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1 Introduction
Let H be a separable complex Hilbert space and L(H) be the set of bounded linear op-
erators on H. An operator T ∈ L(H) is hyponormal if its self-commutator [T∗, T] :=
T∗T – TT∗ is positive semidefinite. Let dA be the normalized area measure on the open
unit disk D in C and L2(D) be a Hilbert space of square-integrable measurable functions
on D with the inner product

〈f , g〉 =
∫
D

f (z)g(z) dA(z).

The Bergman space A2(D) is the space of analytic functions in L2(D). The multiplica-
tion operator Mψ with symbol ψ ∈ L∞(D) is defined by Mψ f = ψ f for f ∈ A2(D). For any
ϕ ∈ L∞(D), the Toeplitz operator Tϕ on the Bergman space is defined by Tϕ f = P(ϕf ) for
f ∈ A2(D) and P is the orthogonal projection that maps L2(D) onto A2(D). Recall that the
power series representation of f ∈ A2(D) is

f (z) =
∞∑

n=0

anzn, where
∞∑

n=0

1
n + 1

|an|2 < ∞.

In [1, 4, 5], and [7], the basic properties of the Bergman space and the Hardy space are
well known. The hyponormality of Toeplitz operators on the Hardy space has been de-
veloped in [2, 3, 10], and [12]. In [2], Cowen characterized the hyponormality of Toeplitz
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operator Tϕ on H2(T) by the properties of the symbol ϕ ∈ L∞(T). Cowen’s method is to re-
construct the operator-theoretic problem of hyponormal Toeplitz operator into the prob-
lem of finding a solution of equations of functionals. Recently, in [8, 9], the authors char-
acterized the hyponormality of Toeplitz operators on the Bergman space with harmonic
symbols.

Proposition 1.1 ([8]) Let ϕ(z) = g(z) + f (z), where f (z) = amzm + aN zN and g(z) = a–mzm +
a–N zN (0 < m < N ). If amaN = a–ma–N , then Tϕ is hyponormal

⇐⇒
⎧⎨
⎩

1
N+1 (|aN |2 – |a–N |2) ≥ 1

m+1 (|a–m|2 – |am|2) if |a–N | ≤ |aN |,
N2(|a–N |2 – |aN |2) ≤ m2(|am|2 – |a–m|2) if |aN | ≤ |a–N |.

Proposition 1.2 ([9]) Let ϕ(z) = g(z) + f (z), where f (z) = amzm + aN zN and g(z) = a–mzm +
a–N zN (0 < m < N ). If Tϕ is hyponormal and |aN | ≤ |a–N |, then we have

N2(|a–N |2 – |aN |2) ≤ m2(|am|2 – |a–m|2).

Since the hyponormality of operators is translation invariant, we may assume that con-
stant term is zero. We shall list the well-known properties of Toeplitz operators Tϕ on
the Bergman space. Let f , g be in L∞(D) and α,β ∈ C, then we can easily check that
Tαf +βg = αTf + βTg , T∗

f = Tf , and Tf Tg = Tf g if f or g is analytic.
We briefly summarize a number of partial results relating to the hyponormality of

Toeplitz operator with non-harmonic symbols, which have been recently developed in
[6] and [14].

Proposition 1.3 ([6])
(i) Suppose f = am,nzmzn and g = ai,jzizj with m > n, i > j and m – n > i – j. Then Tf +g is

hyponormal if, for each k ≥ 0, the term

∣∣∣∣am,n

ai,j

∣∣∣∣m – n + k + 1
(m + k + 1)2 +

∣∣∣∣ ai,j

am,n

∣∣∣∣ i – j + k + 1
(i + k + 1)2

is sufficiently large.
(ii) Suppose f = am,nzmzn and g = ai,jzizj with m > n and i > j. Then Tf +g is hyponormal

if, for each k ≥ 0,

∣∣∣∣am,n

ai,j

∣∣∣∣m – n + k + 1
(m + k + 1)2 –

∣∣∣∣ ai,j

am,n

∣∣∣∣ i – j + k + 1
(i + k + 1)2

is sufficiently large.

