an isometry.

In the next example, we show that (m,∞)-isometries are in general neither continuous
nor linear.

Example 2.4 Let X = R with the usual norm ‖x‖ = |x|. Consider the map S : R −→ R

defined by

Sx =

⎧

⎪⎪⎨

⎪⎪⎩

x + 1, x > –1,

–1, x = –1,

x – 1, x < –1.

It is easy verify that S is a (2,∞)-isometry, but S is neither continuous nor linear.

Proposition 2.5 An mapping S : X −→X is an (m,∞)-isometric if and only if

max
j≤k≤j+m

k even

∥
∥Skx – Sky

∥
∥ = max

j≤k≤j+m
k odd

∥
∥Skx – Sky

∥
∥,

for all x, y ∈X and j ∈N0 := N∪ {0}, where N is the set of positive integers.

Proof The proof follows by substituting x by Sjx and y by Sjy into (2.1) for j ∈N0, �

Proposition 2.6 ([11, Lemma 5.3]) For all k ∈ N0, let π (k) = k mod 2 denote the parity of
k. Let further m ∈N with m ≥ 1, and let (ak)k∈N0 ⊂R. The following are equivalent.

(1) (ak)k∈N0 satisfies

max
j≤k≤m+j

k even

ak = max
j≤k≤m+j

k odd

ak , ∀j ∈N0.
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(2) (ak)k∈N0 attains a maximum, and

max
k∈N0

(ak) = max
j≤k≤m–1+j

π (k)=π (m–1+j)

(ak), ∀j ∈N0.

Corollary 2.7 Let S : X −→ X , and let m ∈ N. Then S is an (m,∞)-isometric mapping if
and only if

max
k∈N0

∥
∥Skx – Sky

∥
∥ = max

j≤k≤m–1+j
π (k)=π (m–1+j)

∥
∥Skx – Sky

∥
∥

for all x, y ∈X and j ∈N0.

Proof The proof is essentially an application of Proposition 2.6. It suffices to consider
(ak)k := (‖Skx – Sky‖)k for all x, y ∈X . �

Definition 2.8 A self-mapping S on a normed space X is called power bounded if

sup
n∈N0

{∥
∥Snx

∥
∥
}

< ∞, ∀x ∈X .

Corollary 2.9 Let S : X −→X be an (m,∞)-isometry. Then for all n ∈N and x ∈X ,

∥
∥Snx – Sny

∥
∥ ≤ max

0≤k≤m–1

∥
∥Skx – Sky

∥
∥.

In particular, S is power bounded.

Proof From Corollary 2.7 we have

max
k∈N0

∥
∥Skx – Sky

∥
∥ = max

j≤k≤m–1+j
π (k)=π (m–1+j)

∥
∥Skx – Sky

∥
∥, ∀x, y ∈X ,∀j ∈N0.

This gives that maxk∈N0 ‖Skx – Sky‖ < ∞. Further, we see that for all n ∈N0,

∥
∥Snx – Sny

∥
∥ ≤ max

k∈N0

∥
∥Skx – Sky

∥
∥ ≤ max

0≤k≤m–1

∥
∥Skx – Sky

∥
∥, ∀x, y ∈X .

In particular,

∥
∥Snx

∥
∥ ≤ ∥

∥Snx – Sn0
∥
∥ +

∥
∥Sn0

∥
∥

≤ max
0≤k≤m–1

∥
∥Skx – Sky

∥
∥ +

∥
∥Sn0

∥
∥, ∀x, y ∈X

Therefore S is a power bounded mapping. �

In the following theorem, we show that if S is a self-mapping on a normed space X that
is an (m,∞)-isometry, then there exists a metric d∞ on X such that S is a (1,∞)-isometry
on (X , d∞).
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Theorem 2.10 Let S : X −→ X be an (m,∞)-isometry. Then there exists a metric d∞ on
X such that S is an isometry on (X , d∞). Moreover, d∞ is given by

d∞(x, y) = max
0≤k≤m–1

∥
∥Skx – Sky

∥
∥, ∀x, y ∈X .

Proof Since S is an (m,∞)-isometric mapping, we have by Corollary 2.7 that

max
k∈N0

∥
∥Skx – Sky

∥
∥ = max

0≤k≤m–1

∥
∥Skx – Sky

∥
∥, ∀x, y ∈X .

