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Abstract
In this paper, we establish the pth mean consistency, complete consistency, and the
rate of complete consistency for the wavelet estimator in a nonparametric regression
model withm-extended negatively dependent random errors. We show that the best
rates can be nearly O(n–1/3) under some general conditions. The results obtained in
the paper markedly improve and extend some corresponding ones to a much more
general setting.
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1 Introduction
Consider the nonparametric regression model

Yni = g(tni) + εni, 1 ≤ i ≤ n, n ≥ 1, (1)

where the regression function g is an unknown Borel-measurable function defined on
[0, 1], {tni} are nonrandom design points such that 0 ≤ tn1 ≤ · · · ≤ tnn ≤ 1, and {εni} are
random errors.

It is known that nonparametric regression model (1) has many applications in practi-
cal fields such as communications and control systems, classification, econometrics, and
so on. Thus model (1) has been widely investigated by many scholars. For some classical
estimations in the independent case, we refer the readers to Watson [1], Nadaraya [2],
Priestley and Chao [3], Gasser and Müller [4], and Georgiev [5]. Due to its significant
applications, this nonparametric regression model has also been investigated in various
dependent cases. For example, Yang and Wang [6] investigated the strong consistency of
the P-C estimator in (1) with negatively associated (NA) samples; Yang [7] studied the rate
of asymptotic normality for the weighted estimator with NA samples; Liang and Jing [8]
established the mean consistency, strong consistency, complete consistency, and asymp-
totic normality for the weighted estimator with NA samples; Wang et al. [9] investigated
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the complete consistency of the weighted estimator in (1) with extended negatively depen-
dent (END) errors; Chen et al. [10] obtained the mean consistency, strong consistency, and
complete consistency of the weighted estimator in model (1) with martingale difference
errors.

Compared to these smooth methods, the wavelet method has the advantage of estimat-
ing nonsmooth functions. Therefore, in this paper, we concentrate on the wavelet estima-
tion of unknown function g in model (1). Firstly, we recall two necessary concepts.

Definition 1.1 A scale function ϕ is q-regular (q ∈ Z) if for any l ≤ q and integer k, we
have | dlϕ

dxl | ≤ Ck(1 + |x|)–k , where Ck is a generic constant depending only on k.

Definition 1.2 A function space Hν (ν ∈ R) is called the Sobolev space of order ν if for all
h ∈ Hν , we have

∫ |ĥ(ω)|2(1 + ω2)ν dω < ∞, where ĥ is the Fourier transform of h.

Define the wavelet kernel

Ek(t, s) = 2kE0
(
2kt, 2ks

)
,

where E0(t, s) =
∑

j∈Z φ(t – j)φ(s – j), k = k(n) > 0 is an integer depending only on n, and φ

is the scaling function in the Schwartz space.
Antoniadis et al. [11] proposed the following wavelet estimator of g :

gn(t) =
n∑

i=1

Yni

∫

Ani

Ek(t, s) ds, (2)

where An1, An2, . . . , Ann is a partition of the interval [0, 1] with tni ∈ Ani, Ani = [sn(i–1), sni)
for i = 1, 2, . . . , n – 1, and Ann = [sn(n–1), snn].

It is well known that the wavelet method is a powerful tool in many fields such as ap-
plied mathematics, physics, computer science, signal and information processing, image
processing, and so on. Therefore, since Antoniadis et al. [11] introduced this method to
nonparametric regression model, many results were established. For example, Xue [12] in-
vestigated the rates of strong convergence for the wavelet estimator under completed and
censored data; Sun and Chai [13] established the weak consistency, strong consistency,
and the convergence rate for the wavelet estimator under stationary α-mixing samples;
Li et al. [14] obtained the weak consistency and the rate of uniformly asymptotic normal-
ity for wavelet estimator with associated samples; Liang [15] established the asymptotic
normality for wavelet estimator in heteroscedastic model with α-mixing samples; Li et
al. [16] obtained the Berry–Esseen bounds for wavelet estimator in a regression model
with linear process errors generated by ϕ-mixing sequences; Tang et al. [17] studied the
asymptotic normality for wavelet estimator with asymptotically negatively associated ran-
dom errors; Ding et al. [18] investigated the mean consistency, complete consistency, and
the rate of complete consistency for wavelet estimator with END random errors; Ding et al.
[19] established the Berry–Esseen bound of wavelet estimators in nonparametric regres-
sion model with asymptotically negatively associated errors; Ding and Chen [20] studied
the asymptotic normality of the wavelet estimators in heteroscedastic semiparametric re-
gression model with ϕ-mixing errors, and so on.
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In this work, we further study the consistency properties of wavelet estimator (2) under
a more general dependence structure. Now we recall some concepts of dependent random
variables.

