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1 Introduction
In this work, we introduce new oscillatory criteria for the second-order differential equa-
tions of the form

(
r(l)

(
xα(l) + q(l)x

(
λ(l)

))′)′ +
m∑

i=1

hi(l)g
(
x
(
σi(l)

))
= 0, (1.1)

where l ≥ l0. Throughout this work, the next conditions are satisfied:
(M1) α is a ratio of odd natural numbers, α > 1 and m is positive integer;
(M2) r ∈ C1([l0,∞), (0,∞)), r′ ≥ 0, hi ∈ C([l0,∞), [0,∞)), q ∈ C([l0,∞), (0, 1)),

infl≥l0 q(l) �= 0, q, h are not identically zero for large l;
(M3) λ,σi ∈ C1([l0,∞), (0,∞)), λ(l) ≤ l, σi(l) ≥ l, σ ′

i (l) > 0 and liml→∞ λ(l) =
liml→∞ σi(l) = ∞;

(M4) g ∈ C(R, R) and there exists k > 0 where k is a constant, such that g(x) ≥ kxα for
x �= 0.

We will assume that (1.1) is in the so-called noncanonical form

∫ ∞

l0

1
r(s)

ds < ∞. (1.2)

By a solution of (1.1), we mean a real-valued function x ∈ C([lx,∞), R) lx ≥ l0, which
satisfies (1.1) on [lx,∞). and has the property xα(l) + q(l)x(λ(l)) and r(l)(xα(l) + q(l)x(λ(l)))
are continuously differentiable for l ∈ [lx,∞). We only consider those solutions x(l) of (1.1)

© The Author(s) 2021. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other
third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

https://doi.org/10.1186/s13660-021-02595-x
http://crossmark.crossref.org/dialog/?doi=10.1186/s13660-021-02595-x&domain=pdf
http://orcid.org/0000-0003-3844-7820
mailto:muhib39@yahoo.com


Muhib Journal of Inequalities and Applications         (2021) 2021:79 Page 2 of 11

satisfying sup{|x(l)| : l ≥ la} > 0 for all la ≥ lx, and we assume that (1.1) possesses such
solutions.

A solution of (1.1) is called oscillatory if it has arbitrarily many zeros on [l0,∞), and is
called nonoscillatory otherwise. Equation (1.1) is said to be oscillatory if all of its solutions
are oscillatory.

Recently, the oscillatory theory of functional differential equations has received great
attention due to the existence of a number of applications in engineering and the natu-
ral sciences. There are some contributions in the field of oscillatory behavior of different
classes of differential equations, we refer the reader to [1–12] and the references men-
tioned therein. The neutral delay differential equations have applications in electrical net-
works containing lossless transmission lines; these networks appear in high-speed com-
puters. See [13].

Several scholars have studied the oscillatory behavior of second-order differential equa-
tions under various conditions. See [14–23].

Some new oscillation criteria for the neutral nonlinear differential equation

(
r(l)

(
x(l) + q(l)x

(
λ(l)

))′)′ +
m∑

i=1

hi(l)g
(
x
(
σi(l)

))
= 0

are established by Xu et al. [21], where α = 1, σi(l) ≤ l and

∫ ∞

l0

1
r(s)

ds = ∞. (1.3)

Agarwal et al. [22] investigated the second-order differential equations with a sublinear
neutral term

(
r(l)

(
x(l) + q(l)xα

(
λ(l)

))′)′ + h(l)x
(
σ (l)

)
= 0,

where 0 < α ≤ 1, λ(l) ≤ l and σ (l) ≤ l. They established some oscillation criteria under the
condition (1.2) and (1.3).

Dzurina [23] established a new comparison theorem for deducing oscillation of the non-
linear differential equation

(
r(l)

(
x′(l)

)α)′ + h(l)xα
(
σ (l)

)
= 0,

where α is a quotient of odd positive integers and σ (l) ≤ l.
The objective of this paper is to study the oscillatory properties of the second-order

neutral differential equations in noncanonical form. By using Riccati transformations, we
present a new conditions for oscillation of the studied equation. The results obtained here
extend and complement to some known results in the literature. See for example [21–23].
Some examples are provided to illustrate the relevance of new theorems.

2 Main results
In the rest of the work, we will adopt the following notation:

v(l) := xα(l) + q(l)x
(
λ(l)

)
,
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π (l) =
∫ ∞

l

1
r(s)

ds,

and

σ (l) = min
{
σi(l), i = 1, 2, . . . , m

}
.

In order to prove our results, we will present the following lemma.

