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Abstract
A prey–predator model with constant-effort harvesting on the prey and predators is
investigated in this paper. First, we discuss the number and type of the equilibria by
analyzing the equations of equilibria and the distribution of eigenvalues. Second, with
the rescaled harvesting efforts as bifurcation parameters, a subcritical Hopf
bifurcation is exhibited near the multiple focus and a Bogdanov–Takens bifurcation is
also displayed near the BT singularity by analyzing the versal unfolding of the model.
With the variation of bifurcation parameters, the system shows multi-stable structure,
and the attractive domains for different attractors are constituted by the stable and
unstable manifolds of saddles and the limit cycles bifurcated from Hopf and
Bogdanov–Takens bifurcations. Finally, a cusp point and two generalized Hopf points
are found on the saddle-node bifurcation curve and the Hopf bifurcation curves,
respectively. Several phase diagrams for parameters near one of the generalized Hopf
points are exhibited through the generalized Hopf bifurcation.
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1 Introduction
The prey–predator model based on Lotka–Volterra model is one of the most popular
models in mathematical ecology and has been widely applied in understanding population
dynamics of the species, which is characterized by the complicated interaction among the
species and the interaction between the species and their surroundings. Functional re-
sponse is the rate of prey consumption by the predators, which can characterize the inter-
action between the prey and the predators. The initial functional responses are presented
by Holling in [11, 12] and have been classified into three types called Holling I, II and III.
Generally speaking, Holling type I response is seen mostly at filter-feeding predators, such
as mollusks, algae, and cells. Holling types II and III responses are applicable to the inver-
tebrates and complicated vertebrates, respectively. The common feature of these functions
is all monotonic increasing and bounded, which means that the more the prey is in the en-
vironment, the better for the predators [6]. However, many experiments and observations
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indicate that monotonicity does not always hold and a non-monotonic response may ex-
ist when the nutrient concentration reaches a high level [3, 9, 31]. It is also explained that
when the number of the prey is large enough, their group defense ability and camouflage
ability are strengthened to decrease the predation ability of the predators. For example,
large swarms of insects make individual identification difficult for their predators. A lone
musk ox can be successfully attacked by wolves, while large groups of musk oxen are less
likely to be attacked successfully [28]. Filamentous algae are often qualified as inedible by
herbivorous zooplankton [8]. To model such an inhibitory effect, a Holling IV response

mx
a+bx+x2 and a simplified Holling IV response mx

a+x2 have been proposed by Andrews [1] and
Sokoland [25], respectively. Since then the prey–predator system with Holling IV func-
tional response has been widely studied by many researchers [4, 15, 20, 30, 32].

For commercial and economical purposes, the exploitation of biological resources and
harvesting of populations are commonly practiced in fishery, forestry and wildlife manage-
ment [22]. It is known that harvesting, as a scientific management of renewable resources,
has a strong effect on the dynamic evolution of the biological models, which can determine
the survival and sustainable development of the species. In order to reasonably govern re-
newable resources, the study of the exploitation of biological resources and harvesting of
populations is becoming a hot topic in the field of biological economics, which is related
to the optimal management of renewable resources [5].

Recently, it has become very popular among many researchers in using bifurcation the-
ory to analyze the harvested prey–predator model to reach an optimal management in the
field of mathematical biology [10, 13, 15–18, 21, 29, 33, 34], which can predict the species’
evolutionary direction, including the constant state, periodic state and chaotic state, as
the critical biological parameters vary.

From the present work, we find that most of the harvested prey–predator models which
have been considered by many authors are confined to three aspects: (i) constant-yield
harvesting, (ii) harvesting subjected to only one species or (iii) the numerical response
is proportional to the functional response, where the numerical response is the change
in predator density as a function of change in prey density [26]. It is the reproduction
rate of a consumer as a function of food density. That is, when the predators consume
their prey, the numerical response is dynamic relation between the increasing number
of the predators and the consumed prey. From the convention, we know that harvesting
frequently varies with season, market demand, the species quantity, harvesting cost and so
on; the prey and the predators can be both valuable from the business point; the numerical
response can be uncorrelated with the functional response. Based on above analysis and
the virtue of the Holling IV response, in this paper we extend previous work from three
aspects and establish a prey–predator model with Leslie–Gower and Holling IV schemes
with constant-effort harvesting, which is given by

ẋ = r1x
(

1 –
x
K

)
–

mx
b + x2 y – c1x,

ẏ = r2y
(

1 –
y
sx

)
– c2y.

(1.1)

The logistic model r1x(1 – x
K ) is used to describe the growth of the prey in the absence of

predators in the limited environmental carrying capacity. The second term mx
b+x2 y describes
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the change in the density of the prey attacked per unit time as the prey density changes.
The last term c1x is the constant-effort harvesting of the prey. r2y(1 – y

sx ) is the predator
growth term, which is described by the Leslie–Gower function. y

sx measures the loss in
the predator population due to rarity (per capita of y

x ) of its favorite term [19]. The term
c2y is the constant-effort harvesting of the predators. The meanings of the parameters are
given as follows:

(i) x and y denote the densities of the prey and the predators.
(ii) K is the environmental carrying capacity for the prey.
(iii) m denotes the maximal predation rate.
(iv) b is the so-called half-saturation constant.
(v) s is a measure of food quality that the prey provides for conversion into the predator

birth.
(vi) r1 and r2 are intrinsic growth rates of the prey and predators, respectively.
(vii) c1 and c2 measure the effort being spent by a harvesting agency (harvesting efforts).
The model (1.1) without harvesting (i.e., c1 = c2 = 0) has been discussed in [7, 14, 20]. Li

and Xiao [20] proved that the model could simultaneously undergo a Bogdanov–Takens
bifurcation and a subcritical Hopf bifurcation in the small neighborhoods of two different
equilibria, respectively. It was shown that for different parameters the model could have a
stable limit cycle enclosing two equilibria, or an unstable limit cycle enclosing a hyperbolic
equilibria, or two limit cycles enclosing a hyperbolic equilibrium. In Ref. [14], for the same
model, Huang et al. investigated the degenerate Bogdanov–Takens bifurcation of codi-
mension 3 around the degenerate positive equilibrium. Some other abundant dynamical
phenomena could emerge, such as the coexistence of three hyperbolic positive equilibria,
a homoclinic loop enclosing an unstable limit cycle, or a stable limit cycle enclosing three
unstable hyperbolic positive equilibria. From the above-mentioned work, Hopf cyclicity
and the global dynamics of the same model were investigated by Dai and Zhao [7] for the
cases of one non-degenerate positive equilibrium and three distinct positive equilibria,
respectively. Some explicit conditions for the globally stable equilibrium were established
by applying Dulac’s criterion and constructing the Lyapunov function. It was shown that
the Hopf bifurcation could occur at each weak focus and more complicated and new dy-
namics were observed. When the system had a unique positive equilibrium, there existed
parameter values such that the system had two limit cycles around it. When the system
had three positive equilibria, one limit cycle could bifurcate from each of the two positive
anti-saddles simultaneously.

