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Abstract
In this paper, we introduce a new algorithm by incorporating an inertial term with a
subgradient extragradient algorithm to solve the equilibrium problems involving a
pseudomonotone and Lipschitz-type continuous bifunction in real Hilbert spaces.
A weak convergence theorem is well established under certain mild conditions for
the bifunction and the control parameters involved. Some of the applications to solve
variational inequalities and fixed point problems are considered. Finally, several
numerical experiments are performed to demonstrate the numerical efficacy and
superiority of the proposed algorithm over other well-known existing algorithms.
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1 Introduction
Let C be a closed and convex subset of a real Hilbert space H. The inner product and the
induced norm on H are denoted by 〈·, ·〉 and ‖ · ‖, respectively. Assume that f : H×H →R

is a bifunction with f (y, y) = 0 for all y ∈ C. The equilibrium problem (EP) for a bifunction
f on C is defined in the following way [10, 17]:

Find ξ ∗ ∈ C such that f
(
ξ ∗, y

) ≥ 0, ∀y ∈ C. (EP)

Moreover, SEP(f ,C) stands for the solution set of an equilibrium problem over the set C
and ξ ∗ is an arbitrary element of SEP(f ,C). A bifunction f : H×H →R is said to be (see for
more details [8, 10]):

(1) strongly monotone on C if there exists γ > 0 such that

f (x1, x2) + f (x2, x1) ≤ –γ ‖x1 – x2‖2, ∀x1, x2 ∈ C;
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(2) monotone on C if

f (x1, x2) + f (x2, x1) ≤ 0, ∀x1, x2 ∈ C;

(3) strongly pseudomonotone on C if there exists γ > 0 such that

f (x1, x2) ≥ 0 �⇒ f (x2, x1) ≤ –γ ‖x1 – x2‖2, ∀x1, x2 ∈ C;

(4) pseudomonotone on C if

f (x1, x2) ≥ 0 �⇒ f (x2, x1) ≤ 0, ∀x1, x2 ∈ C.

It is clear from the above definitions that the following implications hold:

(1) �⇒ (2) �⇒ (4) and (1) �⇒ (3) �⇒ (4).

In general, the reverse implications do not hold. A bifunction f : H × H → R is said to
be Lipschitz-type continuous [28] on C if there exist two constants c1, c2 > 0 such that

f (x1, x3) ≤ f (x1, x2) + f (x2, x3) + c1‖x1 – x2‖2 + c2‖x2 – x3‖2, ∀x1, x2, x3 ∈ C.

The above-defined problem (EP) is a general mathematical problem in the sense that
it unifies a number of mathematical problems, i.e., the fixed point problems, the vector
and scalar minimization problems, the variational inequality problems (VIP), the comple-
mentarity problems, the saddle point problems, the Nash equilibrium problems in non-
cooperative games, and the inverse optimization problems [9, 10, 30]. The problem (EP) is
also known as the well-known Ky Fan inequality [17]. Many authors have established and
generalized several results on the existence and nature of the solution of an equilibrium
problem (see for more details [5, 9, 17]).

A number of effective algorithmic schemes have been well established along their con-
vergence analysis to solve the equilibrium problems in finite and in-finite dimensional
spaces. The regularization method is one of the most important approaches to solving var-
ious ill-posed problems in different fields of pure and applied mathematics. A significant
feature of the regularization methodology is that it has been applied to solve monotone
equilibrium problems, and the original problem is transformed into strongly monotone
sub-problems. Thus, each sub-problem is strongly monotone and guarantees the exis-
tence of a unique solution. In particular, the formalized sub-problem can be resolved more
effectively than the original monotone problem, and the sequence of regularization solu-
tions converges to one solution of the initial problem once the regularization variables
appear to have an appropriate limit. The proximal point method and Tikhonov’s regular-
ized method are two famous regularization approaches. Recently, these approaches have
been extended in the case of equilibrium problems (see [20, 25, 29, 31] for more details)
and others types on the method in [1–3, 13, 21–24, 34, 35, 39–41].
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The proximal point method is used to solve the problem (EP) and is also known as the
two-step extragradient method in [37] due to the previous contribution of Korpelevich
[26] to solve the saddle point problems. Tran et al. [37] established a weakly convergent
iterative sequence {xn} to solve the monotone equilibrium problem in a real Hilbert space.
The method has the following form:

