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Abstract
As is well known, poly-Bernoulli polynomials are defined in terms of polylogarithm
functions. Recently, as degenerate versions of such functions and polynomials,
degenerate polylogarithm functions were introduced and degenerate poly-Bernoulli
polynomials were defined by means of the degenerate polylogarithm functions, and
some of their properties were investigated. The aim of this paper is to further study
some properties of the degenerate poly-Bernoulli polynomials by using three
formulas coming from the recently developed ‘λ-umbral calculus’. In more detail,
among other things, we represent the degenerate poly-Bernoulli polynomials by
higher-order degenerate Bernoulli polynomials and by higher-order degenerate
derangement polynomials.

Keywords: Degenerate poly-Bernoulli polynomials; Degenerate derangement
polynomials; λ-umbral calculus

1 Introduction
Carlitz is the first one who initiated the study of degenerate versions of some special num-
bers and polynomials, namely the degenerate Bernoulli and Euler polynomials and num-
bers (see [2]). In recent years, studying degenerate versions of some special numbers and
polynomials regained interests of some mathematicians with their interests not only in
combinatorial and arithmetic properties but also in applications to differential equations,
identities of symmetry, and probability theory (see [9, 10, 12–14, 17, 19, 21] and the ref-
erences therein). It is noteworthy that studying degenerate versions is not only limited to
polynomials but also can be extended to transcendental functions like gamma functions
(see [13]).

The Rota’s theory of umbral calculus is based on linear functionals and differential op-
erators (see [3–7, 20, 23–27]). The Sheffer sequences occupy the central position in the
theory and are characterized by the generating functions where the usual exponential
function enters. The motivation for the paper [10] starts from the question that what if
the usual exponential function is replaced with the degenerate exponential functions (see
(2)). As it turns out, it corresponds to replacing the linear functional with the family of λ-
linear functionals (see (12)) and the differential operator with the family of λ-differential
operators (see (14)). Indeed, these replacements lead us to defining λ-Sheffer polynomials
and degenerate Sheffer polynomials (see (16)).
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As is well known, poly-Bernoulli polynomials are defined in terms of polylogarithm
functions. Recently, as degenerate versions of such functions and polynomials, degener-
ate polylogarithm functions were introduced and degenerate poly-Bernoulli polynomials
were defined by means of the degenerate polylogarithm functions, and some properties
of the degenerate poly-Bernoulli polynomials were investigated (see [17]).

The aim of this paper is to further study the degenerate poly-Bernoulli polynomials,
which is a λ-Sheffer sequence and hence a degenerate Sheffer sequence, by using the
above-mentioned λ-linear functionals and λ-differential operators. In more detail, these
polynomials are investigated by three different tools, namely a formula about representing
a λ-Sheffer sequence by another (see (19)), a formula coming from the generating func-
tions of λ-Sheffer sequences (see Theorem 1), and a formula arising from the definitions
for λ-Sheffer sequences (see Theorems 6, 7). Then, among other things, we represent the
degenerate poly-Bernoulli polynomials by higher-order degenerate Bernoulli polynomials
and by higher-order degenerate derangement polynomials. The rest of this section is de-
voted to recalling the necessary facts that are needed throughout the paper, which includes
the ‘λ-umbral calculus’.

For k ∈ Z and 0 �= λ ∈R, the degenerate polylogarithm functions are defined by

Lik,λ(x) =
∞∑

n=1

(–λ)n–1(1)n,1/λ

(n – 1)!nk xn (see [9, 17]), (1)

where (x)0,λ = 1, (x)n,λ = x(x – λ) · · · (x – (n – 1)λ), (n ≥ 1).
For any λ ∈R, the degenerate exponential functions are given by

ex
λ(t) =

∞∑

n=0

(x)n,λ

n!
tn, eλ(t) = e1

λ(t) =
∞∑

n=0

(1)n,λ

n!
tn (see [9, 13]). (2)

Note here that, for λ �= 0, ex
λ(t) = (1 + λt)

x
λ .