In order to discuss if the added harvesting terms can affect the bifurcation structure of
the prey–predator model, we also do a series of bifurcation analysis for the model with
liner harvesting. We find that, besides some original dynamical behaviors, some new phe-
nomena and bifurcations appear in the harvested model, such as a globally stable equi-
librium, a cusp bifurcation and a generalized Hopf bifurcation. From the cusp point, two
saddle-node bifurcation curves are bifurcated, through which three equilibria collide to
form an equilibrium or one equilibrium splits into three equilibria. From the generalized
Hopf bifurcation point, a fold bifurcation curve of limit cycles is bifurcated, on which two
limit cycles with different stability collide to form a semi-stable cycle. These dynamical
behaviors have not been found or discussed in the original model in Ref. [7, 14, 20].
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Before entering the topic, we carry out the following scaling transformations:

t̄ = r1t, x̄ =
x
K

, ȳ =
my

r1K2 , a =
b

K2 , δ =
r2

r1
, β =

r2K
sm

,

h1 =
c1

r1
, h2 =

c2

r2
.

Dropping the bars system (1.1) becomes

ẋ = x(1 – x) –
x

a + x2 y – h1x,

ẏ = y
(

δ – β
y
x

)
– h2y,

(1.2)

where a, δ,β , h1 and h2 are positive parameters. h1 and h2 are called rescaled harvesting
efforts. From the perspective of biology, system (1.2) is defined on the set D = {(x, y) ∈
R2|x > 0, y ≥ 0}.

By analyzing (1.2), we can prove that solution trajectories starting from the initial value
(x0, 0) remain within the positive x-axis for all the time. Through integrating two equations
in (1.2) and discussing the initial value x(0) > 1–h1 or x(0) < 1–h1, we can get the following
lemma (the detailed proof is similar to Appendix A in [24]).

Lemma 1.1 When h1 < 1 and h2 < δ, each positive solution (x(t), y(t)) of system (1.2) is
bounded. Furthermore, there exists a T ≥ 0 such that 0 < x(t) < 1 – h1 and 0 ≤ y < δ–h2

β
(1 –

h1) for t ≥ T .

The rest of this paper is organized as follows. In Sect. 2, we analyze the number and
property of the equilibria by using the root formula of the cubic equation. In Sect. 3, we
discuss the subcritical Hopf bifurcation near the multiple focus and the Bogdanov–Takens
bifurcation near a BT singularity. The characteristics of the cusp point and the generalized
Hopf points are analyzed simply. Numerical simulations support our results of theoretical
analysis. Finally, we end this paper with a conclusion in Sect. 4.

2 Types of equilibria
In this section, for system (1.2) we will study the number and type of equilibria in the
region D. It is clear that if h1 < 1 system (1.2) has a boundary equilibrium E0 = (1 – h1, 0),
which is a sink for δ < h2 and a saddle for δ > h2. The corresponding phase portraits are
displayed in Fig. 1.

Obviously, a positive equilibrium E∗(x∗, y∗) of system (1.2) should satisfy the following
equations:

1 – h1 – x∗ –
y∗

a + x∗2 = 0,

y∗ –
δ – h2

β
x∗ = 0.

(2.1)
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Figure 1 The phase portraits for system (1.2). (a) E0 is a sink if a = 0.2,β = 0.8,δ = 0.3,h1 = 0.4 and h2 = 0.6;
(b) E0 is a saddle if a = 0.2,β = 0.8,δ = 0.9,h1 = 0.4 and h2 = 0.6

From Eqs. (2.1), we find that, if positive equilibria exist, then h2 < δ and x∗ is a root of
the equation

F(x) = x3 + (h1 – 1)x2 +
(

a +
δ – h2

β

)
x + a(h1 – 1) = 0. (2.2)

To determine the type of E∗(x∗, y∗), the Jacobian matrix J evaluated at E∗(x∗, y∗) is given
by

J
(
E∗) =

(
1 – h1 – 2x∗ + (δ–h2)(x∗3–ax∗)

β(a+x∗2)2
–x∗

a+x∗2

(δ–h2)2

β
–(δ – h2)

)
.

Thus

Det
(
J
(
E∗)) = (h2 – δ)

(
1 – h1 – 2x∗) +

2a(δ – h2)2x∗

β(a + x∗2)2 = (δ – h2)
x∗

a + x∗2 F ′(x∗),

Tr
(
J
(
E∗)) = 1 – h1 + h2 – δ – 2x∗ +

(δ – h2)(x∗3 – ax∗)
β(a + x∗2)2

=
x∗

a + x∗2

(
δ – h2

β
– F ′(x∗)) – (δ – h2).

According to the sign of Det(J(E∗)), the equilibrium E∗(x∗, y∗) can be divided into three
types: an anti-saddle equilibrium, a hyperbolic saddle or a degenerated equilibrium
if Det(J(E∗)) > 0, Det(J(E∗)) < 0 or Det(J(E∗)) = 0, respectively. Obviously, the type of
E∗(x∗, y∗) is determined by the sign of F ′(x∗).

Using the root formula of the third-order equation and estimating the sign of F ′(x∗), we
can get the following results.

Lemma 2.1 Suppose h1 < 1, h2 < δ, A = (h1 –1)2 –3(a+ δ–h2
β

) and � = –4A3 +(h1 –1)2[3A+
27a – (h1 – 1)2]2.

(a) If � > 0, then system (1.2) has a unique positive equilibrium E∗(x∗, y∗), which is an
anti-saddle equilibrium whatever the sign of A is.

(b) If � = 0, A = 0, then system (1.2) has a unique positive equilibrium
E∗(x∗, y∗) = ( 1–h1

3 , (δ–h2)(1–h1)
3β

), which is degenerated.
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Figure 2 (a) An anti-saddle E∗ = (0.116, 0.078) with a = 0.1,β = 0.3,δ = 0.6,h1 = 0.2,h2 = 0.4,� = 23.75 and
A = –1.66; (b) a degenerated equilibrium E∗ = (0.299, 0.072) with a = 0.03, β = 1.25, δ = 0.8, h1 = 0.1, h2 = 0.5,
� = 0 and A = 0; (c) a degenerated equilibrium E∗ = (0.21, 0.047) and an anti-saddle E∗

1 = (0.48, 0.11) with
a = 0.024, β = 0.9, δ = 0.5, h1 = 0.1, h2 = 0.3, � = 0 and A = 0.073; (d) two anti-saddles E∗

1 = (0.06, 0.012) and
E∗
3 = (0.599, 0.11), a hyperbolic saddle E∗

2 = (0.24, 0.04) with a = 0.01,β = 0.54,δ = 0.6,h1 = 0.1,h2 = 0.5 and
� = –0.031

(c) If � = 0, A > 0 and max{ (h1–1)2–4A
27 , 0} < a < (h1–1)2–A

27 , then the system (1.2) has two
positive equilibria: an anti-saddle equilibrium

E∗
1
(
x∗

1, y∗
1
)

=
(

(1 – h1)[4A + 27a – (h1 – 1)2]
3A

,
(δ – h2)(1 – h1)[4A + 27a – (h1 – 1)2]

3βA

)

and a degenerated equilibrium

E∗(x∗, y∗) =
(

(1 – h1)[(h1 – 1)2 – A – 27a]
6A

,
(δ – h2)(1 – h1)[(h1 – 1)2 – A – 27a]

6βA

)
.