Define the map d∞ : X ×X →R+ by

d∞(x, y) := max
0≤k≤m–1

∥
∥Skx – Sky

∥
∥, ∀x, y ∈X .

It is easy to show that the map d∞ define a metric on X . On the other hand, since S is an
(m,∞)-isometry, it follows that

d∞(x, y) = max
0≤k≤m–1

∥
∥Skx – Sky

∥
∥)

= max
k∈N0

∥
∥Skx – Sky

∥
∥

= max
j≤k≤m–1+j

∥
∥Skx – Sky

∥
∥, ∀j ∈ N0.

Consequently, d∞(x, y) = d∞(Sx, Sy). So, S is an isometry on (X , d∞), and the proof is com-
plete. �

Proposition 2.11 Let X be a normed space, and let S : X −→ X be a mapping (not nec-
essarily linear). If S is an (m,∞)-isometry, then S is an (m + 1,∞)-isometry.

Proof Since S is an (m,∞)-isometry, it follows that

max
k∈N0

∥
∥Skx – Sky

∥
∥ = max

j≤k≤m–1+j
π (k)=π (m–1+j)

∥
∥Skx – Sky

∥
∥,

for all x, y ∈X and j ∈N0. Hence, for for all x, y ∈X and j ∈ N0, we have

max
k∈N0

{∥
∥Skx – Sky

∥
∥
}

= max
j≤k≤m–1+l

π (k)=π (m–1+j)

{∥
∥Skx – Sky

∥
∥
}

≤ max
j≤k≤m+l

π (k)=π (m+j)

{∥
∥Skx – Sky

∥
∥
} ≤ max

k∈N
{∥
∥Skx – Sky

∥
∥
}

.

Consequently,

max
k∈N0

{∥
∥Skx – Sky

∥
∥
}

= max
j≤k≤m+l

π (k)=π (m+j)

{∥
∥Skx – Sky

∥
∥
}

.

So, S is an (m + 1,∞)-isometry. �
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Remark 2.12 In general, an (m,∞)-isometry is not necessary an (m – 1,∞)-isometry as
shown in the following example.

Example 2.13 Let X = R
2 be equipped with the norm ‖(x, y)‖ = |x| + |y|. Define the map

S : R2 →R
2 by S(x, y) = (y + 1, –x + y). A simple calculation shows that,

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

S(x, y) = (y + 1, –x + y),

S2(x, y) = (–x + y + 1, –x – 1),

S3(x, y) = (–x, –y – 2),

S4(x, y), (–y – 1, x – y – 2),

S5(x, y) = (x – y – 1, x – 1).

From the above calculation we easily see that

max
{∥
∥S(x, y) – S(u, v)

∥
∥,

∥
∥S2(x, y) – S2(u, v)

∥
∥,

∥
∥S4(x, y) – S4(u, v)

∥
∥
}

= max
{∥
∥S(x, y) – S(u, v)

∥
∥,

∥
∥S3(x, y) – S3(u, v)

∥
∥,

∥
∥S5(x, y) – S5(u, v)

∥
∥
}

and

max
{∥
∥(x, y) – (u, v)

∥
∥,

∥
∥S2(x, y) – S2(u, v)

∥
∥,

∥
∥S4(x, y) – S4(u, v)

∥
∥
}

�= max
{∥
∥S(x, y) – S(u, v)

∥
∥,

∥
∥S3(x, y) – S3(u, v)

∥
∥
}

.

Consequently, S is a (5,∞)-isometry but not a (4,∞)-isometry.

Proposition 2.14 Let S : X −→ X . If Sn is an isometry for odd integer n, then S is an
(m,∞)-isometry for m ≥ 2n – 1.

Proof In view of Proposition 2.11, it suffices to show that S is a (2n – 1,∞)-isometry.
Assume that Sn is an isometry. Then we have

∥
∥Sk+nx – Sk+ny

∥
∥ =

∥
∥Skx – Sky

∥
∥ ∀x, y ∈X ,∀k ∈N0.

Since n is an odd integer, for k ∈N0, we have that k is even if and only if n + k is odd. Since
Sn is an isometry, it follows that

{∥
∥Skx–Sky

∥
∥, k ∈ {0, 1, . . . , 2n–1}, k even

}

=
{∥
∥Skx–Sky

∥
∥, k ∈ {0, 1, . . . , 2n–1}, k odd

}

,

from which we deduce that S is a (2n – 1,∞)-isometry. �

Corollary 2.15 Let S : X −→X be a mapping such that Sn is an isometry for an odd integer
n. Then Sk is a (2n – 1,∞)-isometry for any integer k ∈N.