The compositional inverse logλ(t) of eλ(t) is given by

logλ(t) =
∞∑

n=1

λn–1

n!
(1)n,1/λ(t – 1)n, (see [9, 13]). (3)

From (1) and (3), we have

Li1,λ(x) = – logλ(1 – x) and lim
λ→0

Lik,λ(x) = Lik(x), (4)

where Lik(x) are the polylogarithm functions defined by

Lik(x) =
∞∑

n=1

xn

nk

(|x| < 1
)
, (see [1, 8, 9, 22]).

In [9], the degenerate poly-Bernoulli polynomials are defined by Kim–Kim as

Lik,λ(1 – eλ(–t))
eλ(t) – 1

ex
λ(t) =

∞∑

n=0

B(k)
n,λ(x)

tn

n!
. (5)

When x = 0, B(k)
n,λ = B(k)

n,λ(0) are called the degenerate poly-Bernoulli numbers.
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It is well known that Carlitz’s degenerate Bernoulli polynomials of order r are defined
by

(
t

eλ(t) – 1

)r

ex
λ(t) =

∞∑

n=0

β
(r)
n,λ(x)

tn

n!
(see [2]). (6)

For r = 1, β (1)
n,λ(x) = βn,λ(x) are called the degenerate Bernoulli polynomials.

From (5), we note that

∞∑

n=0

B(1)
n,λ(x)

tn

n!
=

Li1,λ(1 – eλ(–t))
eλ(t) – 1

=
t

eλ(t) – 1
ex
λ(t) =

∞∑

n=0

βn,λ(x)
tn

n!
. (7)

By (7), we get B(1)
n,λ(x) = βn,λ(x), (n ≥ 0).

The degenerate Stirling numbers of the second kind appear as the coefficients in the
expansion

(x)n,λ =
n∑

l=0

S2,λ(n, l)(x)l (n ≥ 0), (see [9, 11]). (8)

As the inversion formula of (8), the degenerate Stirling numbers of first kind appear as the
coefficients in the expansion

(x)n =
n∑

l=0

S1,λ(n, l)(x)l,λ (n ≥ 0), (see [9]). (9)

Thus, by (8) and (9), we have

1
k!

(
eλ(t) – 1

)k =
∞∑

n=k

S2,λ(n, k)
tn

n!
(10)

and

1
k!

(
logλ(1 + t)

)k =
∞∑

n=k

S1,λ(n, k)
tn

n!
(k ≥ 0), (see [9]).

In view of (6), the degenerate derangement polynomials of order r(∈N) are defined by

1
(1 – t)r e–1

λ (t)ex
λ(t) =

∞∑

n=0

d(r)
n,λ(x)

tn

n!
(see [12, 19]). (11)

When r = 1, dn,λ(x) = d(1)
n,λ(x) are called the degenerate derangement polynomials.

Note that limλ→0 dn,λ(x) = dn(x), where dn(x) are the derangement polynomials and dn =
dn(0) are the derangement numbers (see [12, 15, 16, 18]).

We remark that the umbral calculus has long been studied by many people (see [3–
7, 20, 23–27]). For the rest of this section, we recall the necessary facts on the λ-linear
functionals, λ-differential operators, λ-Sheffer sequences, and so on. The details on these
can be found in the recent paper [10].
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Let C be the field of complex numbers,

F =

{
f (t) =

∞∑

k=0

ak
tk

k!

∣∣∣ak ∈C

}
,

and let

P = C[x] =

{ ∞∑

i=0

aixi
∣∣∣ai ∈C with ai = 0 for all but finite number of i

}
.