(d) If � < 0, then system (1.2) has three positive equilibria E∗
1(x∗

1, y∗
1), E∗

2(x∗
2, y∗

2) and
E∗

3(x∗
3, y∗

3). E∗
1 and E∗

3 are anti-saddle equilibria and E∗
2 is a hyperbolic saddle.

The detailed proof of Lemma 2.1 is given in the appendix. The phase portraits for the four
cases are exhibited in Fig. 2.

Next, we discuss the case (c) of Lemma 2.1 and look for some parameter values such that
system (1.2) has a degenerated equilibrium E∗(x∗, y∗) with Det(J(E∗)) = 0 and Tr(J(E∗)) = 0
and a non-hyperbolic equilibrium E∗

1(x∗
1, y∗

1) with Det(J(E∗
1)) > 0 and Tr(J(E∗

1)) = 0.
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Figure 3 There exists an unstable multiple focus
E∗
1 = (0.1108, 0.0248) with multiplicity one and a BT
singularity E∗ = (0.3946, 0.0884) of codimension 2
for h1 = 0.1 and h2 = 0.3

From Det(J(E∗)) = 0 and Tr(J(E∗)) = 0, we can get

x∗ = 1 – h1 – δ + h2, y∗ =
δ – h2

β
x∗,

a =
(1 – h1 – δ + h2)2[2(δ – h2) + h1 – 1]

1 – h1
, β =

1 – h1

2(δ – h2)(1 – h1 – δ + h2)
,

(2.3)

where (δ – h2) < 1 – h1 < 2(δ – h2).
Thus when a,β satisfy (2.3) and 3(δ – h2) �= 2(1 – h1), system (1.2) has two positive equi-

libria

E∗
1 =

(
2(δ – h2) + h1 – 1,

2(δ – h2)2(2δ – 2h2 + h1 – 1)(1 – h1 – δ + h2)
1 – h1

)
and

E∗ =
(

1 – h1 – δ + h2,
2(δ – h2)2(1 – h1 – δ + h2)2

1 – h1

)
.

Furthermore, when E∗
1 satisfies Det(J(E∗

1)) > 0 and Tr(J(E∗
1)) = 0, the following conclusions

hold.

Theorem 2.2 If 0 < h1 < 1 and (a,β , δ) = ( 41
√

17–169
2 (1 – h1)2, 4+

√
17

4(1–h1) ,
√

17–3
2 (1 – h1) + h2),

then (1.2) has two positive equilibria

E∗
1 =

(
(
√

17 – 4)(1 – h1), (114
√

17 – 470)(1 – h1)3) and

E∗ =
(

5 –
√

17
2

(1 – h1), (264 – 64
√

17)(1 – h1)3
)

.

Moreover, (i) E∗
1 is an unstable multiple focus with multiplicity one. (ii) E∗ is a codimension

2 BT singularity. The phase diagram is shown in Fig. 3.

Proof When a,β and δ satisfy the conditions in Theorem 2.2, system (1.2) becomes

ẋ = x(1 – x) –
2xy

(41
√

17 – 169)(1 – h1)2 + 2x2
– h1x,

ẏ = y
(√

17 – 3
2

(1 – h1) –
4 +

√
17

4(1 – h1)
y
x

)
.

(2.4)

Obviously, (2.4) has two equilibria E∗
1 and E∗ as stated above.
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(1) To prove (i), let u = x – (
√

17 – 4)(1 – h1), v = y – (114
√

17 – 470)(1 – h1)3 and Taylor
expand (2.4), thus we get

u̇ =
√

17 – 3
2

(1 – h1)u –
13 + 3

√
17

8(1 – h1)
v + 3u2 –

45 + 11
√

17
16(1 – h1)2 uv

–
85 + 19

√
17

8(1 – h1)
u3 +

235 + 57
√

17
4(1 – h1)3 u2v + O

(|u, v|4),

v̇ = (50
√

17 – 206)(1 – h1)3u +
3 –

√
17

2
(1 – h1)v

+ (6
√

17 – 26)(1 – h1)2u2 + (
√

17 + 5)uv

–
33 + 8

√
17

4(1 – h1)2 v2 + (2
√

17 + 2)(1 – h1)u3

–
37 + 9

√
17

1 – h1
u2v +

268 + 65
√

17
4(1 – h1)3 uv2 + O

(|u, v|4).

(2.5)

Suppose

x =

√
3526

√
17 – 14,538
2

(1 – h1)2u, y =
45 – 11

√
17

2
(1 – h1)2u + v,

then (2.5) can be changed into

ẋ = –ω0y + f (x, y), ẏ = ω0x + g(x, y), (2.6)

where ω0 =
√

22
√

17–90
2 (1 – h1) and

f (x, y) =

√
7269 + 1763

√
17

8(1 – h1)2 x2 –
45 + 11

√
17

16(1 – h1)2 xy +
11,351 + 2753

√
17

1024(1 – h1)5 x3

+

√
401,460,573 + 97,368,491

√
17

32(1 – h1)5 x2y + O
(|x, y|4),

g(x, y) = –
235 + 57

√
17

16(1 – h1)2 x2 +

√
133,205 + 32,307

√
17

16(1 – h1)2 xy –
33 + 8

√
17

4(1 – h1)2 y2

+

√
151,456,733,853 + 36,733,653,611

√
17

1024(1 – h1)5 x3

–
86,243 + 20,917

√
17

64(1 – h1)5 x2y +

√
2,088,374,221 + 50,650,514

√
17

64(1 – h1)5 xy2

+ O
(|x, y|4).

The first Lyapunov number [23] can be expressed as

Re c1 =
1

16

{
(fxxx + fxyy + gxxy + gyyy)

+
1
ω0

[
fxy(fxx + fyy) – gxy(gxx + gyy) – fxxgxx + fyygyy

]}∣∣∣∣
x=y=0
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=
1,428,479 + 346,457

√
17

8192(1 – h1)5 > 0,

thus E∗
1 is an unstable multiple focus with multiplicity one.