Definition 1.3 A finite collection of random variables X1, X2, . . . , Xn is said to be END if
there exists a constant M > 0 such that

P(X1 > x1, X2 > x2, . . . , Xn > xn) ≤ M
n∏

i=1

P(Xi > xi)

and

P(X1 ≤ x1, X2 ≤ x2, . . . , Xn ≤ xn) ≤ M
n∏

i=1

P(Xi ≤ xi)

for all real numbers x1, x2, . . . , xn. An infinite sequence {Xn, n ≥ 1} is said to be END if its
every finite subcollection is END.

An array {Xni, 1 ≤ i ≤ n, n ≥ 1} of random variables is said to be rowwise END if for
every n ≥ 1, {Xni, 1 ≤ i ≤ n} is END.

The concept of END random variables was introduced by Liu [21]. It shows that the
END structure can reflect not only negative dependence structures, but also some positive
ones. It has been proved that the END structure contains NA, negatively superadditive
dependence (NSD), and negatively orthant dependence (NOD), the concepts of which
were introduced by Joag-Dev and Proschan [22], Hu [23], and Lehmann [24], respectively.
Therefore there is an increasing attention to this dependence structure, and many results
were successfully established since this concept was raised. For more detail, we refer the
readers to Liu [25], Shen [26], Wang and Wang [27], Wu and Guan [28], Shen et al. [29],
Yang et al. [30], and Wu et al. [31], among others.

Wang et al. [32] introduced the following concept of m-extended negatively dependent
(m-END) random variables.

Definition 1.4 Let m ≥ 1 be a fixed integer. A sequence {Xn, n ≥ 1} of random variables
is said to be m-END if for any n ≥ 2 and any i1, i2, . . . , in such that |ik – ij| ≥ m for all
1 ≤ k �= j ≤ n, we have that Xi1 , Xi2 , . . . , Xin are END.

The concept of m-END random variables is a natural extension of END random vari-
ables. It degenerates to END if we take m = 1. Hence m-END is a more general structure,
and it is of interest to investigate this dependence structure. There are already some papers
investigating m-END random variables. For example, Xu et al. [33] studied the mean con-
sistency of the weighted estimator in a nonparametric regression model based on m-END
random errors; Wang et al. [34] obtained the complete and complete moment conver-
gence for partial sums of m-END random variables and gave their applications to the EV
regression models.

We will use the following concept of stochastic domination.



He and Chen Journal of Inequalities and Applications        (2021) 2021:152 Page 4 of 15

Definition 1.5 A sequence {Xn, n ≥ 1} of random variables is said to be stochastically
dominated by a random variable X if there exists a positive constant C such that

P
(|Xn| > x

) ≤ CP
(|X| > x

)

for all x ≥ 0 and n ≥ 1.
An array {Xni, 1 ≤ i ≤ n, n ≥ 1} of rowwise random variables is said to be stochastically

dominated by a random variable X if there exists a positive constant C such that

P
(|Xni| > x

) ≤ CP
(|X| > x

)

for all x ≥ 0 and 1 ≤ i ≤ n, n ≥ 1.

In this paper, we further investigate the consistency properties of estimator (2) in the
nonparametric regression model (1) based on m-END random errors. We establish the
pth mean consistency, complete consistency, and the rate of complete consistency under
some general conditions. These results improve and extend the corresponding ones of Li
et al. [14] and Ding et al. [18]. Moreover, the method used here is different from those of
Li et al. [14] and Ding et al. [18].

In this paper, the symbols C, c1, c2, . . . represent generic positive constants whose values
may vary in different places. Denote x+ = max{0, x} and x– = max{0, –x}. By I(A) we denote
the indicator function of an event A.

The paper is organized as follows. The main results are stated in Sect. 2. Some important
lemmas are presented in Sect. 3. The proofs of the main results are provided in Sect. 4.

2 Main results
The following assumptions are needed in the main results.

(H1) g ∈ Hν for ν > 1/2, and g satisfies the Lipschitz condition of order γ > 0.
(H1)′ g ∈ Hν for ν ≥ 3/2, and g satisfies the Lipschitz condition of order γ > 0.
(H2) φ is regular of order q ≥ ν , satisfies the Lipschitz condition of order 1, and |φ̂(x) –

1| = O(x) as x → 0, where φ̂ is the Fourier transform of φ.
(H3) max1≤i≤n |sni – sn(i–1)| = O(1/n).

Remark 2.1 These assumptions are general conditions for wavelet estimation. They are
widely used in the literature, for example, in [12–18].

We now present our main results. The first one is the mean consistency of order p for
estimator (2).

Theorem 2.1 Suppose (H1)–(H3) hold. Assume that {εni, 1 ≤ i ≤ n, n ≥ 1} is an array of
zero mean m-END random variables with sup1≤i≤n,n≥1 E|εni|p < ∞ for some p > 1. If 2k →
∞ and 2k/n → 0 as n → ∞, then for any t ∈ [0, 1],

gn(t)
Lp−→ g(t), n → ∞.