Proposition 1.4 ([14]) Suppose c ∈C, s ∈ (0,∞) and n ∈N. If Tzn+C|z|s is hyponormal, then
|C| ≤ n

s . If s ≥ 2n, then the converse is also true (i.e., Tz+C|z|2 is hyponormal ⇐⇒ |C| ≤ 1
2 ).

Furthermore, in [11], the authors extended Proposition 1.4 to the weighted Bergman
spaces. The purpose of this paper is to characterize the hyponormal Toeplitz operators
Tϕ with non-harmonic symbols acting on A2(D).
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2 Toeplitz operators with non-harmonic symbols
We need several auxiliary lemmas to prove the main theorem in this section. We begin
with the following.

Lemma 2.1 ([8]) For any s, t ∈N,

P
(
ztzs) =

⎧⎨
⎩

s–t+1
s+1 zs–t if s ≥ t,

0 if s < t.

The proof for Lemma 2.2 follows the proof of Lemma 2.1 in [8].

Lemma 2.2 For 0 ≤ m ≤ N , we deduce that
(i) ‖zm ∑∞

i=0 cizi‖2 =
∑∞

i=0
1

i+m+1 |ci|2,
(ii) ‖P(zm ∑∞

i=0 cizi)‖2 =
∑∞

i=m
i–m+1
(i+1)2 |ci|2.

In [13], the author characterized the hyponormality of Toeplitz operators Tg+f with
bounded and analytic functions f and g by ‖(I –P)(gk)‖ ≤ ‖(I –P)(f k)‖ for every k in A2(D).
Furthermore, many authors have used the inequality to study the hyponormal Toeplitz
operators. However, we consider the hyponormality of Tϕ on A2(D) with the non-analytic
symbol ϕ. So, in our case, we cannot apply that inequality to ϕ since we cannot separate
ϕ to analytic and coanalytic parts. Therefore we directly calculate the self-commutator of
Tϕ . First, we consider the symbol ϕ of the form ϕ(z) = am,nzmzn with am,n ∈C.

Theorem 2.3 Let ϕ(z) = am,nzmzn with am,n ∈ C. Then Tϕ on A2(D) is hyponormal if and
only if m ≥ n.

Proof If m ≥ n, then the authors as in [6] proved that Tϕ is hyponormal. Suppose that Tϕ

is hyponormal. By the definition of hyponormal Toeplitz operators, Tϕ is hyponormal if
and only if

〈(
T∗

ϕTϕ – TϕT∗
ϕ

) ∞∑
i=0

cizi,
∞∑
i=0

cizi

〉
≥ 0

for all ci ∈C. Using Lemmas 2.1 and 2.2, we have that

∥∥∥∥∥Tϕ

∞∑
i=0

cizi

∥∥∥∥∥
2

–

∥∥∥∥∥T∗
ϕ

∞∑
i=0

cizi

∥∥∥∥∥
2

=

∥∥∥∥∥Tam,nzmzn

∞∑
i=0

cizi

∥∥∥∥∥
2

–

∥∥∥∥∥Tam,nzmzn

∞∑
i=0

cizi

∥∥∥∥∥
2

=

∥∥∥∥∥P

(
am,nzmzn

∞∑
i=0

cizi

)∥∥∥∥∥
2

–

∥∥∥∥∥P

(
am,nzmzn

∞∑
i=0

cizi

)∥∥∥∥∥
2

= |am,n|2
∞∑

i=max{n–m,0}

m + i – n + 1
(m + i + 1)2 |ci|2 – |am,n|2

∞∑
i=max{m–n,0}

n + i – m + 1
(n + i + 1)2 |ci|2 ≥ 0.
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Hence Tϕ is hyponormal if and only if

∞∑
i=max{n–m,0}

m + i – n + 1
(m + i + 1)2 |ci|2 ≥

∞∑
i=max{m–n,0}

n + i – m + 1
(n + i + 1)2 |ci|2

for all ci ∈ C. Since cis are arbitrary, we have that Tϕ is hyponormal if and only if m ≥ n.
This completes the proof. �

We now consider the hyponormality of Toeplitz operators with two terms non-
harmonic symbols.