(2) To prove (ii), let x1 = x – 5–
√

17
2 (1 – h1), x2 = y – (264 – 64

√
17)(1 – h1)3 and expand

(2.4) in a power series at the origin, thus (2.4) becomes

ẋ1 =
√

17 – 3
2

(1 – h1)x1 –
√

17 + 4
4(1 – h1)

x2 –
√

17 + 9
8

x2
1

+
7
√

17 + 29
16(1 – h1)2 x1x2 + O

(|x1, x2|3
)
,

ẋ2 = (50
√

17 – 206)(1 – h1)3x1 –
(
√

17 – 3)(1 – h1)
2

x2

+ (45 – 11
√

17)(1 – h1)2x2
1 +

√
17 + 1

2
x1x2

–
9
√

17 + 37
16(1 – h1)2 x2

2 + O
(|x1, x2|3

)
.

(2.7)

Making the affine transformation

y1 =
25

√
17 + 103

32(1 – h1)3 x2, y2 = x1 –
7
√

17 + 29
16(1 – h1)2 x2,

we obtain

ẏ1 = y2 –
√

17 + 5
4(1 – h1)

y2
2 + O

(|y1, y2|3
)
,

ẏ2 =
19 – 5

√
17

8
(1 – h1)2y2

1 –
√

17 + 1
4

(1 – h1)y1y2 +
√

17 – 7
8

y2
2 + O

(|y1, y2|3
)
.

(2.8)

By a C∞ change of variables

z1 = y1 –
√

17 – 7
16

y2
1 +

√
17 + 5

4(1 – h1)
y1y2, z2 = y2 –

√
17 – 7

8
y1y2,

system (2.8) becomes

ż1 = z2 + O
(|z1, z2|3

)
,

ż2 =
19 – 5

√
17

8
(1 – h1)2z2

1 –
√

17 + 1
4

(1 – h1)z1z2 + O
(|z1, z2|3

)
.

(2.9)

Suppose ρ1 = 19–5
√

17
8 (1 – h1)2 and ρ2 = –

√
17+1
4 (1 – h1), then ρ1ρ2 = 33–7

√
17

16 (1 – h1)3 �= 0
for 0 < h1 < 1. Hence E∗ is a BT singularity of codimension 2. �

3 Bifurcations
In this section, we study the subcritical Hopf bifurcation in a neighborhood of E∗

1 and
the Bogdanov–Takens bifurcation in a neighborhood of E∗. Now we carry out bifurca-
tion analysis for system (1.2) by choosing h1 and h2 as bifurcation parameters. When the



Cheng and Zhang Journal of Inequalities and Applications         (2021) 2021:68 Page 10 of 23

conditions of Theorem 2.2 are satisfied, the unfolding system of (1.2) is given by

ẋ = x(1 – x) –
2xy

(41
√

17 – 169)(1 – h1)2 + 2x2
– (h1 + μ1)x,

ẏ = y
(√

17 – 3
2

(1 – h1) + h2 –
4 +

√
17

4(1 – h1)
y
x

)
– (h2 + μ2)y,

(3.1)

where μ1 and μ2 are small parameters.
Through analysis, we have the following conclusions.

Theorem 3.1 When μ1 and μ2 vary near the origin, system (3.1) undergoes a subcritical
Hopf bifurcation in a small neighborhood of E∗

1 and a Bogdanov–Takens bifurcation in a
small neighborhood of E∗. Hence, when h1 and h2 vary, system (1.2) may have an unstable
closed cycle around E∗

1 , and an unstable closed cycle or an unstable homoclinic loop around
E∗.

Proof If μ1 = μ2 = 0, then (3.1) has two equilibria E∗
1 and E∗, whose types are discussed in

Theorem 2.2.
(1) First we verify that system (3.1) experiences a subcritical Hopf bifurcation around E∗

1

when (μ1,μ2) varies in a small neighborhood of the origin. If (μ1,μ2) �= (0, 0), (3.1) has an
equilibrium with the following form:

E1 = (x1, y1)

=
(

(
√

17 – 4)(1 – h1) + ω,
7
√

17 – 29
2

[
(3 +

√
17)μ2 – 4(1 – h1)

]
(1 – h1)x1

)
.

(3.2)

Here ω is an infinitely small quantity for μ1 and μ2 small enough.
Substituting (3.2) into (3.1), one can find that x1 should satisfy the following equations:

x3 + (h1 + μ1 – 1)x2 +
[

1
16

(13
√

17 – 53)(8h1 + 9μ2 + μ2
√

17 – 8)(h1 – 1)
]

x

+
1
2

(41
√

17 – 169)(h1 + μ1 – 1)(h1 – 1)2 = 0,
(3.3)

Tr
(
J(E1)

)

=
5 –

√
17

2
(1 – h1) – 2x1

+
(44 + 12

√
17)(1 – h1)2[(169 + 41

√
17)x3

1 – 8(1 – h1)2x1]
[(169 + 41

√
17)x2

1 + 8(1 – h1)2]2
– μ1

+
(

1 –
(84 + 20

√
17)(1 – h1)[(169 + 41

√
17)x3

1 – 8(1 – h1)2x1]
[(169 + 41

√
17)x2

1 + 8(1 – h1)2]2

)
μ2,

Det
(
J(E1)

)

=
(

1 – h1 – μ1 – 2x1

–
(11 + 3

√
17)(1 – h1)[(3 +

√
17)μ2 – 4(1 – h1)][(169 + 41

√
17)x3

1 – 8(1 – h1)2x1]
[(169 + 41

√
17)x2

1 + 8(1 – h1)2]2

)
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×
(

μ2 +
3 –

√
17

2
(1 – h1)

)

+
(9 +

√
17)(1 – h1)[(3 +

√
17)μ2 – 4(1 – h1)]2x1

4[(169 + 41
√

17)x2
1 + 8(1 – h1)2]

.

Letting Tr(J(E1)) = 0, Det(J(E1)) > 0 and according to (3.3), we can get

μ1 =
(
–2ω5 + 2(7

√
17 – 27)(1 – h1)ω4 – 2(349

√
17 – 1439)(1 – h1)2ω3

+ 8(1137
√

17 – 4688)(1 – h1)3ω2 – (37,001
√

17 – 152,559)(1 – h1)4ω
)

/
(
2ω4 – 8(

√
17 – 4)(1 – h1)ω3 + 2(185

√
17 – 763)(1 – h1)2ω2

– 4(983
√

17 – 4053)(1 – h1)3ω + (5873
√

17 – 24,215)(1 – h1)4),

μ2 =
(
2ω5 + (11

√
17 – 43)(1 – h1)ω4 – 2(25

√
17 – 103)(1 – h1)2ω3

+ 8(252
√

17 – 1039)(1 – h1)3ω2 + 7(2575
√

17 – 10,617)(1 – h1)4ω
)

/
(
2ω4 – 8(

√
17 – 4)(1 – h1)ω3 + 2(185

√
17 – 763)(1 – h1)2ω2

+ 4(983
√

17 – 4053)(1 – h1)3ω + (5873
√

17 – 24,215)(1 – h1)4).