Remark 2.2 Li et al. [14] obtained the weak consistency for (2) with NA random errors.
They required 2k = O(n1/3) and sup1≤i≤n,n≥1 E|εni|p < ∞ for some p > 3/2. Ding et al. [18]
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extended the result of Li et al. [14] to the pth mean consistency with END random errors
under the moment condition sup1≤i≤n,n≥1 E|εni|p < ∞ for some p ≥ 2. It is obvious that
Theorem 2.1 markedly relaxes the choice of 2k and weakens the moment condition. Hence
Theorem 2.1 improves and extends the results of Ding et al. [18] and Li et al. [14] to m-
END random errors.

The next theorem is about the complete consistency of the wavelet estimator based on
m-END random errors.

Theorem 2.2 Suppose (H1)–(H3) hold. Assume that 2k → ∞ and 2k/n = O(n–α) for some
0 < α < 1 and {εni, 1 ≤ i ≤ n, n ≥ 1} is an array of zero mean m-END random variables
stochastically dominated by a random variable ε with E|ε|1+1/α < ∞. Then for any t ∈ [0, 1],

gn(t) → g(t) completely.

Remark 2.3 Ding et al. [18] obtained the complete consistency of wavelet estimator with
END random errors, in which the conditions 2k = O(n1/3) and E|ε|4 < ∞ are required. Note
that even if we choose 2k = O(n1/3) in Theorem 2.2, the moment condition is only required
to be E|ε|5/2 < ∞. Therefore Theorem 2.2 improves and extends the corresponding result
of Ding et al. [18] markedly from END random errors to m-END random errors.

We also provide the rate of complete consistency for wavelet estimator.

Theorem 2.3 Suppose (H1)′ , (H2), and (H3) hold. Assume that 2k → ∞ and 2k/n = O(n–α)
for some 0 < α < 1 and {εni, 1 ≤ i ≤ n, n ≥ 1} is an array of zero mean m-END random
variables stochastically dominated by a random variable ε with E|ε|2+2/α < ∞. Then for
any 0 < r < α and t ∈ [0, 1],

∣
∣gn(t) – g(t)

∣
∣ = O

(√
k/2k + n–γ

)
+ o

(
n–r/2) completely.

By Theorem 2.3 we can obtain the following accurate rate of complete consistency for
the wavelet estimator.

Corollary 2.1 Suppose (H1)′ , (H2), and (H3) hold with γ ≥ 2/3. Assume that c1n1/3 ≤ 2k ≤
c2n1/3 and {εni, 1 ≤ i ≤ n, n ≥ 1} is an array of zero mean m-END random variables stochas-
tically dominated by a random variable ε with E|ε|5 < ∞. Then for any 0 < r < 2/3 and
t ∈ [0, 1],

∣
∣gn(t) – g(t)

∣
∣ = o

(
n–r/2) completely.

Remark 2.4 In Corollary 2.1, if r ≈ 3/2, then the rate of complete consistency can approxi-
mate to O(n–1/3). Ding et al. [18] also obtained the rate of complete consistency for wavelet
estimator, where E|ε|6 < ∞ is required. Observe that Corollary 2.1 only requires E|ε|5 < ∞,
and the best rate can approximate nearly O(n–1/3). Therefore Corollary 2.1 improves and
extends the corresponding result of Ding et al. [18].
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3 Some important lemmas
In this section, we state some lemmas, which will be used in proving our main results. The
first one is a basic property of m-END random variables, which can be seen in Wang et al.
[32].

Lemma 3.1 Let {Xn, n ≥ 1} be a sequence of m-END random variables. If {fn, n ≥ 1} are
nondecreasing (or nonincreasing) functions, then {fn(Xn), n ≥ 1} is still a sequence of m-
END random variables.

The following lemma is about the Marcinkiewicz–Zygmund-type inequality and
Rosenthal-type inequality for m-END random variables proved by Xu et al. [33].

Lemma 3.2 Let {Xn, n ≥ 1} be a sequence of m-END random variables with EXn = 0 and
E|Xn|p < ∞ for all n ≥ 1 and some p ≥ 1. Then

E

∣
∣
∣
∣
∣

n∑

i=1

Xi

∣
∣
∣
∣
∣

p

≤ cm,p

n∑

i=1

E|Xi|p, 1 ≤ p < 2,

and

E

∣
∣
∣
∣
∣

n∑

i=1

Xi

∣
∣
∣
∣
∣

p

≤ dm,p

{ n∑

i=1

E|Xi|p +

( n∑

i=1

EX2
i

)p/2}

, p ≥ 2,

where cm,p and dm,p depend only on m and p.