For f (t) ∈ F with f (t) =
∑∞

k=0 ak
tk

k! and λ ∈ R, the λ-linear functional 〈f (t)|·〉λ on P is de-
fined by

〈
f (t)|(x)n,λ

〉
λ

= an (n ≥ 0), (see [10]). (12)

By (12), we get

〈
tk|(x)n,λ

〉
λ

= n!δn,k (n, k ≥ 0), (see [10]), (13)

where δn,k is the Kronecker symbol.
The λ-differential operators on P are defined by

(
tk)

λ
(x)n,λ =

⎧
⎨

⎩
(n)k(x)n–k,λ, if 0 ≤ k ≤ n,

0, if k > n.
(14)

For f (t) =
∑∞

k=0 ak
tk

k! ∈F , and by (14), we get

(
f (t)

)
λ
(x)n,λ =

n∑

k=0

(
n
k

)
ak(x)n–k,λ (n ≥ 0), (15)

(
ey
λ(t)

)
λ
(x)n,λ = (x + y)n,λ (n ≥ 0), (see [10]).

Let f (t) be a delta series, and let g(t) be an invertible series. Then there exists a unique
sequence Sn,λ(x)(deg Sn,λ(x) = n) of polynomials satisfying the orthogonality conditions

〈
g(t)

(
f (t)

)k|Sn,λ(x)
〉
λ

= n!δn,k (n, k ≥ 0), (see [10]). (16)

Here, Sn,λ(x) is called the λ-Sheffer sequence for (g(t), f (t)), which is denoted by Sn,λ(x) ∼
(g(t), f (t))λ. The sequence Sn,λ(x) is the λ-Sheffer sequence for (g(t), f (t)) if and only if

1
g(f (t))

ey
λ

(
f (t)

)
=

∞∑

n=0

Sn,λ(y)
tn

n!
(see [10]) (17)

for all y ∈C, where f (t) is the compositional inverse of f (t) such that f (f (t)) = f (f (t)) = t.
Let Sn,λ(x) ∼ (g(t), f (t))λ. Then, from Theorem 16 of [10], we recall that

(
f (t)

)
λ
Sn,λ(x) = nSn–1,λ(x), (n ≥ 1). (18)
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For Sn,λ(x) ∼ (g(t), f (t))λ, rn,λ(x) ∼ (h(t), l(t))λ, we have

Sn,λ(x) =
n∑

k=0

Cn,krk,λ(x), (n ≥ 0), (see [10]), (19)

where

Cn,k =
1
k!

〈
h(f (t))
g(f (t))

(
l
(
f (t)

))k
∣∣∣(x)n,λ

〉

λ

. (20)

Finally, we note that λ-umbral calculus has some merit over umbral calculus when deal-
ing with λ-Sheffer sequences. As one example, we illustrate this with the problem of rep-
resenting the degenerate Bernoulli polynomial βn,λ(x) in terms of the degenerate falling
factorials (x)k,λ. As before, let f (t) and g(t) be respectively a delta series and an invertible
series. First, we recall that Sn(x) is Sheffer for (g(t), f (t)) denoted by Sn(x) ∼ (g(t), f (t)) if
and only if

1
g(f (t))

exf (t) =
∞∑

n=0

Sn(x)
tn

n!
(see [24]).

Next, we recall that, for Sn(x) ∼ (g(t), f (t)), rn(x) ∼ (h(t), l(t)), we have

Sn(x) =
n∑

k=0

Cn,krk(x), (n ≥ 0), (see [24]), (21)

where

Cn,k =
1
k!

〈
h(f (t))
g(f (t))

(
l
(
f (t)

))k
∣∣∣xn

〉
. (22)

Now, we observe that βn,λ(x) is λ-Sheffer for ( eλ(t)–1
t , t), βn,λ(x) ∼ ( eλ(t)–1

t , t)λ and Sheffer for
( λ(et–1)

eλt–1 , 1
λ

(eλt – 1)), βn,λ(x) ∼ ( λ(et–1)
eλt–1 , 1

λ
(eλt – 1)). Also, (x)n,λ is λ-Sheffer for (1, t), (x)n,λ ∼

(1, t)λ and Sheffer for (1, 1
λ

(eλt – 1)), (x)n,λ ∼ (1, 1
λ

(eλt – 1)). Let βn,λ(x) =
∑n

k=0 Cn,k(x)k,λ.
Then it is obviously easier to compute the coefficients Cn,k by viewing βn,λ(x) and (x)n,λ as
λ-Sheffer sequences and using (20) than by viewing them as Sheffer sequences and using
(22).