Theorem 2.4 Let ϕ(z) = azmzn + bznzm with nonnegative integers m, n with m ≥ n and
nonzeros a, b ∈C. Then Tϕ on A2(D) is hyponormal if and only if |a| ≥ |b|.

Proof In a similar way to the proof of Theorem 2.3, Tϕ is hyponormal if and only if

∥∥∥∥∥Tϕ

∞∑
i=0

cizi

∥∥∥∥∥
2

–

∥∥∥∥∥T∗
ϕ

∞∑
i=0

cizi

∥∥∥∥∥
2

=

∥∥∥∥∥P

(
azn

∞∑
i=0

cizi+m

)
+ P

(
bzm

∞∑
i=0

cizi+n

)∥∥∥∥∥
2

–

∥∥∥∥∥P

(
azm

∞∑
i=0

cizi+n

)
+ P

(
bzn

∞∑
i=0

cizi+m

)∥∥∥∥∥
2

= |a|2
∞∑
i=0

m + i – n + 1
(m + i + 1)2 |ci|2 + |b|2

∞∑
i=m–n

n + i – m + 1
(n + i + 1)2 |ci|2

– |a|2
∞∑

i=m–n

n + i – m + 1
(n + i + 1)2 |ci|2 – |b|2

∞∑
i=0

m + i – n + 1
(m + i + 1)2 |ci|2

=
(|a|2 – |b|2)

[m–n–1∑
i=0

m + i – n + 1
(m + i + 1)2 |ci|2

+
∞∑

i=m–n

(
m + i – n + 1
(m + i + 1)2 –

n + i – m + 1
(n + i + 1)2

)
|ci|2

]
≥ 0.

Since m+i–n+1
(m+i+1)2 and m+i–n+1

(m+i+1)2 – n+i–m+1
(n+i+1)2 are positive for all i ≥ 0 and i ≥ m – n, respectively, Tϕ

is hyponormal if and only if |a| ≥ |b|. �

The following theorem gives a general characterization of hyponormal Toeplitz opera-
tors with the symbols of the form ϕ(z) = azmzn + bzszt (m ≥ n ≥ 0, t ≥ s ≥ 0) with some
conditions.

Theorem 2.5 Let ϕ(z) = azmzn + bzszt with nonnegative integers m, n, s, t with m ≥
n, t ≥ s, m �= t, m – n = t – s and nonzeros a, b ∈ C. If Tϕ on A2(D) is hyponormal,
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then

⎧⎨
⎩

|a|2 ≥ max{ (2m–n)2

(t+m–n)2 ,�(m, n, t, s)}|b|2 if t > m,

|a|2 ≥ max{ (m+1)2

(t+1)2 ,�(m, n, t, s)}|b|2 if t < m,

where �(m, n, t, s) = maxi∈[m–n,∞)

(t+i–s+1)
(t+i+1)2

– (s+i–t+1)
(s+i+1)2

(m+i–n+1)
(m+i+1)2

– (n+i–m+1)
(n+i+1)2

.

Proof In a similar way to the proof of Theorem 2.4, Tϕ is hyponormal if and only if

∥∥∥∥∥Tϕ

∞∑
i=0

cizi

∥∥∥∥∥
2

–

∥∥∥∥∥T∗
ϕ

∞∑
i=0

cizi

∥∥∥∥∥
2

= |a|2
∞∑
i=0

m + i – n + 1
(m + i + 1)2 |ci|2 + |b|2

∞∑
i=t–s

s + i – t + 1
(s + i + 1)2 |ci|2

– |a|2
∞∑

i=m–n

n + i – m + 1
(n + i + 1)2 |ci|2 – |b|2

∞∑
i=0

t + i – s + 1
(t + i + 1)2 |ci|2

+ 2 Re

(
ab

∞∑
i=m–n

i + 1
(n + i + 1)(t + i + 1)

ci–m+nct–s+i

)