(3.4)

Substituting (3.2) and (3.4) into Det(J(E1)), we obtain Det(J(E1)) > 0 if and only if

463
√

17 + 1783
2

ω2 + 2(3
√

17 – 22)(1 – h1)ω +
11

√
17 – 45
2

(1 – h1)2 > 0. (3.5)

The discriminant of inequality (3.5) is always negative for h1 < 1, so Det(J(E1)) > 0 for all
small ω. The Hopf bifurcation curve of system (3.1) at E∗

1 is defined by

H1 =
{

(μ1,μ2)|μ1 and μ2 are given by (3.4) and ω is sufficiently small
}

.

Due to limω→0
μ2
μ1

= 35+7
√

17
41+13

√
17 , thus the approximate expression of H1 is given by μ2 =

35+7
√

17
41+13

√
17μ1 in a small neighborhood of the origin.

(2) Now we prove that system (3.1) undergoes a Bogdanov–Takens bifurcation at the
BT singularity E∗. First translate E∗ to the origin by letting x1 = x – 5–

√
17

2 (1 – h1) and
x2 = y – (264 – 64

√
17)(1 – h1)3 and Taylor expand system (3.1), then we have

ẋ1 =
√

17 – 5
2

(1 – h1)μ1 –
√

17 – 3
8

(
√

17μ1 + 4h1 + 3μ1 – 4)x1 –
4 +

√
17

4(1 – h1)
x2

–
9 +

√
17

8
x2

1 +
29 + 7

√
17

16(1 – h1)2 x1x2 + O
(|x1, x2|3

)
,

ẋ2 = 8μ2(8
√

17 – 33)(1 – h1)3 + (50
√

17 – 206)(1 – h1)3x1

–
√

17 – 3
8

(
√

17μ2 – 4h1 + 3μ2 + 4)x2

+ (45 – 11
√

17)(1 – h1)2x2
1 +

1 +
√

17
2

x1x2 –
37 + 9

√
17

16(1 – h1)2 x2
2 + O

(|x1, x2|3
)
.

(3.6)
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With an affine transformation y1 = x1, y2 =
√

17–3
2 (1–h1)x1 – 4+

√
17

4(1–h1) x2, system (3.6) becomes

ẏ1 =
√

17 – 5
2

(1 – h1)μ1 – μ1y1 + y2 –
1 +

√
17

8
y2

1 –
3 +

√
17

4(1 – h1)
y1y2 + O

(|y1, y2|3
)
,

ẏ2 = (8 – 2
√

17)(μ1 – μ2)(1 – h1)2 –
(
√

17 – 3)(μ1 – μ2)
2

(1 – h1)y1

– μ2y2 +
√

17 – 7
8

(1 – h1)y2
1

– y1y2 +
5 +

√
17

4(1 – h1)
y2

2 + O
(|y1, y2|3

)
.

(3.7)

Under a C∞ transformation of coordinates

z1 = y1, z2 =
√

17 – 5
2

(1 – h1)μ1 – μ1y1 + y2 –
1 +

√
17

8
y2

1 –
3 +

√
17

4(1 – h1)
y1y2,

system (3.7) can be transformed into

ż1 = z2 + O
(|z1, z2|3

)
,

ż2 = β0 + β1z1 +
√

17 – 5
8

[
(5 +

√
17)μ2 – 2μ1

]
z2 + β2z2

1

+
(5 +

√
17)[(5 + 3

√
17)μ1 – 8(1 – h1)]

32(1 – h1)
z1z2 +

1
2(1 – h1)

z2
2 + O

(|z1, z2|3
)
,

(3.8)

where

β0 =
√

17 – 4
2

(1 – h1)(μ1 – μ2)
[
(3 +

√
17)μ1 – 4(1 – h1)

]
,

β1 =
√

17 – 3
16

[
(19 + 5

√
17)μ2

1 – (6 + 2
√

17)μ1μ2 – 8(1 – h1)μ1

+ (10 – 2
√

17)(1 – h1)μ2
]
,

β2 =
1

128(1 – h1)
(
√

17 – 7)
[
–(161 + 39

√
17)μ2

1 – (24 + 8
√

17)(1 – h1)μ1

+ (40 + 8
√

17)(1 – h1)μ2 + 16(1 – h1)2].

By another C∞ change X1 = z1 – 1
4(1–h1) z2

1, X2 = z2 – 1
2(1–h1) z1z2, system (3.8) becomes

Ẋ1 = X2 + O
(|X1, X2|3

)
,

Ẋ2 = β0 –
2β1h1 + β0 – 2β1

2(1 – h1)
X1 +

√
17 – 5

8
[
(5 +

√
17)μ2 – 2μ1

]
X2

+ ψX2
1 +

(5 +
√

17)[(5 + 3
√

17)μ1 – 8(1 – h1)]
32(1 – h1)

X1X2

+ O
(|X1, X2|3

)
,

(3.9)

where ψ = 8β2h2
1+2(β1–8β2)h1–β0–2β1+8β2

8(1–h1)2 .
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Consider the C∞ change Y1 = X1, Y2 = X2 + O(|X1, X2|3) and system (3.9) can be changed
into

Ẏ1 = Y2,

Ẏ2 = β0 –
2β1h1 + β0 – 2β1

2(1 – h1)
Y1 +

√
17 – 5

8
[
(5 +

√
17)μ2 – 2μ1

]
Y2

+ ψY 2
1 +

(5 +
√

17)[(5 + 3
√

17)μ1 – 8(1 – h1)]
32(1 – h1)

Y1Y2 + O
(|Y1, Y2|3

)
.

(3.10)

Substituting the expressions of β0,β1 and β2 into ψ , we have ψ < 0 for any small μ1 and
μ2. Under the following change:

Z1 = Y1, Z2 =
Y2√
–ψ

, τ =
√

–ψt,

system (3.10) becomes

Ż1 = Z2,

Ż2 =
β0

–ψ
+

2β1h1 + β0 – 2β1

2(1 – h1)ψ
Z1 +

√
17 – 5

8
√

–ψ

[
(5 +

√
17)μ2 – 2μ1

]
Z2

– Z2
1 +

(5 +
√

17)[(5 + 3
√

17)μ1 – 8(1 – h1)]
32(1 – h1)

√
–ψ

Z1Z2

+ O
(|Z1, Z2|3

)
.

(3.11)

The transformation U = Z1 – 2β1h1+β0–2β1
4(1–h1)ψ , V = Z2 brings (3.11) into the form

U̇ = V ,

V̇ =
(2β1h1 + β0 – 2β1)2

16(1 – h1)2ψ2 –
β0

ψ
+ φV – U2

+
(5 +

√
17)[(5 + 3

√
17)μ1 – 8(1 – h1)]

32(1 – h1)
√

–ψ
UV + O

(|U , V |3),

(3.12)

where φ = (5+
√

17)(2β1h1+β0–2β1)[(5+3
√

17)μ1–8(1–h1)]
128(1–h1)2ψ

√
–ψ

+ (
√

17–5)[(5+
√

17)μ2–2μ1]
8
√

–ψ
.