In this paper, we study the properties of degenerate poly-Bernoulli polynomial arising
from degenerate polylogarithmic function and give some identities of those polynomials
associated with special polynomials which are derived from the properties of λ-Sheffer
sequences.

2 Representations of degenerate poly-Bernoulli polynomials
For Sn,λ(x) ∼ (g(t), f (t))λ, (n ≥ 0), we have

〈
1

g(f (t))
ex
λ

(
f (t)

)∣∣∣(x)n,λ

〉

λ

=
∞∑

k=0

Sk,λ(x)
1
k!

〈
tk|(x)n,λ

〉
λ

(23)

= Sn,λ(x), (n ≥ 0).
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In (23), we note that

〈
1

g(f (t))
ex
λ

(
f (t)

)∣∣∣(x)n,λ

〉

λ

=
∞∑

j=0

1
j!

〈
1

g(f (t))
(
f (t)

)j
∣∣∣(x)n,λ

〉

λ

(x)j,λ (24)

=
n∑

j=0

1
j!

〈
1

g(f (t))
(
f (t)

)j
∣∣∣(x)n,λ

〉

λ

(x)j,λ.

Therefore, by (23) and (24), we obtain the following theorem.

Theorem 1 For Sn,λ(x) ∼ (g(t), f (t))λ, we have

Sn,λ(x) =
n∑

j=0

1
j!

〈
1

g(f (t))
(
f (t)

)j
∣∣∣(x)n,λ

〉

λ

(x)j,λ.

From (5) and (17), we have

B(k)
n,λ(x) ∼

(
eλ(t) – 1

Lik,λ(1 – eλ(–t))
, t

)

λ

. (25)

By Theorem 1 applied to (25), we get the following corollary.

Corollary 2 For n ≥ 0, we have

B(k)
n,λ(x) =

n∑

j=0

(
n
j

)
B(k)

n–j,λ(x)j,λ.

Here we remark that Corollary 2 can also be obtained by combining (15) and the first
line of (27).

From (25), we note that

(
eλ(t) – 1

Lik,λ(1 – eλ(–t))

)

λ

B(k)
n,λ(x) = (x)n,λ ∼ (1, t)λ. (26)

By (26), and noting that (x)n,λ =
∑n

l=0
∑l

j=0 S2,λ(n, l)S1,λ(l, j)(x)j,λ, we get

B(k)
n,λ(x) =

(
Lik,λ(1 – eλ(–t))

eλ(t) – 1

)

λ

(x)n,λ (27)

=
n∑

l=0

l∑

j=0

S2,λ(n, l)S1,λ(l, j)
(

Lik,λ(1 – eλ(–t))
eλ(t) – 1

)

λ

(x)j,λ

=
n∑

l=0

l∑

j=0

S2,λ(n, l)S1,λ(l, j)
j∑

m=0

B(k)
m,λ

1
m!

(
tm)

λ
(x)j,λ

=
n∑

l=0

l∑

j=0

j∑

m=0

(
j

m

)
S2,λ(n, l)S1,λ(l, j)B(k)

m,λ(x)j–m,λ
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=
n∑

l=0

l∑

m=0

l∑

j=m

(
j

m

)
S2,λ(n, l)S1,λ(l, j)B(k)

m,λ(x)j–m,λ

=
n∑

l=0

l∑

m=0

l–m∑

j=0

(
j + m

m

)
S2,λ(n, l)S1,λ(l, j + m)B(k)

m,λ(x)j,λ.