The following lemma is due to Antoniadis et al. [11].

Lemma 3.3 Suppose that (H1)–(H3) hold. Then

Egn(t) – g(t) = O
(
n–γ

)
+ O(τk),

where

τk =

⎧
⎪⎪⎨

⎪⎪⎩

(1/2k)ν–1/2 if 1/2 < ν < 3/2,√
k/2k if ν = 3/2,

1/2k if ν > 3/2.

The next lemma is due to Li et al. [14].

Lemma 3.4 Under Assumptions (H1)–(H3), we have
(i) | ∫Ani

Ek(t, s) ds| = O( 2k

n ), i = 1, . . . , n; (ii)
∑n

i=1 | ∫Ani
Ek(t, s) ds| ≤ C.

The following lemma is proved by Definition 1.5 and integration by parts; see Wu [35]
or Shen et al. [36] for detailed proofs.

Lemma 3.5 Let {Xni, 1 ≤ i ≤ n, n ≥ 1} be an array of random variables stochastically dom-
inated by a random variable X. For any α > 0 and b > 0, we have:

E|Xni|αI
(|Xni| ≤ b

) ≤ C1
[
E|X|αI

(|X| ≤ b
)

+ bαP
(|X| > b

)]
,
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E|Xni|αI
(|Xni| > b

) ≤ C2E|X|αI
(|X| > b

)
,

where C1 and C2 are positive constants. Particularly, E|Xni|α ≤ CE|X|α .

4 Proofs of main results
Proof of Theorem 2.1 By (1) and (2) it follows that for any t ∈ (0, 1),

∣
∣gn(t) – g(t)

∣
∣ ≤ ∣

∣Egn(t) – g(t)
∣
∣ +

∣
∣
∣
∣
∣

n∑

i=1

∫

Ani

Ek(t, s) ds εni

∣
∣
∣
∣
∣
. (3)

Since γ > 0 and 2k → ∞ as n → ∞, by Lemma 3.3 it follows that

∣
∣Egn(t) – g(t)

∣
∣ → 0, n → ∞. (4)

Hence we only need to prove

E

∣
∣
∣
∣
∣

n∑

i=1

∫

Ani

Ek(t, s) ds εni

∣
∣
∣
∣
∣

p

→ 0, n → ∞.

We will assume without loss of generality that
∫

Ani
Ek(t, s) ds > 0 since

∫
Ani

Ek(t, s) ds =
(
∫

Ani
Ek(t, s) ds)+ – (

∫
Ani

Ek(t, s) ds)–. Thus {∫Ani
Ek(t, s) ds εni, 1 ≤ i ≤ n} are still m-END by

Lemma 3.1. Hence, if 1 < p ≤ 2, then by Lemmas 3.2 and 3.4 we obtain that

E

∣
∣
∣
∣
∣

n∑

i=1

∫

Ani

Ek(t, s) ds εni

∣
∣
∣
∣
∣

p

≤ C
n∑

i=1

∣
∣
∣
∣

∫

Ani

Ek(t, s) ds
∣
∣
∣
∣

p

E|εni|p

≤ C
n∑

i=1

∣
∣
∣
∣

∫

Ani

Ek(t, s) ds
∣
∣
∣
∣ ·

(
2k

n

)p–1

sup
1≤i≤n,n≥1

E|εni|p

≤ C
(

2k

n

)p–1

→ 0, n → ∞.

If p > 2, then from sup1≤i≤n,n≥1 E|εni|p < ∞ noticing by the Jensen inequality that
sup1≤i≤n,n≥1 Eε2

ni < ∞, we also obtain by Lemmas 3.2 and 3.4 that

E

∣
∣
∣
∣
∣

n∑

i=1

∫

Ani

Ek(t, s) ds εni

∣
∣
∣
∣
∣

p

≤ C
n∑

i=1

∣
∣
∣
∣

∫

Ani

Ek(t, s) ds
∣
∣
∣
∣

p

E|εni|p

+ C

( n∑

i=1

∣
∣
∣
∣

∫

Ani

Ek(t, s) ds
∣
∣
∣
∣

2

Eε2
ni

)p/2

≤ C
n∑

i=1

∣
∣
∣
∣

∫

Ani

Ek(t, s) ds
∣
∣
∣
∣ ·

(
2k

n

)p–1

sup
1≤i≤n,n≥1

E|εni|p

+C

( n∑

i=1

∣
∣
∣
∣

∫

Ani

Ek(t, s) ds
∣
∣
∣
∣ · 2k

n
· sup

1≤i≤n,n≥1
Eε2

ni

)p/2

≤ C
(

2k

n

)p–1

+ C
(

2k

n

)p/2

→ 0, n → ∞.