⎧
⎪⎪⎨

⎪⎪⎩

x0 ∈ C,

yn = arg miny∈C{λf (xn, y) + 1
2‖xn – y‖2},

xn+1 = arg miny∈C{λf (yn, y) + 1
2‖xn – y‖2},

(1)

where 0 < λ < min{ 1
2c1

, 1
2c2

}. On the other hand, inertial-like methods are two-step itera-
tive methods, and the next iteration is obtained from the previous two iterations (see [33]
for more details). An inertial extrapolation term is used to enhance the iterative sequence
performance in order to improve its rate of convergence. Numerical results suggest that
inertial effects improve algorithmic efficiency during running time and the number of it-
erations. Recently, several inertial methods have been developed to solve different classes
of equilibrium problems [14–16, 19, 38, 42].

In this paper, we first introduce a new inertial subgradient algorithm to solve a pseu-
domonotone equilibrium problem involving the Lipschitz-type condition in a real Hilbert
space. This algorithm is designed around three methods: the extragradient method [37],
the subgradient extragradient method [12], and the inertial method [33]. The weak con-
vergence of the resulting algorithm is well established under mild conditions. Some of the
applications to resolve variational inequalities and fixed point problems are considered.
Numerical results are provided to show the computational effectiveness of our algorithm.
Finally, the numerical evaluation demonstrates that the new method is more effective than
the family of existing methods [19, 37, 38, 42].

The rest of the article has been arranged as follows: Sect. 2 includes some preliminary
and basic results. Section 3 includes our proposed method and its convergence analysis.
In Sect. 4 we present two mathematical applications of our proposed scheme, variational
inequalities, and fixed points. Finally, in Sect. 5 we provide numerical examples with com-
parison with other related results in the literature in order to illustrate the validity and
practical advantages of our method.

2 Preliminaries
The normal cone of C at x ∈ C is defined by

NC(x) =
{

z ∈H : 〈z, y – x〉 ≤ 0,∀y ∈ C
}

.

Let h : C → R be a convex function. The subdifferential of h at x ∈ C is defined
by

∂h(x) =
{

z ∈H : h(y) – h(x) ≥ 〈z, y – x〉,∀y ∈ C
}

.
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The metric projection PC(x) of x ∈ H onto a closed and convex subset C of H is defined
by

PC(x) = arg min
y∈C

‖y – x‖.

Lemma 2.1 ([7]) For any x, y ∈H and κ ∈R, the following relationship is true:

∥∥κx + (1 – κ)y
∥∥2 = κ‖x‖2 + (1 – κ)‖y‖2 – κ(1 – κ)‖x – y‖2.

Lemma 2.2 ([36]) Let h : C →R be a subdifferentiable, convex, and lower semi-continuous
function on C. An element x ∈ C is said to be a minimizer of a function h iff

0 ∈ ∂h(x) + NC(x).

Lemma 2.3 ([6]) Let {ϑn}, {θn}, and {γn} be nonnegative sequences that satisfy the following
condition:

ϑn+1 ≤ ϑn + θn(ϑn – ϑn–1) + γn, ∀n ≥ 1,

where
∑+∞

n=1 γn < +∞, and let θ > 0 be such that 0 ≤ θn ≤ θ < 1 for each n ∈ N. Then we
have

(i)
∑+∞

n=1[ϑn – ϑn–1]+ < +∞ with [a]+ := max{a, 0} for any a ∈R;
(ii) limn→+∞ ϑn = ϑ∗ ∈ [0,∞).

Lemma 2.4 ([32]) Let {ηn} be a sequence in H and C ⊂H such that
(i) for every η ∈ C, limn→∞ ‖ηn – η‖ exists;

(ii) each weak sequentially cluster point of the sequence {ηn} belongs to C.
Then {ηn} converges weakly to an element of C.