Lemma 2.1 Assume that x(l) is a positive solution of (1.1) on [l1,∞), where l1 ≥ l0. More-
over, assume that (1.2) holds and

∫ ∞

l0

m∑

i=1

hi(s) ds = ∞. (2.1)

Then

v(l) > 0, v′(l) < 0,
(
r(l)v′(l)

)′ ≤ 0, (2.2)

and

(
v(l)
π (l)

)′
≥ 0. (2.3)

for l ≥ l1.

Proof Let x(l) be a nonoscillatory solution of (1.1). Without loss of generality, we may
assume that x(l) > 0, x(λ(l)) > 0 and x(σ (l)) > 0 for l ≥ l1 ≥ l0. From (1.1), we have

(
r(l)v′(l)

)′ = –
m∑

i=1

hi(l)g
(
x
(
σi(l)

))

≤ –k
m∑

i=1

hi(l)xα
(
σi(l)

) ≤ 0. (2.4)

Hence, the function r(l)v′(l) is decreasing and therefore we shall consider the following
two cases, either v′(l) < 0 or v′(l) > 0. Assume that there exists l2 ≥ l1 such that v′(l) > 0 on
[l2,∞). Then

xα(l) = v(l) – q(l)x
(
λ(l)

) ≥ v(l) – q(l)v
(
λ(l)

) ≥ v(l)
(
1 – q(l)

)
, for l ≥ l2,

and so

xα
(
σi(l)

) ≥ v
(
σi(l)

)(
1 – q

(
σi(l)

))
, (2.5)

which together with (2.4) implies that

(
r(l)v′(l)

)′ ≤ –k
m∑

i=1

hi(l)
(
1 – q

(
σi(l)

))
v
(
σi(l)

)
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≤ –kv
(
σ (l)

) m∑

i=1

hi(l)
(
1 – q

(
σi(l)

))
. (2.6)

Define the function ω(l) by the Riccati substitution

ω(l) =
r(l)v′(l)
v(σ (l))

. (2.7)

Then ω(l) > 0. Differentiating (2.7), using (1.1) and (2.5) we see that

ω′(l) =
(r(l)v′(l))′

v(σ (l))
–

r(l)v′(l)v′(σ (l))σ ′(l)
v2(σ (l))

≤ –k
m∑

i=1

hi(l)
(
1 – q

(
σi(l)

))
–

v′(σ (l))σ ′(l)
v(σ (l))

ω(l)

≤ –k
m∑

i=1

hi(l)
(
1 – q

(
σi(l)

))
. (2.8)

Integrating (2.8) from l2 to l, we obtain

ω(l) ≤ ω(l2) – k
∫ l

l2

m∑

i=1

hi(s)
(
1 – q

(
σi(s)

))
ds

≤ ω(l2) – k min
1≤i≤m

inf
l≥l2

(
1 – q

(
σi(l)

))∫ l

l2

m∑

i=1

hi(s) ds. (2.9)

The above inequality, taking assumption (2.1) into account, implies that ω(l) → –∞ as
l → ∞, which is a contradiction. Hence, the case v′(l) > 0 is impossible. Thus, v(l) satisfies
(2.2) for l ≥ l1. On the other hand, it follows from the monotonicity of r(l)v′(l) that

v(l) ≥ –
∫ ∞

l

r(s)v′(s)
r(s)

ds ≥ –r(l)v′(l)
∫ ∞

l

1
r(s)

ds ≥ –r(l)v′(l)π (l), (2.10)

that is,

v(l) + r(l)v′(l)π (l) ≥ 0. (2.11)

Now

(
v(l)
π (l)

)′
=

π (l)v′(l) – v(l)π ′(l)
π2(l)

. (2.12)

From (2.11) and (2.12), we conclude that

(
v(l)
π (l)

)′
=

r(l)π (l)v′(l) + v(l)
r(l)π2(l)

≥ 0.

The proof of the lemma is complete. �
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Theorem 2.1 Let condition (1.2) be satisfied. If

0 < 1 – q(l)
π (λ(l))
π (l)

< 1, inf
l≥l1

(
1 – q(l)

π (λ(l))
π (l)

)
> 0, (2.13)

and

∫ ∞

l0

1
r(u)

∫ u

l0

m∑

i=1

hi(s)π
(
σi(s)

)
ds du = ∞, (2.14)

then every solution x(l) of (1.1) is oscillatory.