The proof is finished. �
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Proof of Theorem 2.2 By (3) and (4) it follows that to complete the proof, we only need to
show that for any ε > 0,

∞∑

n=1

P

(∣
∣
∣
∣
∣

n∑

i=1

∫

Ani

Ek(t, s) ds εni

∣
∣
∣
∣
∣

> ε

)

< ∞. (5)

In view of Lemma 3.4(i) and 2k/n = O(n–α), we may assume without loss of generality that
0 <

∫
Ani

Ek(t, s) ds ≤ n–α . For fixed 1 ≤ i ≤ n, n ≥ 1, define

Xni = –I
(∫

Ani

Ek(t, s) ds εni < –1
)

+
∫

Ani

Ek(t, s) ds εniI
(∣

∣
∣
∣

∫

Ani

Ek(t, s) ds εni

∣
∣
∣
∣ ≤ 1

)

+ I
(∫

Ani

Ek(t, s) ds εni > 1
)

and

Yni =
(∫

Ani

Ek(t, s) ds εni + 1
)

I
(∫

Ani

Ek(t, s) ds εni < –1
)

+
(∫

Ani

Ek(t, s) ds εni – 1
)

I
(∫

Ani

Ek(t, s) ds εni > 1
)

.

By Lemma 3.1 it follows that {Xni, 1 ≤ i ≤ n} are still m-END. We can easily check that

∞∑

n=1

P

(∣
∣
∣
∣
∣

n∑

i=1

∫

Ani

Ek(t, s) ds εni

∣
∣
∣
∣
∣

> ε

)

≤
∞∑

n=1

P

( n⋃

i=1

{∣
∣
∣
∣

∫

Ani

Ek(t, s) ds εni

∣
∣
∣
∣ > 1

})

+
∞∑

n=1

P

(∣
∣
∣
∣
∣

n∑

i=1

Xni

∣
∣
∣
∣
∣

> ε

)

.= I1 + I2.

From 0 <
∫

Ani
Ek(t, s) ds ≤ n–α and Lemmas 3.4 and 3.5 it follows that

I1 ≤
∞∑

n=1

n∑

i=1

P
(∣

∣
∣
∣

∫

Ani

Ek(t, s) ds εni

∣
∣
∣
∣ > 1

)

≤
∞∑

n=1

n∑

i=1

∣
∣
∣
∣

∫

Ani

Ek(t, s) ds
∣
∣
∣
∣E|εni|I

(|εni| > nα
)

≤ C
∞∑

n=1

n∑

i=1

∣
∣
∣
∣

∫

Ani

Ek(t, s) ds
∣
∣
∣
∣E|ε|I(|ε| > nα

)

≤ C
∞∑

n=1

∞∑

j=n

E|ε|I(j < |ε|1/α ≤ j + 1
)

≤ C
∞∑

j=1

jE|ε|I(j < |ε|1/α ≤ j + 1
) ≤ CE|ε|1+1/α < ∞.
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To prove that I2 < ∞, we first show that
∑n

i=1 EXni → 0 as n → ∞. Indeed, from Eεni = 0,
0 <

∫
Ani

Ek(t, s) ds ≤ n–α , and Lemmas 3.4 and 3.5 it follows that

∣
∣
∣
∣
∣

n∑

i=1

EXni

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

n∑

i=1

EYni

∣
∣
∣
∣
∣

≤
n∑

i=1

∣
∣
∣
∣

∫

Ani

Ek(t, s) ds
∣
∣
∣
∣ · E|εni|I

(∣
∣
∣
∣

∫

Ani

Ek(t, s) ds εni

∣
∣
∣
∣ > 1

)

≤ CE|ε|I(|ε| > nα
) ≤ Cn–1E|ε|1+1/αI

(|ε| > nα
) → 0, n → ∞,

which implies that |∑n
i=1 EXni| < ε/2 for all n large enough. Hence by the Markov, Cr , and

Jensen inequalities and by Lemma 3.2 we obtain that for q > 2/α,

I2 ≤ C
∞∑

n=1

P

(∣
∣
∣
∣
∣

n∑

i=1

(Xni – EXni)

∣
∣
∣
∣
∣

> ε/2

)

≤ C
∞∑

n=1

E

∣
∣
∣
∣
∣

n∑

i=1

(Xni – EXni)

∣
∣
∣
∣
∣

q

≤ C
∞∑

n=1

n∑

i=1

E|Xni – EXni|q + C
∞∑

n=1

( n∑

i=1

E|Xni – EXni|2
)q/2

≤ C
∞∑

n=1

n∑

i=1

E|Xni|q + C
∞∑

n=1

( n∑

i=1

EX2
ni

)q/2

.= I3 + I4.