Therefore, by (27), we obtain the following theorem.

Theorem 3 For n ≥ 0, we have

B(k)
n,λ(x) =

n∑

l=0

l∑

m=0

l–m∑

j=0

(
j + m

m

)
S2,λ(n, l)S1,λ(l, j + m)B(k)

m,λ(x)j,λ.

Now, we observe that

B(k)
n,λ(y) =

〈
Lik,λ(1 – eλ(–t))

eλ(t) – 1
ey
λ(t)

∣∣∣(x)n,λ

〉

λ

(28)

=
〈

Lik,λ(1 – eλ(–t))
t

∣∣∣
(

t
eλ(t) – 1

ey
λ(t)

)

λ

(x)n,λ

〉

λ

=
n∑

l=0

(
n
l

)
βl,λ(y)

〈
1
t

Lik,λ
(
1 – eλ(–t)

)∣∣∣(x)n–l,λ

〉

λ

=
n∑

l=0

(
n
l

)
βl,λ(y)

〈
1
t

∞∑

m=1

(–λ)m–1(1)m,1/λ

mk–1
(–1)m

m!
(
eλ(–t) – 1

)m
∣∣∣(x)n–l,λ

〉

λ

=
n∑

l=0

(
n
l

)
βl,λ(y)

〈
1
t

∞∑

j=1

(
j∑

m=1

(–λ)m–1(1)m,1/λ

mk–1 (–1)j–mS2,λ(j, m)
tj

j!

∣∣∣(x)n–l,λ

〉

λ

=
n∑

l=0

(
n
l

)
βl,λ(y)

∞∑

j=0

( j+1∑

m=1

(–λ)m–1(1)m,1/λ

mk–1 (–1)j+1–m S2,λ(j + 1, m)
(j + 1)!

)
〈
tj|(x)n–l,λ

〉
λ

=
n∑

l=0

(
n
l

)
βl,λ(y)

n–l+1∑

m=1

(–λ)m–1(1)m,1/λ

mk–1
(–1)n–l+1–m

(n – l + 1)!
S2,λ(n – l + 1, m)(n – l)!

=
n∑

l=0

n–l+1∑

m=1

(–1)n–l(n
l
)
λm–1

(n – l + 1)mk–1 (1)m,1/λS2,λ(n – l + 1, m)βl,λ(y).

Therefore, by (28), we obtain the following theorem.

Theorem 4 For n ≥ 0, we have

B(k)
n,λ(x) =

n∑

l=0

n–l+1∑

m=1

(–1)n–l(n
l
)
λm–1

(n – l + 1)mk–1 (1)m,1/λS2,λ(n – l + 1, m)βl,λ(x).

By (6) and (17), we note that

β
(s)
n,λ(x) ∼

(
(eλ(t) – 1)s

ts , t
)

λ

. (29)
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From (19), (25), and (29), we have

B(k)
n,λ(x) =

n∑

m=0

Cn,mβ
(s)
m,λ(x), (30)

where

Cn,m =
1

m!

〈
Lik,λ(1 – eλ(–t))

eλ(t) – 1
(eλ(t) – 1)s

ts tm
∣∣∣(x)n,λ

〉

λ

(31)

=
(

n
m

)〈
Lik,λ(1 – eλ(–t))

eλ(t) – 1
(eλ(t) – 1)s

ts

∣∣∣(x)n–m,λ

〉

λ

=
(

n
m

) n–m∑

l=0

S2,λ(l + s, s)
(l+s

s
)
l!

〈
Lik,λ(1 – eλ(–t))

eλ(t) – 1
tl
∣∣∣(x)n–m,λ

〉

λ

=
(

n
m

) n–m∑

l=0

S2,λ(l + s, s)
(l+s

s
)

(
n – m

l

)〈
Lik,λ(1 – eλ(–t))

eλ(t) – 1

∣∣∣(x)n–m–l,λ

〉

λ

=
(

n
m

) n–m∑

l=0

S2,λ(l + s, s)
(l+s

s
)

(
n – m

l

)
B(k)

n–m–l,λ.