– 2 Re

(
ab

∞∑
i=t–s

i + 1
(m + i + 1)(s + i + 1)

ci+m–nci–t+s

)
≥ 0

(2.1)

for any ci ∈ C (i = 0, 1, 2, . . .).
Since m – n = t – s and m �= t, from (2.1), Tϕ is hyponormal if and only if

|a|2
{ ∞∑

i=0

m + i – n + 1
(m + i + 1)2 |ci|2 –

∞∑
i=m–n

n + i – m + 1
(n + i + 1)2 |ci|2

}

≥ |b|2
{ ∞∑

i=0

m + i – n + 1
(t + i + 1)2 |ci|2 –

∞∑
i=m–n

n + i – m + 1
(s + i + 1)2 |ci|2

}

+ 2 Re

(
ab

∞∑
i=m–n

(
i + 1

(m + i + 1)(s + i + 1)
–

i + 1
(n + i + 1)(t + i + 1)

)
ci+m–nci–m+n

)
(2.2)

for any ci ∈ C (i = 0, 1, 2, . . .). Since cis are arbitrary, set Re(abci+m–nci–m+n) = 0 for any i,
i ≥ m – n. If 0 ≤ i < m – n, then (2.2) implies

|a|2 ≥ (m + i + 1)2

(t + i + 1)2 |b|2.

There are two cases to consider. If t > m, then (m+i+1)2

(t+i+1)2 is increasing in i, and hence |a|2 ≥
(2m–n)2

(t+m–n)2 |b|2. If t < m, then (m+i+1)2

(t+i+1)2 is decreasing in i and hence

|a|2 ≥ (m + 1)2

(t + 1)2 |b|2.
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For i ≥ m – n = t – s,

|a|2 ≥ max
i∈[m–n,∞)

t+i–s+1
(t+i+1)2 – s+i–t+1

(s+i+1)2

m+i–n+1
(m+i+1)2 – n+i–m+1

(n+i+1)2
|b|2.

Hence, if Tϕ is hyponormal, then

⎧⎨
⎩

|a|2 ≥ max{ (2m–n)2

(t+m–n)2 ,�(m, n, t, s)}|b|2 if t > m,

|a|2 ≥ max{ (m+1)2

(t+1)2 ,�(m, n, t, s)}|b|2 if t < m,

where �(m, n, t, s) = maxi∈[m–n,∞)

(t+i–s+1)
(t+i+1)2

– (s+i–t+1)
(s+i+1)2

(m+i–n+1)
(m+i+1)2

– (n+i–m+1)
(n+i+1)2

. �

Corollary 2.6 Let ϕ(z) = azmzn + bzszt with nonnegative integers m, n, s, t with m ≥ n,
t ≥ s, m > t, m – n = t – s and nonzeros a, b ∈C. If

|a|2 < max

{
(m + 1)2

(t + 1)2 ,
(m + 1)2(s + t)(2m – n + 1)2

(t + 1)2(m + n)(2t – s + 1)2

}
|b|2,

then Tϕ on A2(D) is never hyponormal.

Proof By a direct calculation,

(t+i–s+1)
(t+i+1)2 – (s+i–t+1)

(s+i+1)2

(m+i–n+1)
(m+i+1)2 – (n+i–m+1)

(n+i+1)2

=
(m + i + 1)2(n + i + 1)2{(s + t)i + (t2 + s2 + t + s)}

(t + i + 1)2(s + i + 1)2{(m + n)i + (n2 + m2 + n + m)} .

For convenience, we set

G(i) =
(m + i + 1)(n + i + 1)
(t + i + 1)(s + i + 1)

and H(i) =
(s + t)i + (t2 + s2 + t + s)

(m + n)i + (n2 + m2 + n + m)
,

then

�(m, n, t, s) = max
i∈[m–n,∞)

G2(i)H(i).