Proof Let x(l) be a nonoscillatory solution of (1.1). Without loss of generality, we may
assume that x(l) > 0, x(λ(l)) > 0 and x(σ (l)) > 0 for l ≥ l1 ≥ l0. It is well known that (2.1) is
necessary to verify (2.14). Since the function

∫ ∞

l0

m∑

i=1

hi(s)π
(
σi(s)

)
ds

is unbounded due to (1.2) and π ′(l) < 0, (2.1) must hold. Using Lemma 2.1, v(l) satisfies
(2.2) for l ≥ l1. It follows from (2.3) that there is c > 0 such that

v(l)
π (l)

≥ c (2.15)

and

xα(l) = v(l) – q(l)x
(
λ(l)

) ≥ v(l) – q(l)v
(
λ(l)

)

≥ v(l) – q(l)
π (λ(l))v(l)

π (l)
= v(l)

(
1 – q(l)

π (λ(l))
π (l)

)
. (2.16)

Using (2.15) and (2.16) in (1.1), we obtain

(
r(l)v′(l)

)′ ≤ –k
m∑

i=1

hi(l)v
(
σi(l)

)
(

1 – q
(
σi(l)

)π (λ(σi(l)))
π (σi(l))

)

≤ –k
m∑

i=1

hi(l)
(

1 – q
(
σi(l)

)π (λ(σi(l)))
π (σi(l))

)
cπ

(
σi(l)

)
. (2.17)

Integrating (2.17) from l1 to l, we obtain

r(l)v′(l) – r(l1)v′(l1) ≤ –kc
∫ l

l1

m∑

i=1

hi(s)
(

1 – q
(
σi(s)

)π (λ(σi(s)))
π (σi(s))

)
π

(
σi(s)

)
ds,

that is,

v′(l) ≤ –
kc

r(l)

∫ l

l1

m∑

i=1

hi(s)
(

1 – q
(
σi(s)

)π (λ(σi(s)))
π (σi(s))

)
π

(
σi(s)

)
ds. (2.18)
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Integrating (2.18) again from l1 to l and taking into account (2.13) and (2.14), we have

v(l) ≤ v(l1) –
∫ l

l1

kc
r(u)

∫ u

l1

m∑

i=1

hi(s)
(

1 – q
(
σi(s)

)π (λ(σi(s)))
π (σi(s))

)
π

(
σi(s)

)
ds du

≤ v(l1) – kc min
1≤i≤m

inf
l≥l1

(
1 – q

(
σi(s)

)π (λ(σi(s)))
π (σi(s))

)∫ l

l1

1
r(u)

∫ u

l1

m∑

i=1

hi(s)π
(
σi(s)

)
ds du.

The above inequality, taking assumptions (2.13) and (2.14) into account, implies that
v(l) → –∞ as l → ∞, which is a contradiction. The proof of the theorem is complete. �

Theorem 2.2 Suppose that (1.2) and (2.1) hold. If

0 < 1 – q(l)
π (λ(l))
π (l)

< 1 (2.19)

and

W ′(l) ≥
(

k
m∑

i=1

hi(l)M
(
σi(l)

)(
1 – q

(
σi(l)

)π (λ(σi(l)))
π (σi(l))

))

W
(
σ (l)

)
(2.20)

is oscillatory, where

M(l) = k
∫ ∞

l
π (s)

m∑

i=1

hi(s)π
(
σi(s)

)(
1 – q

(
σi(s)

)π (λ(σi(s)))
π (σi(s))

)
ds,

then every solution x(l) of (1.1) is oscillatory.

Proof Let x(l) be a nonoscillatory solution of (1.1). Without loss of generality, we may
assume that x(l) > 0, x(λ(l)) > 0 and x(σ (l)) > 0 for l ≥ l1 ≥ l0. Because of (2.1), from
Lemma 2.1, we can conclude that v(l) satisfies (2.2). Now, since

(
v(l) + r(l)v′(l)π (l)

)′ = v′(l) +
(
r(l)v′(l)

)′
π (l) + r(l)v′(l)π ′(l) =

(
r(l)v′(l)

)′
π (l), (2.21)

using (1.1) and (2.16), (2.21) becomes

(
v(l) + r(l)v′(l)π (l)

)′ ≤ –kπ (l)
m∑

i=1

hi(l)xα
(
σi(l)

)

≤ –kπ (l)
m∑

i=1

hi(l)v
(
σi(l)

)(
1 – q

(
σi(l)

)π (λ(σi(l)))
π (σi(l))

)
≤ 0. (2.22)

Hence, we observe that �(l) = v(l) + r(l)v′(l)π (l) ≥ 0 is nonincreasing. By integrating (2.22)
from l to ∞ and using (2.11), we obtain

�(l) ≥
∫ ∞

l
kπ (s)

m∑

i=1

hi(s)v
(
σi(s)

)(
1 – q

(
σi(s)