Therefore, by (30) and (31), we obtain the following theorem.

Theorem 5 For n ≥ 0, we have

B(k)
n,λ(x) =

n∑

m=0

(
n
m

)(n–m∑

l=0

(n–m
l

)
(l+s

s
) S2,λ(l + s, s)B(k)

n–m–l,λ

)
β

(s)
m,λ(x).

For n ≥ 0, we let

Pn =
{

p(x) ∈C[x]|deg p(x) ≤ n
}

.

Then Pn is an (n + 1)-dimensional vector space over C.
From (11), we note that dn,λ(x) ∼ ((1 – t)eλ(t), t)λ, (n ≥ 0). For p(x) ∈ Pn, we let

p(x) =
n∑

l=0

Cldl,λ(x). (32)

By (16), we have

〈
(1 – t)eλ(t)tm|p(x)

〉
λ

=
n∑

l=0

Cl
〈
(1 – t)eλ(t)tm|dl,λ(x)

〉
λ

(33)

=
n∑

l=0

Clm!δm,l = Cmm!,

where 0 ≤ m ≤ n.
Therefore, by (32) and (33), we obtain the following theorem.
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Theorem 6 For p(x) ∈ Pn, we have

p(x) =
n∑

l=0

Cldl,λ(x),

where

Cl =
1
l!
〈
(1 – t)eλtl|p(x)

〉
λ
.

Let p(x) = B(k)
n,λ(x) ∈ Pn. Then we have

B(k)
n,λ(x) =

n∑

l=0

Cldl,λ(x), (34)

where

Cl =
1
l!
〈
(1 – t)eλ(t)tl|B(k)

n,λ(x)
〉
λ

(35)

=
(

n
l

)〈
(1 – t)eλ(t)|B(k)

n–l,λ(x)
〉
λ

=
(

n
l

)〈
(1 – t)|B(k)

n–l,λ(x + 1)
〉
λ

=
(

n
l

)〈
1|B(k)

n–l,λ(x + 1)
〉
λ

–
(

n
l

)
(n – l)

〈
1|B(k)

n–l–1,λ(x + 1)
〉
λ

=
(

n
l

)
B(k)

n–l,λ – n
(

n – 1
l

)
B(k)

n–l–1,λ(1).

Thus, by (34) and (35), we get

B(k)
n,λ(x) =

n∑

l=0

((
n
l

)
B(k)

n–l,λ – n
(

n – 1
l

)
B(k)

n–l–1,λ

)
dl,λ(x). (36)

From (11), we note that d(r)
n,r(x) ∼ ((1 – t)reλ(t), t)λ.

Let us assume that

p(x) =
n∑

m=0

C(r)
m d(r)

m,λ(x) ∈ Pn. (37)

Then, by (16), we get

〈
(1 – t)reλ(t)tm|p(x)

〉
λ

=
n∑

l=0

C(r)
l

〈
(1 – t)reλ(t)tm|d(r)

l,λ(x)
〉
λ

(38)

= m!C(r)
m (0 ≤ m ≤ n).

Therefore, by (37) and (38), we obtain the following theorem.
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Theorem 7 For n ≥ 0, we have

p(x) =
n∑

m=0

C(r)
m d(r)

m,λ(x),

where

C(r)
m =

1
m!

〈
(1 – t)reλ(t)tm|p(x)

〉
λ
.

We let

dn,λ(x) =
n∑

m=0

C(r)
m d(r)

m,λ(x), (39)

where

C(r)
m =

1
m!