By direct calculations,

G′(i) =
(s + t – m – n)i2 + 2{(t + 1)(s + 1) – (m + 1)(n + 1)}i

(t + i + 1)2(s + i + 1)2

+
(m + n + 2)(t + 1)(s + 1) – (s + t + 2)(m + 1)(n + 1)

(t + i + 1)2(s + i + 1)2 .

Write G′(i) = P(i)
Q(i) . Since s + t – m – n < 0, P(i) has a maximum at i = – (t+1)(s+1)–(m+1)(n+1)

s+t–m–n < 0,
and since

P(0) = (m + n + 2)(t + 1)(s + 1) – (s + t + 2)(m + 1)(n + 1)

= (m + 1)(t + 1)(s – n) + (n + 1)(s + 1)(t – m) < 0,
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P(i) < 0 in i ≥ m – n and Q(i) > 0 in i ≥ m – n. Hence G(i) is decreasing in i ≥ m – n.
Similarly,

H ′(i) =
ms(m – s) + nt(n – t) + mt(m – t) + ns(n – s)

{(m + n)i + (n2 + m2 + n + m)}2 ,

and since m > s, m > t, n > s, and

nt(n – t) + mt(m – t) > mt
(
m – t – |n – t|) > 0,

H ′(i) > 0 and so H(i) is increasing in i, i ≥ m – n. Furthermore, limi→∞ H(i) = s+t
m+n , we have

that

max
i∈[m–n,∞)

G2(i)H(i) ≤ s + t
m + n

max
i∈[m–n,∞)

G2(i) ≤ (m + 1)2(s + t)(2m – n + 1)2

(t + 1)2(m + n)(2t – s + 1)2 .

Hence, by Theorem 2.5, we have the results. �

Theorem 2.7 Let ϕ(z) = azmzm–1 + bzm–1zm–2 with m > 0 and nonzeros a, b ∈ C. If Tϕ on
A2(D) is hyponormal, then

|a|2 ≥ (m + 1)2

m2 |b|2.

Proof Let ϕ(z) = azmzm–1 + bzm–1zm–2. From (2.1), if Tϕ is hyponormal, then

|a|2
{ ∞∑

i=0

i + 2
(m + i + 1)2 |ci|2 –

∞∑
i=1

i
(m + i)2 |ci|2

}

≥ |b|2
{ ∞∑

i=0

i + 2
(m + i)2 |ci|2 –

∞∑
i=1

i
(m + i – 1)2 |ci|2

}

for any ci ∈ C with Re(abci+2ci) = 0 (i = 0, 1, 2, . . .). If c0 �= 0 and ci = 0 for i ≥ 0, then |a|2 ≥
(m+1)2

m2 |b|2 and if c0 = 0 and ci �= 0 for i ≥ 1,

|a|2 ≥ max
i∈[1,∞)

i+2
(m+i)2 – i

(m+i–1)2

i+2
(m+i+1)2 – i

(m+i)2
|b|2.

If i ≥ 1, then we can easily check that
i+2

(m+i)2
– i

(m+i–1)2
i+2

(m+i+1)2
– i

(m+i)2
is decreasing in i. Hence, if Tϕ is hy-

ponormal, then

|a|2 ≥ max

{
(m + 1)2

m2 ,
(m + 2)2(2m2 – 2m – 1)

m2(2m2 + 2m – 1)

}
|b|2.

Since for every nonnegative integer m,

(m + 1)2

m2 >
(m + 2)2(2m2 – 2m – 1)

m2(2m2 + 2m – 1)
,

this completes the proof. �
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Now we give the example mentioned above.

Example 2.8 Let ϕ(z) = az3z2 + bzz2 with nonzeros a, b ∈C. Then, by Theorem 2.7,

(m + 1)2

m2 =
16
9

,

and so if Tϕ is hyponormal, then

|a|2 ≥ 16
9

|b|2.