The derivatives of (3.11) and (3.12) are about time τ . For μ1 small enough we make the
following transformation:

x = –
(

(5 +
√

17)[(5 + 3
√

17)μ1 – 8(1 – h1)]
32(1 – h1)

√
–ψ

)2

U ,

y =
(

(5 +
√

17)[(5 + 3
√

17)μ1 – 8(1 – h1)]
32(1 – h1)

√
–ψ

)3

V ,

t = –
32(1 – h1)

√
–ψ

(5 +
√

17)[(5 + 3
√

17)μ1 – 8(1 – h1)]
τ ,
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then system (3.12) becomes

ẋ = y,

ẏ = η1(μ1,μ2) + η2(μ1,μ2)y + x2 + xy + O
(|x, y|3),

(3.13)

where the derivatives are about time t and the expressions of η1(μ1,μ2) and η2(μ1,μ2) are
given by

η1(μ1,μ2)

=
(53 + 13

√
17)2((5 + 3

√
17)μ1 – 8(1 – h1))4

134,217,728(1 – h1)4Q(μ1,μ2)4

×
[

8(13
√

17 – 53)(1 – h1)(μ1 – μ2)(3μ1 +
√

17μ1 + 4h1 – 4)Q(μ1,μ2)

+
33

√
17 – 137

4
(3

√
17μ1 + 11μ1 –

√
17μ2 – 3μ2 + 4h1 – 4)2μ2

1

]
,

η2(μ1,μ2)

=
(5μ1 + 3

√
17μ1 + 8h1 – 8)(5 +

√
17)

1024(1 – h1)2Q(μ1,μ2)2

×
[

4(
√

17 – 5)(1 – h1)(–2μ1
√

17μ2 + 5μ2)Q(μ1,μ2)

–
1
2

(3
√

17μ1 + 11μ1 –
√

17μ2 – 3μ2 + 4h1 – 4)(3
√

17μ1 + 5μ1 + 8h1 – 8)μ1

]
,

Q(μ1,μ2)

=
1

16(1 – h1)
[
(46 + 14

√
17)μ2

1 – (
√

17 – 9)μ1μ2 + 2(5
√

17 – 9)(1 – h1)μ1

– 2(5
√

17 – 7)(1 – h1)μ2

+ 2(
√

17 – 7)(1 – h1)2].

We can check
∣∣∣∣ ∂(η1,η2)
∂(μ1,μ2)

∣∣∣∣
μ1=μ2=0

=
4299

√
17 + 17,725

64(1 – h1)2 �= 0,

for 0 < h1 < 1, which indicates that above parameter transformation is regular at (0, 0).
From the results in [2] and [27], we know that system (3.1) undergoes a Bogdanov–

Takens bifurcation when (μ1,μ2) varies in a small neighborhood of the origin, and the
local expressions of the bifurcation curves in a small neighborhood of the origin are given
by:

(a) the saddle-node bifurcation curve

SN =
{

(μ1,μ2)|η1 = 0, i.e.,μ1 – μ2 +
(19

√
17 – 43)μ2

1
32(1 – h1)

–
(53

√
17 + 35)μ1μ2

16(1 – h1)
+

3(7
√

17 + 9)μ2
2

8(1 – h1)
+ O

(|μ1,μ2|3
)

= 0
}

,
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Figure 4 The bifurcation diagram of system (3.1) for
h1 = 0.1 and h2 = 0.3

which includes SN+ = {(μ1,μ2)|η1 = 0,η2 > 0} and SN– = {(μ1,μ2)|η1 = 0,η2 < 0};
(b) the Hopf bifurcation curve

H =
{

(μ1,μ2)|η2 =
√

–η1,η1 < 0
}

=
{

(μ1,μ2)|μ1 – μ2 +
5(7

√
17 – 23)μ2

1
16(1 – h1)

–
(73

√
17 – 33)μ1μ2

16(1 – h1)

+
(23

√
17 + 21)μ2

2
8(1 – h1)

+ O
(|μ1,μ2|3

)
= 0,η1 < 0

}
;

(c) the homoclinic bifurcation curve

HL =
{

(μ1,μ2)|η2 =
5
7
√

–η1,η1 < 0
}

=
{

(μ1,μ2)|μ1 – μ2 +
(1487

√
17 – 5119)μ2

1
400(1 – h1)

–
(2305

√
17 – 2457)μ1μ2

400(1 – h1)

+
(623

√
17 + 381)μ2

2
200(1 – h1)

+ O
(|μ1,μ2|3

)
= 0,η1 < 0

}
;

(d) the Hopf bifurcation curve of system (3.1) at E∗
1 is

H1 =
{

(μ1,μ2)|μ2 =
35 + 7

√
17

41 + 13
√

17
μ1

}
.

The sketches of these bifurcation curves are displayed in Fig. 4.
Due to η2 < 0 around the origin, H and HL are nonexistent in the third quadrant of Fig. 4,

so only SN– and H1 are considered in this part. Obviously, the neighborhood of the origin
in the (μ1,μ2)-plane is divided into six parts by H1, SN+, H , HL and SN–.

When (μ1,μ2) lies in region I, system (3.1) has an unstable focus E∗
1 . By Lemma 1.1 and

the Poincaré–Bendixson theorem, it can be proved that there exists a stable limit cycle.
The corresponding phase portrait is depicted in Fig. 5. From the biological point of view,
we know that the prey and the predators can coexist and will periodically fluctuate along
this cycle eventually.

When (μ1,μ2) lies on the curve H1, the stable limit cycle still exists and the equilibrium
E∗

1 turns into an unstable multiple focus with multiplicity one. When (μ1,μ2) crosses H1
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Figure 5 For (μ1,μ2) = (0.01, 0.007) in region I,
there exists an unstable focus E∗

1 surrounded by a
stable limit cycle

Figure 6 When (μ1,μ2) = (0.01, 0.001) lies in region
VI, a stable focus E∗

1 is surrounded by an unstable
limit cycle, which is circled by a stable cycle

and enters into the region VI, E∗
1 becomes a stable focus and an unstable limit cycle bi-

furcates, which indicates a subcritical Hopf bifurcation happens at E∗
1 when (μ1,μ2) goes

through H1. Figure 6 shows that there is a bistable state (a stable equilibrium E∗
1 and a big

stable limit cycle) and the unstable limit cycle bifurcated from Hopf bifurcation acts as
the separatrices of attractive domains for different attractors. Eventually, trajectories can
either tend to an equilibrium or a limit cycle depending on initial values of the species.