Proof If k = 1, then the result follows from Proposition 2.14.
For k > 1, if Sn is an isometry, then (Sk)n is also an isometry, so by Proposition 2.14 we

get that Sk is a (2n – 1,∞)-isometry. �

The following proposition generalizes [11, Proposition 5.8].
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Proposition 2.16 Let S : X −→ X , and let m ∈ N, m ≥ 2. Then the following properties
hold.

(1) If m ≥ 3 and S satisfy the conditions
(i) ‖Smx – Smy‖ = ‖Sm–1x – Sm–1y‖ and

(ii) ‖Smx – Smy‖ ≥ ‖Skx – Sky‖ for k = 0, . . . , m – 2 and all x, y ∈X ,
then S is an (m,∞)-isometry.

(2) If m = 2, then S is an (2,∞)-isometry if and only if

∥
∥S2x – S2y

∥
∥ = ‖Sx – Sy‖ and

∥
∥S2x – S2y

∥
∥ ≥ ‖x – y‖, ∀x, y ∈X .

Proof (1) In view of conditions (i) and (ii), it is clear that

max
0≤k≤m
k even

∥
∥Skx – Sky

∥
∥ = max

0≤k≤m
k odd

∥
∥Skx – Sky

∥
∥,

so that S is an (m,∞)-isometry.
(2) Assume that S is an (2,∞)-isometry. Then we have

‖Sx – Sy‖ = max
{‖x – y‖,

∥
∥S2x – S2y

∥
∥
}

,

and it follows that

‖Sx – Sy‖ ≥ ‖x – y‖ and ‖Sx – Sy‖ ≥ ∥
∥S2x – S2y

∥
∥, ∀x, y ∈X .

Replacing x by Sx and y by Sy, we get

∥
∥S2x – S2y

∥
∥ = max

{‖Sx – Sy‖,
∥
∥S3x – S3y

∥
∥
}

, ∀x, y ∈X ,

and then

∥
∥S2x – S2y

∥
∥ ≥ ‖Sx – Sy‖, ∀x, y ∈X .

So we have

∥
∥S2x – S2y

∥
∥) = ‖Sx – Sy‖ ≥ ‖x – y‖, ∀x, y ∈X .

The converse follows from statement (1). �

The authors in [6] proved that if T , S : X −→ X are two linear maps such that TS = ST ,
T is an (m, p)-isometry, and S is an (n, p)-isometry, then TS is an (m + n – 1, p)-isometry.
A similar result was proved in [4, Theorem 2.4]. In the following theorem, we show if T is
an (m,∞)-isometry and S is a (2,∞)-isometry for which TS = ST , then TS is an (m,∞)-
isometry.

Theorem 2.17 Let T , S : X −→ X be two nonlinear mappings such that ST = TS. If T is
an (m,∞)-isometry and S is a (2,∞)-isometry, then TS is an (m,∞)-isometry.
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Proof Since S is a (2,∞)-isometry, by statement (2) of Proposition 2.16 we have

∥
∥S2x – S2y

∥
∥ = ‖Sx – Sy‖ ≥ ‖x – y‖ for all x, y ∈X .

Now assume that T is a (2,∞)-isometry. Then it follows that for all x, y ∈X ,

∥
∥(TS)2x – (TS)2y

∥
∥ =

∥
∥T2S2x – T2S2y

∥
∥ =

∥
∥TS2x – TS2y

∥
∥

=
∥
∥S2Tx – S2Ty

∥
∥ = ‖TSx – TSy‖

≥ ‖Sx – Sy‖
≥ ‖x – y‖.

Consequently,

∥
∥(TS)2x – (TS)2y

∥
∥ = ‖TSx – TSy‖ ≥ ‖x – y‖, ∀x, y ∈X .

This implies that TS is a (2,∞)-isometry by statement (2) of Proposition 2.16.
We further suppose that m > 2. By the inequality

∥
∥S2x – S2y

∥
∥ = ‖Sx – Sy‖ ≥ ‖x – y‖ for all x, y ∈X ,

for all k = 1, 2, . . . , we have

∥
∥Skx – Sky

∥
∥ = ‖Sx – Sy‖ ≥ ‖x – y‖ for all x, y ∈X .