Theorem 2.9 Let ϕ(z) = azmzn + bzszm with nonnegative integers m, n, s with m ≥ s > n
and nonzeros a, b ∈C. If Tϕ on A2(D) is hyponormal, then

|a|2 ≥ max

{
2m – 2s

2m – n – s
,

(2m–n–s)
(2m–n)2 – (s–n)

(s+m–n)2

2(m–n)
(2m–n)2

,�(m, n, m, s)
}
|b|2,

where �(m, n, m, s) is given in Theorem 2.5.

Proof In a similar way to the proof of Theorem 2.5, if Tϕ is hyponormal, then

∥∥∥∥∥Tϕ

∞∑
i=0

cizi

∥∥∥∥∥
2

–

∥∥∥∥∥T∗
ϕ

∞∑
i=0

cizi

∥∥∥∥∥
2

= |a|2
∞∑
i=0

m + i – n + 1
(m + i + 1)2 |ci|2 + |b|2

∞∑
i=m–s

s + i – m + 1
(s + i + 1)2 |ci|2

– |a|2
∞∑

i=m–n

n + i – m + 1
(n + i + 1)2 |ci|2 – |b|2

∞∑
i=0

m + i – s + 1
(m + i + 1)2 |ci|2 ≥ 0

or, equivalently,

|a|2
( ∞∑

i=0

m + i – n + 1
(m + i + 1)2 |ci|2 –

∞∑
i=m–n

n + i – m + 1
(n + i + 1)2 |ci|2

)

≥ |b|2
( ∞∑

i=0

m + i – s + 1
(m + i + 1)2 |ci|2 –

∞∑
i=m–s

s + i – m + 1
(s + i + 1)2 |ci|2

) (2.3)

for any ci ∈Cwith Re(abci–m+nci–m–s) = 0 and Re(abci+m–nci–m+s) = 0 (i = 0, 1, 2, . . .). If ci �= 0
for 0 ≤ i < m – s and ci = 0 for i ≥ m – s, then (2.3) implies

|a|2 ≥ m + i – s + 1
m + i – n + 1

|b|2,

and since m+i–s+1
m+i–n+1 is increasing in i, we have that

|a|2 ≥ 2m – 2s
2m – n – s

|b|2.
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If ci �= 0 for m – s ≤ i < m – n and ci = 0 for i < m – s or i ≥ m – n, then

|a|2 ≥
m+i–s+1
(m+i+1)2 – s+i–m+1

(s+i+1)2

m+i–n+1
(m+i+1)2

|b|2.

By direct calculations,
m+i–s+1
(m+i+1)2

– s+i–m+1
(s+i+1)2

m+i–n+1
(m+i+1)2

is increasing and hence

|a|2 ≥
(2m–n–s)
(2m–n)2 – (s–n)

(s+m–n)2

2(m–n)
(2m–n)2

|b|2.

If ci �= 0 for i ≥ m – n and ci = 0 for i < m – n, then

|a|2 ≥ �(m, n, m, s)|b|2,

where �(m, n, m, s) is given in Theorem 2.5. �

Corollary 2.10 Let ϕ(z) = azmzn + bzszm with nonnegative integers m, n, s with m ≥ s > n
and nonzeros a, b ∈C. If |a|2 < C|b|2, where

C = max

{
2m – 2s

2m – n – s
,

(2m–n–s)
(2m–n)2 – (s–n)

(s+m–n)2

2(m–n)
(2m–n)2

,

(m – s){2m2 + (s – n + 1)m + s2 + s – sn}
(m – n)(2m2 + m + n)

,
m2 – s2

m2 – n2

}
,

then Tϕ on A2(D) is never hyponormal.

Proof By a direct calculation,

(m+i–s+1)
(m+i+1)2 – (s+i–m+1)

(s+i+1)2

(m+i–n+1)
(m+i+1)2 – (n+i–m+1)

(n+i+1)2

=
(n + i + 1)2{(m + s)(m – s)i + (m – s)(m2 + s2 + m + s)}

(s + i + 1)2{(m + n)(m – n)i + (m – n)(n2 + m2 + n + m)} .