〈
(1 – t)reλ(t)tm|dn,λ(x)

〉
λ

(40)

=
(

n
m

)〈
(1 – t)r|dn–m,λ(x + 1)

〉
λ

=
(

n
m

) r∑

j=0

(
r
j

)
(–1)j(n – m)j

〈
1|dn–m–j,λ(x + 1)

〉
λ

=
(

n
m

) r∑

j=0

(
r
j

)(
n – m

j

)
(–1)jdn–m–j,λ(1)j!.

By (39) and (40), we get

dn,λ(x) =
n∑

m=0

(
n
m

)( r∑

j=0

(
r
j

)(
n – m

j

)
j!(–1)jdn–m–j,λ(1)

)
d(r)

m,λ(x), (n ≥ 0). (41)

Let us take p(x) = B(k)
n,λ(x) ∈ Pn, (n ≥ 0). Then, by Theorem 7, we get

B(k)
n,λ(x) =

n∑

m=0

C(r)
m d(r)

m,λ(x), (n ≥ 0), (42)

where

C(r)
m =

1
m!

〈
(1 – t)reλ(t)tm|B(k)

n,λ(x)
〉
λ

(43)

=
(

n
m

)〈
(1 – t)r|B(k)

n–m,λ(x + 1)
〉
λ

=
(

n
m

) r∑

j=0

(
r
j

)
(–1)j

(
n – m

j

)
j!
〈
1|B(k)

n–m–j(x + 1)
〉
λ

=
(

n
m

) r∑

j=0

(
r
j

)
(–1)j

(
n – m

j

)
j!B(k)

n–m–j,λ(1).

Therefore, by (42) and (43), we obtain the following theorem.
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Theorem 8 For n ≥ 0, k ∈ Z, and r ∈N, we have

B(k)
n,λ(x) =

n∑

m=0

(
n
m

)( r∑

j=0

(
r
j

)
(–1)j

(
n – m

j

)
j!B(k)

n–m–j,λ(1)

)
d(r)

m,λ(x).

3 Conclusion
The umbral calculus had been laid as a rigorous foundation by Rota and is based on linear
functionals, differential operators, and Sheffer sequences. Here, for an invertible series g(t)
and a delta series f (t), Sn(x) is the Sheffer sequence for (g(t), f (t)) if and only if

1
g(f (t))

exf (t) =
∞∑

n=0

Sn(x)
tn

n!
. (44)

Recently, the ‘λ-umbral calculus’ was developed by the motivation that what if the usual
exponential function appearing in (44) is replaced with the degenerate exponential func-
tions in (2). This question led us to the introduction of the concepts like λ-linear function-
als, λ-differential operators, and λ-Sheffer sequences. In fact, for g(t) and f (t) as before,
the sequence Sn,λ(x) is the λ-Sheffer sequence for (g(t), f (t)) if and only if

1
g(f (t))

ex
λ

(
f (t)

)
=

∞∑

n=0

Sn,λ(x)
tn

n!
.

We noted that the λ-umbral calculus has some advantage over the traditional umbral cal-
culus when dealing with λ-Sheffer sequences. This was illustrated with the problem of
representing the degenerate Bernoulli polynomial in terms of the degenerate falling facto-
rials. Moreover, the introduction of the λ-umbral calculus is natural in view of the recent
regained interests of many mathematicians in the study of degenerate versions of some
special polynomials and numbers, which was initiated by Carlitz.

In this paper, in order to study the degenerate poly-Bernoulli polynomials, which is a
λ-Sheffer sequence, we used three different formulas, namely a formula about represent-
ing a λ-Sheffer sequence by another, a formula coming from the generating functions of
λ-Sheffer sequences, and a formula arising from the definitions for λ-Sheffer sequences.
Then we represented, among other things, the degenerate poly-Bernoulli polynomials by
higher-order degenerate Bernoulli polynomials and also by higher-order degenerate de-
rangement polynomials.

It is one of our future projects to continue to investigate the degenerate special numbers
and polynomials by using the recently developed λ-umbral calculus.
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