Thus for each x, y ∈X , we have

∥
∥(TS)kx – (TS)ky

∥
∥ =

∥
∥TkSkx – TkSky

∥
∥

=
∥
∥STkx – STky

∥
∥

≥ ∥
∥Tkx – Tky

∥
∥.

Using this inequality, for all x, y ∈X , we have

max
1≤k≤m
k even

∥
∥(TS)kx – (TS)ky

∥
∥ = max

1≤k≤m
k even

∥
∥TkSx – TkSy

∥
∥

≥ max
1≤k≤m
k even

∥
∥Tkx – Tky

∥
∥.

We obtain

max
0≤k≤m
k even

∥
∥(TS)kx – (TS)ky

∥
∥ ≥ max

0≤k≤m
k even

∥
∥Tkx – Tky

∥
∥.

On the other hand, it is obvious that for all x, y ∈X ,

max
1≤k≤m
k even

∥
∥TkSx – TkSy

∥
∥ ≤ max

1≤k≤m
k even

∥
∥Tkx – Tky

∥
∥.
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Then we have

max
0≤k≤m
k even

∥
∥(TS)kx – (TS)ky

∥
∥ ≤ max

0≤k≤m
k even

∥
∥Tkx – Tky

∥
∥ for all x, y ∈X .

Using this inequality, we get

max
0≤k≤m
k even

∥
∥(TS)kx – (TS)ky

∥
∥ = max

0≤k≤m
k even

∥
∥Tkx – Tky

∥
∥ for all x, y ∈X .

In same way, we also have

max
0≤k≤m

k odd

∥
∥(TS)kx – (TS)ky

∥
∥ = max

0≤k≤m
k odd

∥
∥Tkx – Tky

∥
∥ for all x, y ∈X .

Since T is an (m,∞)-isometry, we deduce that

max
0≤k≤m
k even

∥
∥(TS)kx – (TS)ky

∥
∥ = max

0≤k≤m
k odd

∥
∥(TS)kx – (TS)ky

∥
∥, ∀x, y ∈X .

So, the desired conclusion is an immediate consequence of Definition 2.1. �

Patel [14] showed that if S is a 2-isometric operator on a Hilbert space, then S2 is a 2-
isometric operator. We now generalize this result to a (2,∞)-isometric mappings.

Theorem 2.18 A power of a (2,∞)-isometric nonlinear mapping is again a (2,∞)-
isometric mapping.

Proof Let S : X −→X be a (2,∞)-isometric mapping. We need to prove that Sk is a (2,∞)-
isometric mapping for all positive integers k.

By statement (2) of Proposition 2.16 it suffices to show that

∥
∥S2kx – S2ky

∥
∥ =

∥
∥Skx – Sky

∥
∥ ≥ ‖x – y‖, ∀x, y ∈X .

Using mathematical induction on k we will show that

∥
∥S2kx – S2ky

∥
∥ =

∥
∥Skx – Sky

∥
∥, ∀x, y ∈X .

For k = 1, it is true since S is an (2,∞)-isometry. Assume that this equality is true for k and
prove it for k + 1. Indeed, we have

∥
∥S2k+2x – S2k+2y‖∥∥ =

∥
∥S2kS2x – S2kS2y

∥
∥

=
∥
∥SkS2x – SkS2y

∥
∥

=
∥
∥Sk+1x – Sk+1y

∥
∥, ∀x, y ∈X .

Thus by induction we have proved that ‖S2kx – S2ky‖ = ‖Skx – Sky‖ for all x, y ∈ X , for all
k = 1, 2, . . . .
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It remains to show that for all x, y ∈X , ‖Skx – Sky‖ ≥ ‖x – y‖ for all k = 1, 2, . . . .
Indeed, since ‖Sx – Sy‖ ≥ ‖x – y‖ for all x, y ∈ X , by using the same inequality we have

that for all x, y ∈X ,

∥
∥Skx – Sky

∥
∥ =

∥
∥SSk–1x – SSk–1y

∥
∥

≥ ∥
∥Sk–1x – Sk–1y

∥
∥ =

∥
∥SSk–2x – SSk–2∥∥

≥ ∥
∥Sk–2x – Sk–2y

∥
∥

≥ · · ·
≥ ‖Sx – Sy‖
≥ ‖x – y‖.