For convenience, we set

G(i) =
n + i + 1
s + i + 1

and H(i) =
(m + s)(m – s)i + (m – s)(m2 + s2 + m + s)

(m + n)(m – n)i + (m – n)(n2 + m2 + n + m)
,

then

�(m, n, m, s) = max
i∈[m–n,∞)

G2(i)H(i).

Since

G′(i) =
s – n

(s + i + 1)2 ,

G(i) is increasing and limi→∞ G(i) = 1. Similarly,

H ′(i) =
(m – s){(m + s)(m2 + n2 + m + n) – (m + n)(m2 + s2 + m + s)}

(m – n){(m + n)i + (m2 + n2 + m + n)}2 ,
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and thus H(i) is monotone for i ≥ m – n. Therefore

max
i∈[m–n,∞)

H(i) ≤ max

{
(m – s){2m2 + (s – n + 1)m + s2 + s – sn}

(m – n)(2m2 + m + n)
,

m2 – s2

m2 – n2

}
.

Furthermore, we have that

max
i∈[m–n,∞)

G2(i)H(i) ≤ max
i∈[m–n,∞)

H(i)

≤ max

{
(m – s){2m2 + (s – n + 1)m + s2 + s – sn}

(m – n)(2m2 + m + n)
,

m2 – s2

m2 – n2

}
.

Hence, by Theorem 2.9, we have the results. �

Example 2.11 Let ϕ(z) = az3z + bz2z3 with nonzeros a, b ∈C. Then, by Theorem 2.9,

2m – 2s
2m – n – s

=
2
3

,
(2m–n–s)
(2m–n)2 – (s–n)

(s+m–n)2

2(m–n)
(2m–n)2

=
23
64

,

�(m, n, t, s) = max
i∈[2,∞)

(i + 2)2(5i + 18)
4(i + 3)2(2i + 7)

.

Since (i+2)2(5i+18)
4(i+3)2(2i+7) is increasing for i ≥ 2, we have that

�(m, n, t, s) = lim
i→∞

(i + 2)2(5i + 18)
4(i + 3)2(2i + 7)

=
5
8

.

Therefore, if Tϕ is hyponormal, then

|a|2 ≥ 2
3
|b|2.

Theorem 2.12 Let ϕ(z) = azmzn + bzszm with nonnegative integers m, n, s with m ≥ n > s
and nonzeros a, b ∈C. If Tϕ on A2(D) is hyponormal, then

|a|2 ≥ max

{
m – s + 1
m – n + 1

,
2m–2s

(2m–s)2

2m–s–n
(2m–s)2 – n–s

(n+m–s)2
,�(m, n, m, s)

}
|b|2,

where �(m, n, m, s) is given in Theorem 2.5.

Proof In a similar way to the proof of Theorem 2.4, Tϕ is hyponormal if and only if

|a|2
( ∞∑

i=0

m + i – n + 1
(m + i + 1)2 |ci|2 –

∞∑
i=m–n

n + i – m + 1
(n + i + 1)2 |ci|2

)

≥ |b|2
( ∞∑

i=0

m + i – s + 1
(m + i + 1)2 |ci|2 –

∞∑
i=m–s

s + i – m + 1
(s + i + 1)2 |ci|2

) (2.4)
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for any ci ∈Cwith Re(abci–m+nci–m–s) = 0 and Re(abci+m–nci–m+s) = 0 (i = 0, 1, 2, . . .). If ci �= 0
for 0 ≤ i < m – n and ci = 0 for i ≥ m – n, then (2.4) implies

|a|2 ≥ m + i – s + 1
m + i – n + 1

|b|2,

and since m+i–s+1
m+i–n+1 is decreasing in i, we have that

|a|2 ≥ m – s + 1
m – n + 1

|b|2.