When (μ1,μ2) lies on the curve SN–, a new saddle-node E∗ emerges and the other equi-
librium E∗

1 is still a stable focus. When (μ1,μ2) passes through SN– and enters into region
V, there are two new equilibria E∗

2 and E∗
3 bifurcated from the saddle-node bifurcation. E∗

2

is a hyperbolic saddle and E∗
3 is a stable focus. The type of E∗

1 is not changed and there
is still an unstable limit cycle surrounding E∗

1 . The Poincaré–Bendixson theorem implies
that there is a big stable limit cycle surrounding the three equilibria and the small limit cy-
cle, which is displayed in Fig. 7. It is shown that there is a tristable state in system (3.1). The
stable and unstable manifolds of the saddle E∗

2 and the unstable limit cycle act as separatri-
ces of different attractive domains. With different initial values, the species will eventually
tend to a constant state or oscillate along a big limit cycle.

When (μ1,μ2) lies on the curve H1, system (3.1) has three equilibria E∗
1 , E∗

2 and E∗
3 , where

E∗
1 becomes an unstable multiple focus with multiplicity one and the types of E∗

2 and E∗
3 are

unchanged. When (μ1,μ2) crosses H1 into region IV, the unstable limit cycle enclosing E∗
1

disappears and E∗
1 turns into an unstable focus, which shows that system (3.1) undergoes

a subcritical Hopf bifurcation when (μ1,μ2) passes through H1. The corresponding phase
portrait is displayed in Fig. 8, in which E∗

3 is a unique globally asymptotical attractor.
When (μ1,μ2) lies on the curve HL, there appears an unstable homoclinic loop to the

saddle E∗
2 which is displayed in Fig. 9(a), and a large stable limit cycle encloses all the

equilibria and the homoclinic loop shown in Fig. 9(b). Moreover, when (μ1,μ2) deviates
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Figure 7 When (μ1,μ2) = (–0.01, –0.008) lies in
region V, there are three equilibria E∗

1 , E
∗
2 and E∗

3 . E
∗
1

and E∗
3 are stable foci and E∗

2 is a hyperbolic saddle

Figure 8 When (μ1,μ2) = (0.01, 0.015) lies in region
IV, system (3.1) has three equilibria E∗

1 , E
∗
2 and E∗

3 . E
∗
2

is a hyperbolic saddle. E∗
1 is an unstable focus and E∗

3
is a globally stable focus

Figure 9 (a) A local amplified diagram of the homoclinic loop for (μ1,μ2) = (0.01, 0.009962) on the curve HL.
(b) A big stable limit cycle encloses all the equilibria

from the curve HL, the homoclinic loop breaks, which means that system (3.1) undergoes
a homoclinic bifurcation when (μ1,μ2) passes through the curve HL.

When (μ1,μ2) lies in region III, there occurs an unstable limit cycle surrounding the
stable focus E∗

3 , which means that system (3.1) undergoes a subcritical Hopf bifurcation
when (μ1,μ2) passes through the curve H . For (μ1,μ2) = (0.01, 0.009952), there are three
equilibria, a small limit cycle and a large stable limit cycle enclosing all the equilibria and
the small cycle, which is shown in Figs. 10(a) and 10(b). In this case there is also a bistable
state (a stable equilibrium E∗

3 and a big stable limit cycle).
When (μ1,μ2) goes through H and enters into region II (the region between H and SN+),

the unstable limit cycle disappears and E∗
3 becomes an unstable focus while the types of

E∗
1 and E∗

2 are not changed. When (μ1,μ2) lies on the curve SN+, two equilibria E∗
2 and E∗

3

overlap and become a saddle-node E∗, which means that system (3.1) undergoes a saddle-
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Figure 10 (a) A local amplification diagram of an unstable limit cycle for (μ1,μ2) = (0.01.0.009952) in region
III. (b) Two unstable equilibria E∗

1 and E∗
2 , and a stable focus E∗

3 are surrounded by a stable limit cycle

Figure 11 The phase portrait of system (3.1) for
(μ1,μ2) = (0.01, 0.0099393) on the curve SN+

node bifurcation when (μ1,μ2) passes through the curve SN+. Whatever (μ1,μ2) lies in
region II or on SN+, there both exists a stable limit cycle enclosing all the equilibria by the
Poincaré–Bendixson theorem. The phase portrait of system (3.1) for (μ1,μ2) on the curve
SN+ is exhibited in Fig. 11. From the strategy of the optimal management of renewable re-
sources, we find that the saddle-node bifurcation curve acts as the feasible upper bound
for the rescaled harvesting efforts which guarantees the coexistence and sustainable de-
velopment of the species.

From Fig. 12(a), we find that when (μ1,μ2) varies along the saddle-node bifurcation
curve SN+ as shown in Fig. 4, a cusp point CP can be encountered and a cusp bifurcation
will happen when (μ1,μ2) varies near the CP point. The coordinates and parameter values
for the CP point and the normal form coefficient c for the cusp bifurcation are given as
follows:

Label = CP, (x, y,μ1,μ2) = (0.239806, 0.036775, 0.180583, 0.159373) and

c = 7.915010.

When (μ1,μ2) varies along two Hopf bifurcation curves H and H1 as indicated in Fig. 4,
respectively, two generalized Hopf points GH+ and GH– can be encountered, at which
both of the first Lyapunov coefficients are zero. The associated coordinates and parameter
values for the two points and the second Lyapunov coefficients l±2 of the generalized Hopf
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Figure 12 (a) The point BT is corresponding to the origin of Fig. 4. When (μ1,μ2) varies along curves SN+, H
and H1, respectively, the points CP, GH+ and GH– can be encountered. (b) The bifurcation portrait for h1 = 0.1
and h2 = 0.3, SNc indicates the saddle-node bifurcation curve originating from the point CP. H+(H–) and
T+(T–) express the Hopf bifurcation curve and the fold bifurcation curve of the cycles originating from
GH+(GH–), respectively

bifurcations are given as follows:

Label = GH+, (x, y,μ1,μ2) = (0.260349, 0.028104, 0.316434, 0.261824) and

l+
2 = –550.7068.

Label = GH–, (x, y,μ1,μ2) = (0.126604, 0.015720, 0.326771, 0.225224) and

l–
2 = –2300.709.