By the Cr inequality, Definition 1.5, and Lemma 3.5 it follows that

I3 ≤ C
∞∑

n=1

n∑

i=1

E
∣
∣
∣
∣

∫

Ani

Ek(t, s) ds εni

∣
∣
∣
∣

q

I
(∣

∣
∣
∣

∫

Ani

Ek(t, s) ds εni

∣
∣
∣
∣ ≤ 1

)

+ C
∞∑

n=1

n∑

i=1

P
(∣

∣
∣
∣

∫

Ani

Ek(t, s) ds εni

∣
∣
∣
∣ > 1

)

≤ C
∞∑

n=1

n∑

i=1

∣
∣
∣
∣

∫

Ani

Ek(t, s) ds
∣
∣
∣
∣

q

E|εni|qI
(

|εni| ≤
∣
∣
∣
∣

∫

Ani

Ek(t, s) ds
∣
∣
∣
∣

–1)

+ C
∞∑

n=1

n∑

i=1

P
(

|εni| >
∣
∣
∣
∣

∫

Ani

Ek(t, s) ds
∣
∣
∣
∣

–1)

≤ C
∞∑

n=1

n∑

i=1

∣
∣
∣
∣

∫

Ani

Ek(t, s) ds
∣
∣
∣
∣

q

E|ε|qI
(

|ε| ≤
∣
∣
∣
∣

∫

Ani

Ek(t, s) ds
∣
∣
∣
∣

–1)

+ C
∞∑

n=1

n∑

i=1

P
(

|ε| >
∣
∣
∣
∣

∫

Ani

Ek(t, s) ds
∣
∣
∣
∣

–1)

.= I31 + I32.
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Similarly to the proof of I1 < ∞, we easily obtain

I32 ≤ C
∞∑

n=1

n∑

i=1

∣
∣
∣
∣

∫

Ani

Ek(t, s) ds
∣
∣
∣
∣E|ε|I(|ε| > nα

)
< ∞.

For I31, we easily check that

I31 = C
∞∑

n=1

n∑

i=1

∣
∣
∣
∣

∫

Ani

Ek(t, s) ds
∣
∣
∣
∣

q

E|ε|qI
(

|ε| ≤
∣
∣
∣
∣

∫

Ani

Ek(t, s) ds
∣
∣
∣
∣

–1

, |ε| ≤ nα

)

+ C
∞∑

n=1

n∑

i=1

∣
∣
∣
∣

∫

Ani

Ek(t, s) ds
∣
∣
∣
∣

q

E|ε|qI
(

|ε| ≤
∣
∣
∣
∣

∫

Ani

Ek(t, s) ds
∣
∣
∣
∣

–1

, |ε| > nα

)

≤ C
∞∑

n=1

n∑

i=1

∣
∣
∣
∣

∫

Ani

Ek(t, s) ds
∣
∣
∣
∣

q

E|ε|qI
(|ε| ≤ nα

)

+ C
∞∑

n=1

n∑

i=1

∣
∣
∣
∣

∫

Ani

Ek(t, s) ds
∣
∣
∣
∣E|ε|I(|ε| > nα

)

.= I311 + I312.

Similarly to I32 < ∞, we have I312 < ∞. Now we turn to prove I311 < ∞. Indeed, noting that
q > 2/α > 1 + 1/α, by Lemma 3.4 we obtain that

I311 ≤ C
∞∑

n=1

max
1≤i≤n

∣
∣
∣
∣

∫

Ani

Ek(t, s) ds
∣
∣
∣
∣

q–1 n∑

i=1

∣
∣
∣
∣

∫

Ani

Ek(t, s) ds
∣
∣
∣
∣E|ε|qI

(|ε| ≤ nα
)

≤ C
∞∑

n=1

n–α(q–1)E|ε|qI
(|ε| ≤ nα

)

= C
∞∑

j=1

E|ε|qI
(
j – 1 < |ε|1/α ≤ j

) ∞∑

j=n

n–α(q–1)

≤ C
∞∑

j=1

j1–α(q–1)E|ε|qI
(
j – 1 < |ε|1/α ≤ j

)

≤ CE|ε|1+1/α < ∞.

Therefore we have proved I3 < ∞. Finally, we will show that I4 < ∞. Observing that |Xni| ≤
| ∫Ani

Ek(t, s) ds εni| and E|ε|1+1/α < ∞ implies Eε2 < ∞, by Lemmas 3.4–3.5 and q > 2/α we
obtain that

I4 ≤ C
∞∑

n=1

( n∑

i=1

∣
∣
∣
∣

∫

Ani

Ek(t, s) ds
∣
∣
∣
∣

2

· E|εni|2
)q/2

≤ C
∞∑

n=1

(

n–α

n∑

i=1

∣
∣
∣
∣

∫

Ani

Ek(t, s) ds
∣
∣
∣
∣ · E|ε|2

)q/2

≤ C
∞∑

n=1

n–αq/2 < ∞.