If ci �= 0 for m – n ≤ i < m – s and ci = 0 for i < m – n or i ≥ m – s, then

|a|2 ≥
m+i–s+1
(m+i+1)2

m+i–n+1
(m+i+1)2 – n+i–m+1

(n+i+1)2
|b|2.

By direct calculations,
m+i–s+1
(m+i+1)2

m+i–n+1
(m+i+1)2

– n+i–m+1
(n+i+1)2

is increasing and hence

|a|2 ≥
2m–2s

(2m–s)2

2m–s–n
(2m–s)2 – n–s

(n+m–s)2
|b|2.

If ci �= 0 for i ≥ m – s and ci = 0 for i < m – s, then

|a|2 ≥ �(m, n, m, s)|b|2,

where �(m, n, m, s) is given in Theorem 2.5. �

Corollary 2.13 Let ϕ(z) = azmzn + bzszm with nonnegative integers m, n, s with m ≥ n > s
and nonzeros a, b ∈C. If

|a|2 < max

{
m – s + 1
m – n + 1

,
2m–2s

(2m–s)2

2m–s–n
(2m–s)2 – n–s

(n+m–s)2
,

C1(m + 1)2

(s + m – n + 1)2

}
|b|2,

where C1 = max{ (m–s){2m2+(s–n+1)m+s2+s–sn}
(m–n)(2m2+m+n) , m2–s2

m2–n2 }, then Tϕ on A2(D) is never hyponormal.

Proof

(m+i–s+1)
(m+i+1)2 – (s+i–m+1)

(s+i+1)2

(m+i–n+1)
(m+i+1)2 – (n+i–m+1)

(n+i+1)2

=
(n + i + 1)2{(m + s)(m – s)i + (m – s)(m2 + s2 + m + s)}

(s + i + 1)2{(m + n)(m – n)i + (m – n)(n2 + m2 + n + m)} .

For convenience, we set

G(i) =
n + i + 1
s + i + 1

and H(i) =
(m + s)(m – s)i + (m – s)(m2 + s2 + m + s)

(m + n)(m – n)i + (m – n)(n2 + m2 + n + m)
,

then

�(m, n, m, s) = max
i∈[m–n,∞)

G2(i)H(i).



Kim and Lee Journal of Inequalities and Applications         (2021) 2021:67 Page 12 of 13

Since

G′(i) =
s – n

(s + i + 1)2 ,

G(i) is decreasing. Similarly,

H ′(i) =
(m – s){(m + s)(m2 + n2 + m + n) – (m + n)(m2 + s2 + m + s)}

(m – n){(m + n)i + (m2 + n2 + m + n)}2 ,

and thus H(i) is monotone for i ≥ m – n. Therefore

max
i∈[m–n,∞)

H(i) ≤ max

{
(m – s){2m2 + (s – n + 1)m + s2 + s – sn}

(m – n)(2m2 + m + n)
,

m2 – s2

m2 – n2

}
.

Hence

max
i∈[m–n,∞)

G2(i)H(i) ≤ C1 max
i∈[m–n,∞)

G2(i) ≤ C1(m + 1)2

(s + m – n + 1)2 ,

where C1 = max{ (m–s){2m2+(s–n+1)m+s2+s–sn}
(m–n)(2m2+m+n) , m2–s2

m2–n2 }. Hence, by Theorem 2.12, we have the
results. �

Example 2.14 Let ϕ(z) = az3z2 + bzz3 with nonzeros a, b ∈C. Then, by Theorem 2.12,

m – s + 1
m – n + 1

=
3
2

,
(2m–n–s+1)
(2m–n+1)2

(2m–2n+1)
(2m–n+1)2 – 1

(m+1)2

=
64
23

,

�(m, n, t, s) = max
i∈[1,∞)

4(i + 3)2(2i + 7)
(i + 2)2(5i + 18)

.

Since 4(i+3)2(2i+7)
(i+2)2(5i+18) is decreasing for i ≥ 1, we have that

�(m, n, t, s) =
64
23

.

Therefore, if Tϕ is hyponormal, then

|a|2 ≥ 64
23

|b|2.
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