By induction on k it follows that

∥
∥S2kx – S2ky

∥
∥ =

∥
∥Skx – Sky

∥
∥ ≥ ‖x – y‖, ∀x, y ∈X .

Therefore Sk also is a (2,∞)-isometry. This completes the proof. �

Theorem 2.19 Let S : X −→X be an invertible (m,∞)-isometry. Then the following state-
ments hold.

(i) S–1 is an (m,∞)-isometry.
(ii) If m is even, then S is an (m – 1,∞)-isometry.

Proof (i) Since S is an (m,∞)-isometry, from Definition 2.1 it follows that

max
0≤k≤m
k even

∥
∥Skx – Sky

∥
∥ = max

0≤k≤m
k odd

∥
∥Skx – Sky

∥
∥, ∀x, y ∈X .

Replacing x by S–mx and S–my, we obtain

max
0≤k≤m
k even

∥
∥Sk–mx – Sm–ky

∥
∥ = max

0≤k≤m
k odd

∥
∥Sk–mx – Sk–my

∥
∥, ∀x, y ∈X ,

or, equivalently,

max
0≤k≤m
k even

∥
∥
(

S–1)m–kx –
(

S–1)m–ky
∥
∥ = max

0≤k≤m
k odd

∥
∥
(

S–1)m–kx –
(

S–1)m–ky
∥
∥, ∀x, y ∈X ,

which implies

max
0≤k≤m
k even

∥
∥
(

S–1)kx –
(

S–1)ky
∥
∥ = max

0≤k≤m
k odd

∥
∥
(

S–1)kx – S–1)ky
∥
∥, ∀x, y ∈X .

Consequently, S–1 is an (m,∞)-isometry.
(ii) Since S is an (m,∞)-isometry, it follows that

max
k∈N0

∥
∥Skx – Sky

∥
∥ < ∞
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and, moreover,

max
k∈N0

∥
∥Skx – Sky

∥
∥ = max

j≤k≤m–1+j
π (k)=π (m–1+j)

∥
∥Skx – Sky

∥
∥, ∀x, y ∈X ,∀j ∈N0.

Since S is invertible and π (j – 1) �= π (m – 2 + j) for even m, we get that

max
j≤k≤m–1+j

π (k)=π (m–1+j)

∥
∥Skx – Sky

∥
∥ = max

j–1≤k≤m–2+j
π (k)=π (m–2+j)

∥
∥Skx – Sky

∥
∥

= max
j≤k≤m–2+j

π (k)=π (m–2+j)

∥
∥Skx – Sky

∥
∥, ∀x, y ∈X ,∀j ∈N.

This shows that

max
k∈N0

∥
∥Skx – Sky

∥
∥ = max

j≤k≤m–2+j
π (k)=π (m–2+j)

∥
∥Skx – Sky

∥
∥, ∀x, y ∈X ,∀j ∈N0.

Hence the proof of the statement (ii) is complete. �

Theorem 2.20 Let S : X −→X be a mapping such that S2 is an isometry. Then the follow-
ing conditions are equivalent.

(1) S is an isometry,
(2) S is an (m,∞)-isometry.

Proof Since S2 is an isometry, it follows that

max
k(odd)

∥
∥Skx – Sky

∥
∥ = ‖Sx – Sy‖, ∀x, y ∈X ,

and

max
k(even)

∥
∥Skx – Sky

∥
∥ = ‖x – y‖, ∀x, y ∈X .

This shows that (1) ⇐⇒ (2). �

Similarly to the (m, q)-isometry (see [6, Proposition 2.18], we obtain the following the-
orem.

Theorem 2.21 For i = 1, 2, . . . , n, let (Xi,‖ · ‖i) be a normed space, and let Si : Xi −→ Xi,
mi ≥ 1. Denote byX = Xi ×X2 ×· · ·×Xn the product space endowed with the product norm
‖(x1, x2, . . . , xn)‖ := max1≤i≤n(‖xi‖i). Let S := S1 × S2 × · · · × Sn : X → X be the mapping
defined by

S(x1, . . . , xn) := (S1x1, S2x2, . . . , Snxn).