)π (λ(σi(s)))
π (σi(s))

)
ds

≥ k
∫ ∞

l
π (s)

m∑

i=1

hi(s)
(
–r

(
σi(s)

)
v′(σi(s)

))
π

(
σi(s)

)
(

1 – q
(
σi(s)

)π (λ(σi(s)))
π (σi(s))

)
ds
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≥ k
∫ ∞

l
π (s)

m∑

i=1

hi(s)
(
–r(s)v′(s)

)
π

(
σi(s)

)
(

1 – q
(
σi(s)

)π (λ(σi(s)))
π (σi(s))

)
ds

≥ (
–r(l)v′(l)

)
k
∫ ∞

l
π (s)

m∑

i=1

hi(s)π
(
σi(s)

)
(

1 – q
(
σi(s)

)π (λ(σi(s)))
π (σi(s))

)
ds,

since r(l)v′(l)π (l) < 0, we get

v(l) ≥ (
–r(l)v′(l)

)
k
∫ ∞

l
π (s)

m∑

i=1

hi(s)π
(
σi(s)

)
(

1 – q
(
σi(s)

)π (λ(σi(s)))
π (σi(s))

)
ds

≥ M(l)
(
–r(l)v′(l)

)
. (2.23)

From (2.17), we have

(
r(l)v′(l)

)′ ≤ –k
m∑

i=1

hi(l)v
(
σi(l)

)
(

1 – q
(
σi(l)

)π (λ(σi(l)))
π (σi(l))

)
. (2.24)

Using (2.23) and (2.24), we see that W (l) = –r(l)v′(l) is a positive solution of the differential
inequality

W ′(l) ≥ k
m∑

i=1

hi(l)M
(
σi(l)

)
(

1 – q
(
σi(l)

)π (λ(σi(l)))
π (σi(l))

)
W

(
σi(l)

)
.

From the increasing property of W (l), we get

W ′(l) ≥ k
m∑

i=1

hi(l)M
(
σi(l)

)
(

1 – q
(
σi(l)

)π (λ(σi(l)))
π (σi(l))

)
W

(
σ (l)

)
,

that is,

W ′(l) ≥
(

k
m∑

i=1

hi(l)M
(
σi(l)

)
(

1 – q
(
σi(l)

)π (λ(σi(l)))
π (σi(l))

))

W
(
σ (l)

)
,

which is a contradiction. The proof of the theorem is complete. �

Theorem 2.3 Suppose that (1.2), (2.1) and (2.19)hold. If

∫ ∞

l0

(

kπ (s)
m∑

i=1

hi(s)
(

1 – q
(
σi(s)

)π (λ(σi(s)))
π (σi(s))

)
π (σi(s))

π (s)
–

1
4r(s)π (s)

)

ds = ∞, (2.25)

then every solution x(l) of (1.1) is oscillatory.

Proof Let x(l) be a nonoscillatory solution of (1.1). Without loss of generality, we may
assume that x(l) > 0, x(λ(l)) > 0 and x(σ (l)) > 0 for l ≥ l1 ≥ l0. Because of (2.1), from
Lemma 2.1, we can conclude that v(l) satisfies (2.2). We now define the following func-
tion:

φ(l) =
r(l)v′(l)

v(l)
, (2.26)
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for l ≥ l1. Differentiating (2.26), we have

φ′(l) =
(r(l)v′(l))′

v(l)
–

r(l)(v′(l))2

v2(l)
, (2.27)

from (2.24) and (2.27), we have

φ′(l) ≤ –k
∑m

i=1 hi(l)v(σi(l))(1 – q(σi(l)) π (λ(σi(l)))
π (σi(l))

)
v(l)

–
r(l)(v′(l))2

v2(l)
.

Because of (2.3) and (2.26), we conclude

φ′(l) ≤ –k
m∑

i=1

hi(l)
(

1 – q
(
σi(l)

)π (λ(σi(l)))
π (σi(l))

)
π (σi(l))

π (l)
–

φ2(l)
r(l)

.