The proof is complete. �
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Proof of Theorem 2.3 Note that by (H1)′ and Lemma 3.3 we have

∣
∣gn(t) – Egn(t)

∣
∣ = O

(√
k/2k + n–γ

)
.

Hence, in view of (3), we only need to prove that for any ε > 0,

∞∑

n=1

P

(∣
∣
∣
∣
∣

n∑

i=1

∫

Ani

Ek(t, s) ds εni

∣
∣
∣
∣
∣

> εn–r/2

)

< ∞. (6)

We also assume without loss of generality that 0 <
∫

Ani
Ek(t, s) ds ≤ n–α . Define for each

1 ≤ i ≤ n, n ≥ 1,

Zni = –n–α/2I
(∫

Ani

Ek(t, s) ds εni < –n–α/2
)

+
∫

Ani

Ek(t, s) ds εniI
(∣

∣
∣
∣

∫

Ani

Ek(t, s) ds εni

∣
∣
∣
∣ ≤ n–α/2

)

+ n–α/2I
(∫

Ani

Ek(t, s) ds εni > n–α/2
)

and

Uni =
(∫

Ani

Ek(t, s) ds εni + n–α/2
)

I
(∫

Ani

Ek(t, s) ds εni < –n–α/2
)

+
(∫

Ani

Ek(t, s) ds εni – n–α/2
)

I
(∫

Ani

Ek(t, s) ds εni > n–α/2
)

.

Then {Zni, 1 ≤ i ≤ n} are still m-END by Lemma 3.1. We can also decompose

∞∑

n=1

P

(∣
∣
∣
∣
∣

n∑

i=1

∫

Ani

Ek(t, s) ds εni

∣
∣
∣
∣
∣

> εn–r/2

)

≤
∞∑

n=1

P

( n⋃

i=1

{∣
∣
∣
∣

∫

Ani

Ek(t, s) ds εni

∣
∣
∣
∣ > n–α/2

})

+
∞∑

n=1

P

(∣
∣
∣
∣
∣

n∑

i=1

Zni

∣
∣
∣
∣
∣

> εn–r/2

)

.= J1 + J2.

Similarly to the proof of I1 < ∞, by 0 <
∫

Ani
Ek(t, s) ds ≤ n–α , Lemmas 3.4–3.5, and

E|ε|2+2/α < ∞ we have that

J1 ≤
∞∑

n=1

n∑

i=1

P
(∣

∣
∣
∣

∫

Ani

Ek(t, s) ds εni

∣
∣
∣
∣ > n–α/2

)

≤
∞∑

n=1

nα/2
n∑

i=1

∣
∣
∣
∣

∫

Ani

Ek(t, s) ds
∣
∣
∣
∣E|εni|I

(|εni| > nα/2)

≤ C
∞∑

n=1

nα/2
n∑

i=1

∣
∣
∣
∣

∫

Ani

Ek(t, s) ds
∣
∣
∣
∣E|ε|I(|ε| > nα/2)
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≤ C
∞∑

j=1

E|ε|I(j < |ε|2/α ≤ j + 1
) j∑

n=1

nα/2

≤ C
∞∑

j=1

j1+α/2E|ε|I(j < |ε|2/α ≤ j + 1
) ≤ CE|ε|2+2/α < ∞.

By Eεni = 0, 0 <
∫

Ani
Ek(t, s) ds ≤ n–α , and Lemmas 3.4–3.5 we have that

nr/2

∣
∣
∣
∣
∣

n∑

i=1

EZni

∣
∣
∣
∣
∣

= nr/2

∣
∣
∣
∣
∣

n∑

i=1

EUni

∣
∣
∣
∣
∣

≤ nr/2
n∑

i=1

∣
∣
∣
∣

∫

Ani

Ek(t, s) ds
∣
∣
∣
∣ · E|εni|I

(∣
∣
∣
∣

∫

Ani

Ek(t, s) ds εni

∣
∣
∣
∣ > n–α/2

)

≤ Cnr/2E|ε|I(|ε| > nα/2) ≤ Cn(r–α)/2E|ε|2I
(|ε| > nα/2) → 0, n → ∞.

Hence by the Markov, Cr , and Jensen inequalities and by Lemma 3.2 we obtain that for
q > max{2 + 2/α, 2/(α – r)},

J2 ≤ C
∞∑

n=1

P

(∣
∣
∣
∣
∣

n∑

i=1

(Zni – EZni)

∣
∣
∣
∣
∣

> εn–r/2/2

)

≤ C
∞∑

n=1

nrq/2E

∣
∣
∣
∣
∣

n∑

i=1

(Zni – EZni)

∣
∣
∣
∣
∣

q

≤ C
∞∑

n=1

nrq/2
n∑

i=1

E|Zni|q + C
∞∑

n=1

nrq/2

( n∑

i=1

EZ2
ni

)q/2

.= J3 + J4.