If each Si is an (mi,∞)-isometry for i = 1, 2, . . . , n, then S is an (m,∞)-isometry, where m =
max(m1, . . . , mn).
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Proof Let m = max(m1, . . . , mn) and consider, for all x, y ∈ X,

max
0≤k≤m
k even

∥
∥Skx – Sky

∥
∥ = max

0≤k≤m
k even

(

max
1≤i≤n

∥
∥Sk

i xi – Sk
i yi

∥
∥

i

)

= max
1≤i≤n

(

max
0≤k≤m
k even

{∥
∥Sk

i xi – Sk
i yi

∥
∥

i

})

.

Since each Si is an (mi,∞)-isometric operator for i = 1, 2, . . . , n, it follows that Si is an
(m,∞)-isometry for i = 1, 2, . . . , n by Proposition 2.11, from the above equality we have

max
0≤k≤m
k even

∥
∥Skx – Sky

∥
∥ = max

1≤i≤n

(

max
0≤k≤m

k odd

{∥
∥Sk

i xi – Sk
i y

∥
∥

i

})

= max
0≤k≤m

k odd

(

max
1≤i≤n

{∥
∥Sk

i xi – Sk
i y

∥
∥

i

})

.

Thus we have

max
0≤k≤m
k even

∥
∥Skx – Sky

∥
∥ = max

0≤k≤m
k odd

∥
∥Skx – Sky

∥
∥

for all x, y ∈X . Therefore S is an (m,∞)-isometric operator. �

3 Nonlinear (m, ∞)-expansive and (m, ∞)-contractive mappings
In this section, we introduce and study (m,∞)-expansive and (m,∞)-contractive nonlin-
ear mappings on a normed space. We observe that

β (p)
m (S, x, y) ≤ 0

⇐⇒
∑

0≤k≤m
k even

(
m
k

)
∥
∥Skx – Sky

∥
∥

p ≤
∑

0≤k≤m
k odd

(
m
k

)
∥
∥Skx – Sky

∥
∥

p

⇐⇒
(

∑

0≤k≤m
k even

(
m
k

)
∥
∥Skx – Sky

∥
∥

p
) 1

p
≤

(
∑

0≤k≤m
k odd

(
m
k

)
∥
∥Skx – Sky

∥
∥

p
) 1

p
.

Taking the limit as p → ∞, we arrive at the following definition of an (m,∞)-expansive
mapping.

Definition 3.1 Let m ∈N. A mapping S : X −→X is said to be
(1) (m,∞)-expansive if

max
0≤k≤m
k even

∥
∥Skx – Sky

∥
∥ ≤ max

0≤k≤m
k odd

∥
∥Skx – Sky

∥
∥), ∀x, y ∈X ;

(2) (m,∞)-hyperexpansive if S is (k,∞)-expansive for k = 1, . . . , m;
(3) completely ∞-hyperexpansive if S is (k,∞)-expansive for all k ∈ N.

Similarly,

β (p)
m (S, x, y) ≥ 0
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⇐⇒
∑

0≤k≤m
k even

(
m
k

)
∥
∥Skx – Sky

∥
∥

p ≥
∑

0≤k≤m
k odd

(
m
k

)
∥
∥Skx – Sky

∥
∥

p

⇐⇒
(

∑

0≤k≤m
k even

(
m
k

)
∥
∥Skx – Sky

∥
∥

p
) 1

p
≥

(
∑

0≤k≤m
k odd

(
m
k

)
∥
∥Skx – Sky

∥
∥

p
) 1

p
.

Taking the limit as p → ∞, we arrive at the following definition of an (m,∞)-contractive
mapping.

Definition 3.2 Let m ∈N. A mapping S : X −→X is said to be
(1) (m,∞)-contractive if

max
0≤k≤m
k even

∥
∥Skx – Sky

∥
∥ ≥ max

0≤k≤m
k odd

∥
∥Skx – Sky

∥
∥, ∀x, y ∈X ;

(2) (m,∞)-hypercontractive if S is (k,∞)-contractive for k = 1, . . . , m;
(3) completely ∞-hypercontractive if S is (k,∞)-contractive for all k ∈N.

Remark 3.3 We make the following observations.
(1) Every (1,∞)-expansive mapping is expansive, that is, ‖Sx – Sy‖ ≥ ‖x – y‖ for all x, y ∈

X .
(2) Every (1,∞)-contractive mapping is contractive, that is, ‖Sx – Sy‖ ≤ ‖x – y‖ for all

x, y ∈X .
(3) S is (2,∞)-expansive if for all x, y ∈X ,

‖Sx – Sy‖ ≥ max
{‖x – y‖,

∥
∥S2x – S2y

∥
∥
}

.