Multiplying this inequality by π (l) and integrating the resulting inequality from l1 to l we
find

π (l)φ(l) – π (l1)φ(l1) ≤ –k
∫ l

l1
π (s)

m∑

i=1

hi(s)
(

1 – q
(
σi(s)

)π (λ(σi(s)))
π (σi(s))

)
π (σi(s))

π (s)
ds

–
∫ l

l1
π (s)

φ2(s)
r(s)

ds –
∫ l

l1

φ(s)
r(s)

ds, (2.28)

using the inequality

–B	 + A	(α+1)/α ≥ –αα

(α + 1)α+1
Bα+1

Aα
, A, B > 0, (2.29)

where

A = π (s)/r(s), B = 1/r(s) and 	 = –φ(l),

thus (2.28) becomes

π (l)φ(l) – π (l1)φ(l1) ≤ –k
∫ l

l1
π (s)

m∑

i=1

hi(s)
(

1 – q
(
σi(s)

)π (λ(σi(s)))
π (σi(s))

)
π (σi(s))

π (s)
ds

+
1
4

∫ l

l1

1
r(s)π (s)

ds. (2.30)

From (2.10) and (2.26), we have

1 ≥ –
r(l)v′(l)π (l)

v(l)
= –φ(l)π (l). (2.31)

In view of (2.30) and (2.31), we obtain

1 + π (l1)φ(l1) ≥
∫ l

l1

(

kπ (s)
m∑

i=1

hi(s)
(

1 – q
(
σi(s)

)π (λ(σi(s)))
π (σi(s))

)
π (σi(s))

π (s)
–

1
4r(s)π (s)

)

ds,

which is a contradiction. The proof of the theorem is complete. �
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Now, we will present examples to illustrate our main results.

Example 2.1 Consider the second-order neutral differential equation
(

l2
(

x3(l) +
1
3

x
(

l
2

))′)′
+ 81l2x3(2l) + l4x3(3l) = 0, (2.32)

where k = 1 and m = 2. Now, we note that α = 3 > 1, r(l) = l2, q(l) = 1/3, λ(l) = l/2, h1(l) =
81l2, h2(l) = l4, σ1(l) = 2l and σ2(l) = 3l. Then it is easy to see that

π (l) =
∫ ∞

l

1
r(s)

ds =
∫ ∞

l
s–2 ds =

1
l

,

0 < 1 – q(l)
π (λ(l))
π (l)

= 1 –
(

1
3

)
1/(l/2)

1/l
=

1
3

< 1,

and
∫ ∞

l0

1
r(u)

∫ u

l0

m∑

i=1

hi(s)π
(
σi(s)

)
ds du =

∫ ∞

l0

1
u2

∫ u

l0

(
81s2 1

2s
+ s4 1

3s

)
ds du = ∞.

By using Theorem (2.1), we see that (2.32) is oscillatory.

Example 2.2 Consider the second-order neutral differential equation

(
l3(x5(l) + q0x(k1l)

)′)′ + h0lx5(k2l) + h1lx5(k3l) = 0, (2.33)

where k = 1, m = 2, k1 ∈ (0, 1], k2 ≥ 1 and k3 ≥ 1. Now, we note that q(l) = q0, q0 ∈ (0, k2
1),

α = 5 > 1, r(l) = l3, λ(l) = k1l, h1(l) = h0l, h0 > 0, h2(l) = h∗l, h∗ > 0, σ1(l) = k2l and σ2(l) = k3l.
Then it is easy to see that

π (l) =
∫ ∞

l

1
r(s)

ds =
∫ ∞

l
s–3 ds =

1
2l2 ,

∫ ∞

l0

m∑

i=1

hi(s)ds =
∫ ∞

l0
(h0s + h∗s) ds = ∞,

0 < 1 – q(l)
π (λ(l))
π (l)

= 1 – q0
1
k2

1
< 1,

and

∫ ∞

l0

(

kπ (s)
m∑

i=1

hi(s)
(

1 – q
(
σi(s)

)π (λ(σi(s)))
π (σi(s))

)
π (σi(s))

π (s)
–

1
4r(s)π (s)

)

ds

=
∫ ∞

l0

(
1

2s2

(
h0s

(
1 – q0

1
k2

1

)
1
k2

2
+ h∗s

(
1 – q0

1
k2

1

)
1
k2

3

)
–

1
4s3(1/(2s2))

)
ds,

therefore, we find that the condition (2.25) is satisfied if

h0
1
k2

2
+ h∗

1
k2

3
>

1
(1 – q0

1
k2

1
)
. (2.34)

By using Theorem (2.3), we see that (2.33) is oscillatory if (2.34) holds.
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3 Conclusions
In this work, we have obtained some new oscillation criteria for (1.1) in the case where
v(l) := xα(l) + q(l)x(λ(l)). These results ensure that all solutions of the equation studied are
oscillatory. The results obtained here extend and complement some known results in the
literature. See for example [21–23]. It will be of interest to investigate the higher-order
equations of the form

(
r(l)

(
xα(l) + q(l)x

(
λ(l)

))(n–1))′ +
m∑

i=1

hi(l)g
(
x
(
σi(l)

))
= 0,

where g(x) ≥ kxα .
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