By the Cr inequality and Lemma 3.5 we have that

J3 ≤ C
∞∑

n=1

nrq/2
n∑

i=1

E
∣
∣
∣
∣

∫

Ani

Ek(t, s) ds εni

∣
∣
∣
∣

q

I
(∣

∣
∣
∣

∫

Ani

Ek(t, s) ds εni

∣
∣
∣
∣ ≤ n–α/2

)

+ C
∞∑

n=1

n(r–α)q/2
n∑

i=1

P
(∣

∣
∣
∣

∫

Ani

Ek(t, s) ds εni

∣
∣
∣
∣ > n–α/2

)

≤ C
∞∑

n=1

nrq/2
n∑

i=1

∣
∣
∣
∣

∫

Ani

Ek(t, s) ds
∣
∣
∣
∣

q

E|ε|qI
(

|ε| ≤
∣
∣
∣
∣

∫

Ani

Ek(t, s) ds
∣
∣
∣
∣

–1

· n–α/2
)

+ C
∞∑

n=1

n∑

i=1

P
(

|ε| >
∣
∣
∣
∣

∫

Ani

Ek(t, s) ds
∣
∣
∣
∣

–1

· n–α/2
)

.= J31 + J32.

Similarly to J1 < ∞, we have

J32 ≤ C
∞∑

n=1

nα/2
n∑

i=1

∣
∣
∣
∣

∫

Ani

Ek(t, s) ds
∣
∣
∣
∣E|ε|I(|ε| > nα/2) < ∞.
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We can also easily obtain by r < α that

J31 = C
∞∑

n=1

n∑

i=1

nrq/2
∣
∣
∣
∣

∫

Ani

Ek(t, s) ds
∣
∣
∣
∣

q

E|ε|qI
(

|ε| ≤
∣
∣
∣
∣

∫

Ani

Ek(t, s) ds
∣
∣
∣
∣

–1

· n–α/2, |ε| ≤ nα/2
)

+ C
∞∑

n=1

nrq/2
n∑

i=1

∣
∣
∣
∣

∫

Ani

Ek(t, s) ds
∣
∣
∣
∣

q

× E|ε|qI
(

|ε| ≤
∣
∣
∣
∣

∫

Ani

Ek(t, s) ds
∣
∣
∣
∣

–1

· n–α/2, |ε| > nα/2
)

≤ C
∞∑

n=1

nαq/2
n∑

i=1

∣
∣
∣
∣

∫

Ani

Ek(t, s) ds
∣
∣
∣
∣

q

E|ε|qI
(|ε| ≤ nα/2)

+ C
∞∑

n=1

nα/2
n∑

i=1

∣
∣
∣
∣

∫

Ani

Ek(t, s) ds
∣
∣
∣
∣E|ε|I(|ε| > nα/2)

.= J311 + J312.

Similarly to J32 < ∞, we also have J312 < ∞. For J311, noting that q > 2 + 2/α, by Lemma 3.4
we obtain that

J311 ≤ C
∞∑

n=1

nαq/2 max
1≤i≤n

∣
∣
∣
∣

∫

Ani

Ek(t, s) ds
∣
∣
∣
∣

q–1 n∑

i=1

∣
∣
∣
∣

∫

Ani

Ek(t, s) ds
∣
∣
∣
∣E|ε|qI

(|ε| ≤ nα/2)

≤ C
∞∑

n=1

nαq/2–α(q–1)E|ε|qI
(|ε| ≤ nα/2)

= C
∞∑

j=1

E|ε|qI
(
j – 1 < |ε|2/α ≤ j

) ∞∑

j=n

nα–αq/2

≤ C
∞∑

j=1

jα–αq/2+1E|ε|qI
(
j – 1 < |ε|2/α ≤ j

)

≤ CE|ε|2+2/α < ∞.

Hence we have shown that J3 < ∞, and it remains to prove that J4 < ∞. Observing that
|Zni| ≤ | ∫Ani

Ek(t, s) ds εni| and Eε2 < ∞, by Lemmas 3.4–3.5 and q > 2/(α – r) we have that

J4 ≤ C
∞∑

n=1

nrq/2

( n∑

i=1

∣
∣
∣
∣

∫

Ani

Ek(t, s) ds
∣
∣
∣
∣

2

· E|εni|2
)q/2

≤ C
∞∑

n=1

nrq/2

(

n–α

n∑

i=1

∣
∣
∣
∣

∫

Ani

Ek(t, s) ds
∣
∣
∣
∣ · E|ε|2

)q/2

≤ C
∞∑

n=1

n–(α–r)q/2 < ∞.

The proof is complete. �
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