(4) S is (2,∞)-contractive if for all x, y ∈X ,

‖Sx – Sy‖ ≤ max
{‖x – y‖,

∥
∥S2x – S2y

∥
∥
}

.

Remark 3.4 Observe that every (m,∞)-isometry is an (m,∞)-expansive and (m,∞)-
contractive mapping.

Theorem 3.5 Let S : X −→X . The we have the following properties:
(1) T is (m,∞)-expansive if and only if

max
j≤k≤j+m

k even

∥
∥Skx – Sky

∥
∥ ≤ max

j≤k≤j+m
k odd

∥
∥Skx – Sky

∥
∥, ∀x, y ∈ X,∀j ∈N0.

(2) S is (m,∞)-contractive if and only if

max
j≤k≤j+m

k even

∥
∥Skx – Sky

∥
∥ ≥ max

j≤k≤j+m
k odd

∥
∥Skx – Sky

∥
∥), ∀x, y ∈X ,∀j ∈N0.

Proof Let j ∈N0. The desired characterizations follow by substituting Sjx for x and Sjy for
y in statement (1) of Definition 3.1 and statement (2) of Definition 3.2. �
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Proposition 3.6 Let S : X −→ X be a mapping such that S2 is an isometry. Then the fol-
lowing are equivalent.

(1) S is (m,∞)-expansive,
(2) S is expansive,
(3) S is an isometry,
(4) S is contractive,
(5) S is (m,∞)-contractive.

Proof Since S2 is an isometry, it follows that

max
k(odd)

∥
∥Skx – Sky

∥
∥ = ‖Sx – Sy‖, ∀x, y ∈X ,

and

max
k(even)

∥
∥Skx – Sky

∥
∥ = ‖x – y‖, ∀x, y ∈X ,

and this shows that (1) ⇐⇒ (2) and (4) ⇐⇒ (5). The equivalence of (2), (3), and (4) follows
on replacing x by Sx and y by Sy. �

Theorem 3.7 Let S : X −→X be a is invertible mapping. Then we have:
(1) If S is (m,∞)-expansive, then

(i) S–1 is (m,∞)-expansive for even m, and
(ii) S–1 is (m,∞)-contractive for odd m.

(2) If S is (m,∞)-contractive, then
(i) S–1 is (m,∞)-contractive for even m, and

(ii) S–1 is (m,∞)-expansive for odd m.

Proof (1) Since S is an invertible (m,∞)-expansive mapping, we have

max
0≤k≤m
k even

∥
∥Skx – Sky

∥
∥ ≤ max

0≤k≤m
k odd

∥
∥Skx – Sky

∥
∥ (3.1)

for all x, y ∈X . Replacing x by S–mx and y by S–my in this inequality, we get

max
0≤k≤m
k even

∥
∥
(

S–1)m–kx –
(

S–1)m–ky
∥
∥ ≤ max

0≤k≤m
k odd

∥
∥
(

S–1)m–kx –
(

S–1)m–ky|∥∥

for all x, y ∈X . From this it immediately follows that

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

max0≤j≤m
j even

‖(S–1)jx – (S–1)jy‖ ≤ max0≤j≤m
j odd

‖(S–1)jx – (S–1)jy‖ for even m,

and

max0≤j≤m
j odd

‖(S–1)jx – (S–1)jy‖ ≥ max0≤j≤m
j odd

‖(S–1)jx – (S–1)jy‖ for odd m,

∀x, y ∈X ,

proving the first statement.
(2) This statement is proved in the same way as statement (1). �
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Corollary 3.8 Let S : X −→X be an invertible mapping. We have:
(1) If S is (2,∞)-expansive, then S is a (1,∞)-isometry.
(2) If S is (2,∞)-contractive, then S is a (1,∞)-isometry.

Proof (1) If S is (2,∞)-expansive, then we have

‖Sx – Sy‖ ≥ max
{‖x – y‖,

∥
∥S2x – S2y

∥
∥
} ≥ ‖x – y‖, ∀x, y ∈X .

By Theorem 3.7, S–1 is (2,∞)-expansive, so

∥
∥S–1x – s–1y

∥
∥ ≥ ‖x – y‖, ∀x, y ∈X .