From Fig. 12(b), we find that the saddle-node bifurcation curve SNc originating from
the CP point and the saddle-node bifurcation curve SN+ originating from the BT point
are nearly coincident or tangent at the point CP. Through the curve SNc three equilibria
collide to form an equilibrium or one equilibrium splits into three equilibria. Similarly, the
Hopf bifurcation curve H (H1) originating from the BT point and the Hopf bifurcation
curve H+ (H–) originating from the GH+ (GH–) point are almost coincident and tangent
at the GH+ (GH–) point. In addition, near the Hopf bifurcation curves H+ and H–, two
fold bifurcation curves of the cycles T+ and T– also appear, on which two limit cycles
with different stability collide to form a semi-stable cycle. Several typical phase portraits
for (μ1,μ2) near the generalized Hopf point GH+ are displayed in Fig. 13. �

4 Conclusions
The prey–predator model in [20] added with constant-effort harvesting has been investi-
gated in this paper. The Bogdanov–Takens bifurcation, the cusp bifurcation and the gener-
alized Hopf bifurcation are discussed. By analysis, it is shown that this model can generate
many novel dynamic behaviors compared with the model with no harvesting. For example,
a globally asymptotically stable equilibrium can appear, while the stable equilibria in the
original model are all locally asymptotically stable. Through the generalized Hopf bifur-
cation, the second Lyaponov coefficient can determine the relative position between the
stable limit cycle and the unstable one. A cusp point CP has also been detected, from which
two saddle-node bifurcation curves of equilibria emanate, through which three equilibria
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Figure 13 (a) For (μ1,μ2) = (0.28, 0.238999) between the curves H+ and T+, there are two limit cycles. The
outer one is stable and the inner one is unstable. (b) For (μ1,μ2) = (0.2813, 0.237) below the curve H+, there is
only a stable cycle. (c) For (μ1,μ2) = (0.2819, 0.23969) above the curve T+, there is no limit cycle. (d) For
(μ1,μ2) = (0.1593, 0.1445) between the wedge of SNc , three equilibria E1, E2 and E3 are a spiral source, a nodal
source and a saddle, respectively

collide to form an equilibrium or one equilibrium splits into three equilibria. These bi-
furcations have not been discussed in the original model. In addition, compared with the
original model, the harvested prey–predator model can exhibit different bifurcation struc-
ture in the parameter plane. These phenomena show that the added harvesting terms play
an important role in directing the evolutional directions of the species. From the Hopf
and Bogdanov–Takens bifurcations, we find that two small limit cycles bifurcating from
two different equilibria are both unstable, while the big limit cycle is always stable, which
shows that the ultimate numbers of the species circulate periodically along the big cycle
rather than the small cycle.

Appendix
Denoting coefficients of Eq. (2.2) as b = (h1 – 1), c = (a + δ–h2

β
), d = a(h1 – 1) and letting

A1 = b2 – 3c, B = bc – 9d, C = c2 – 3bd, the discriminant �1 of (2.2) is given by �1 = B2 –
4A1C, from which we can get A1 = A,�1 = �

9 . Suppose that x1, x2 and x3 are three roots of
Eq. (2.2).

F ′(x) = 3x2 + 2(h1 – 1)x + a + δ–h2
β

and the discriminant �2 of F ′(x) is given by �2 =
4(h1 – 1)2 – 12(a + δ–h2

β
) = 4A. Now we prove Lemma 2.1.

(a) If � > 0, then �1 > 0. (2.2) has one real root x1 and a pair of conjugate complex roots
x2, x3 according to the root formula of the cubic equation. Owing to
x1x2x3 = a(1 – h1) > 0, x1 is the positive root of (2.2). Letting (x∗, y∗) = (x1, δ–h2

β
x1),

now we will discuss three cases.
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(1) If A = �2
4 < 0, then F ′(x∗) > 0.

(2) If A = �2
4 = 0, then x∗ = 1

3 (1 – h1 + 3
√

(1 – h1)(27a – (1 – h1)2)) and
F ′(x∗) = 1

3
3
√

(1 – h1)2(27a – (1 – h1)2)2 = 1
3

3√
� > 0.

(3) If A = �2
4 > 0, then x∗ = 1–h1– 3√Y1– 3√Y2

3 and
F ′(x∗) = 1

3 ( 3
√

Y 2
1 + 3

√
Y 2

2 + 2 3√Y1
3√Y2 – A) = 1

3 ( 3
√

Y 2
1 + 3

√
Y 2

2 + A) > 0, where
Y1,2 = (h1 – 1)A + 3(–B±√

�1)
2 .

For the above three cases, F ′(x∗) > 0 always holds. So E∗(x∗, y∗) is an anti-saddle of
system (1.2).

(b) If � = 0, A = 0, then x1 = x2 = x3 = x∗ = 1–h1
3 is a triple root of Eq. (2.2). Now system

(1.2) has a unique equilibrium E∗(x∗, y∗) = ( 1–h1
3 , (1–h1)(δ–h2)

3β
), which is degenerated

according to F ′(x∗) = 0.
(c) If � = 0, A > 0, then x1 = 1 – h1 + B

A and x2 = x3 = – B
2A are two positive roots of

Eq. (2.2) for max{ (h1–1)2–4A
27 , 0} < a < (h1–1)2–A

27 . So system (1.2) has two equilibria:

E∗
1
(
x∗

1, y∗
1
)

=
(

x1,
δ – h2

β
x1

)

=
(

(1 – h1)[4A + 27a – (h1 – 1)2]
3A

,
(δ – h2)(1 – h1)[4A + 27a – (h1 – 1)2]

3βA

)
,

E∗(x∗, y∗)

=
(

x2,
δ – h2

β
x2

)

=
(

(1 – h1)[(h1 – 1)2 – A – 27a]
6A

,
(δ – h2)(1 – h1)[(h1 – 1)2 – A – 27a]

6βA

)
.

Because of F ′(x∗
1) = 1

3A2 [(1 – h1)(3A + 27a – (1 – h1)2)]2 = A > 0 and F ′(x∗) = 0,
E∗

1(x∗
1, y∗

1) is an anti-saddle equilibrium and E∗(x∗, y∗) is a degenerated equilibrium.
(d) If � < 0, then A > 0 and (2.2) has three different roots:

x1 =
1 – h1 – 2

√
A cos θ

3
3

, x2,3 =
1 – h1 +

√
A(cos θ

3 ∓ √
3 sin θ

3 )
3

,

where θ = arccos T , –1 < T = 2A(h1–1)–3B
2
√

A3 < 1. By simple analysis, we get

0 < 1 – h1 +
√

A < x2 < 1 – h1 + 2
√

A, 0 < 1 – h1 –
√

A < x3 < 1 – h1 +
√

A,

so x1 > 0. Letting
E∗

1(x∗
1, y∗

1) = (x1, δ–h2
β

x1), E∗
2(x∗

2, y∗
2) = (x2, δ–h2

β
x2), E∗

3(x∗
3, y∗

3) = (x3, δ–h2
β

x3) and due to

0 < F ′(x∗
1
)

=
4A cos2 θ

3 – A
3

< A, 0 < F ′(x∗
3
)

=
A
9

(
12 cos2 π – θ

3
– 3

)
< A,

–A
3

< F ′(x∗
2
)

=
A
9

(
12 cos2 2π – θ

3
– 3

)
< 0,

hence E∗
1 , E∗

3 are two anti-saddle equilibria and E∗
2 is a hyperbolic saddle.
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