This means that ‖x – y‖ ≥ ‖Sx – Sy‖ for all x, y ∈X . Therefore

‖Sx – Sy‖ = ‖x – y‖ for all x, y ∈X .

(2) This statement is proved in the same way as statement (1). �

Proposition 3.9 Let S : X −→X be a (2,∞)-expansive mapping and an (m,∞)-isometry,
then S is a (2,∞)-isometry.

Proof Since S is a (2,∞)-expansive mapping and an (m,∞)-isometry, it follows that

‖Sx – Sy‖ ≥ max
{‖x – y‖,

∥
∥S2x – S2y

∥
∥
}

, ∀x, y ∈X , (3.2)

and

max
0≤k≤m
k even

∥
∥Skx – Sky

∥
∥ = max

0≤k≤m
k odd

∥
∥Skx – Sky

∥
∥, ∀x, y ∈X . (3.3)

Combining (3.2) and (3.3), we obtain

‖Sx – Sy‖ = max
{‖x – y‖,

∥
∥S2x – S2y

∥
∥
}

, ∀x, y ∈X .

So, S is a (2,∞)-isometry. �

Theorem 3.10 For i = 1, 2, . . . , n, let (Xi,‖ · ‖i) be a normed space, and let Si : Xi → Xi,
mi ≥ 1. Denote byX = Xi ×X2 ×· · ·×Xn the product space endowed with the product norm
‖(x1, x2, . . . , xn)‖ := max1≤i≤n(‖xi‖). Let S := S1 × S2 × · · · × Sn : X → X be the mapping
defined by

S(x1, . . . , xn) := (S1x1, S2x2, . . . , Snxn).

Then we have:
(1) If each Si is (mi,∞)-hyperexpansive for i = 1, 2, . . . , n, then S is (m,∞)-expansive,

where m = min(m1, . . . , mn).
(2) If each Si is (mi,∞)-hypercontractive for i = 1, 2, . . . , n, then S is (m,∞)-contractive,

where m = min(m1, . . . , mn).
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(3) If each Si is completely ∞-hyperexpansive for i = 1, 2, . . . , n, then so is S.
(4) If each Si is completely ∞-hypercontractive for i = 1, 2, . . . , n, then so is S.

Proof (1) Let m = min(m1, . . . , mn) and consider, for all x, y ∈ X,

max
0≤k≤m
k even

∥
∥Skx – Sky

∥
∥ = max

0≤k≤m
k even

(

max
1≤i≤n

∥
∥
(

Sk
i xi – Sk

i yi
∥
∥

i

})

= max
1≤i≤n

(

max
0≤k≤m
k even

∥
∥Sk

i xi – Sk
i yi

∥
∥

i

)

.

Since Si is (mi,∞)-hyperexpansive for i = 1, 2, . . . , n, it follows that Si is (m,∞)-expansive
for i = 1, 2, . . . , n, and hence

max
0≤k≤m
k even

∥
∥Skx – Sky

∥
∥ ≤ max

1≤i≤n

(

max
0≤k≤m

k odd

{∥
∥Sk

i xi – Sk
i yi

∥
∥

i

})

= max
0≤k≤m

k odd

(

max
1≤i≤n

{∥
∥Sk

i xi – Sk
i yi

∥
∥

i

})

.

Thus we have

max
0≤k≤m
k even

‖Skx – Sky) ≤ max
0≤k≤m

k odd

∥
∥Skx – Sky

∥
∥.

Consequently, S is an (m,∞)-expansive mapping.
(2) This statement follows from statement (1) by reversing the above inequality.
(3) Suppose that Si is completely ∞-hyperexpansive for each i = 1, 2, . . . , n, and hence

each Si is (k,∞)-expansive for any k ∈N. As a consequence of this observation, we deduce
the following inequality for all x, y ∈ X:

max
0≤j≤k
j even

∥
∥Sjx – Sjy

∥
∥ = max

0≤j≤k
j even

(

max
1≤i≤n

∥
∥Sj

ixi – Sj
iyj

∥
∥

i

)

= max
1≤i≤n

(

max
0≤j≤k
j even

∥
∥Sj

ixi – Sj
iyj

∥
∥

i

)

≤ max
0≤j≤k
j odd

∥
∥Sjx – Sjy

∥
∥, ∀k ∈N,

from which statement (3) follows.
(4) This statement is proved in the same way as statement (3). �
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