In order to study convergence analysis, we assume that f : H×H → R satisfies the fol-
lowing conditions:

(A1) f (y, y) = 0 for all y ∈ C and f is pseudomonotone on a feasible set C.
(A2) f satisfies the Lipschitz-type condition on H with c1 > 0 and c2 > 0.
(A3) lim supn→∞ f (xn, y) ≤ f (p∗, y) for all y ∈ C and {xn} ⊂ C satisfy xn ⇀ p∗.
(A4) f (x, ·) is subdifferentiable and convex on H for every fixed x ∈H.

3 Main result
In this section, we introduce the main method and prove a weak convergence result. The
main algorithm is in the following form:
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Algorithm 1 (An inertial subgradient extragradient method for problem (EP))
Initialization: Choose arbitrary starting points x–1, x0 ∈H, 0 < λ < min{ 1

2c1
, 1

2c2
}, {ϑn}

and {βn} are control parameters.

Iterative steps: Given x–1, x0 ∈H and the (n + 1)th iteration is as follows:

Step 1: Compute

yn = arg min
y∈C

{
λf (�n, y) +

1
2
‖�n – y‖2

}
,

where �n = xn + ϑn(xn – xn–1). If yn = �n, then �n is the solution of the problem (EP).
Otherwise, go to Step 2.

Step 2: Firstly, construct a half-space Hn = {z ∈ H : 〈�n – λtn – yn, z – yn〉 ≤ 0}, where
tn ∈ ∂2f (�n, yn), and compute

zn = arg min
y∈Hn

{
λf (yn, y) +

1
2
‖�n – y‖2

}
.

Step 3: Compute

xn+1 = (1 – βn)�n + βnzn,

where {ϑn} and {βn} are real sequences. Here we assume that the sequence {ϑn} is
nondecreasing with 0 ≤ ϑn ≤ ϑ < 1 for each n ≥ 1, and there exist β , δ,σ > 0 such that

δ >
6ϑ[ϑ(1 + ϑ) + σ ]

1 – ϑ2 (2)

and

0 < β ≤ βn ≤ δ – 6ϑ[ϑ(1 + ϑ) + σ + 1
6ϑδ]

6δ[ϑ(1 + ϑ) + σ + 1
6ϑδ]

. (3)

Set n := n + 1 and go back to Step 1.

Lemma 3.1 Let a bifunction f : H × H → R satisfy conditions (A1)–(A4). For each ξ ∗ ∈
SEP(f ,C), we have

∥∥zn – ξ ∗∥∥2 ≤ ∥∥�n – ξ ∗∥∥2 – (1 – 2c1λ)‖�n – yn‖2 – (1 – 2c2λ)‖zn – yn‖2.

Proof By using Lemma 2.2, we have

0 ∈ ∂2

(
λf (yn, y) +

1
2
‖�n – y‖2

)
(zn) + NHn (zn).

Thus, there exist ω ∈ ∂f (yn, zn) and ω ∈ NHn (zn) such that

λω + zn – �n + ω = 0.
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Thus, the above implies that 〈�n – zn, y – zn〉 = λ〈ω, y – zn〉 + 〈ω, y – zn〉 for all y ∈ Hn. Since
ω ∈ NHn (zn), it follows that 〈ω, y – zn〉 ≤ 0 for all y ∈ Hn. Thus, we have

λ〈ω, y – zn〉 ≥ 〈�n – zn, y – zn〉, ∀y ∈ Hn. (4)

Since ω ∈ ∂f (yn, zn) and by using the subdifferential definition, we have

f (yn, y) – f (yn, zn) ≥ 〈ω, y – zn〉, ∀y ∈H. (5)

Combining expressions (4) and (5), we obtain

λf (yn, y) – λf (yn, zn) ≥ 〈�n – zn, y – zn〉, ∀y ∈ Hn. (6)

By substituting y = ξ ∗ in expression (6), we obtain

λf
(
yn, ξ ∗) – λf (yn, zn) ≥ 〈

�n – zn, ξ ∗ – zn
〉
. (7)

It is given that ξ ∗ ∈ SEP(f ,C) implies that f (ξ ∗, yn) ≥ 0 and f (yn, ξ ∗) ≤ 0 due to the pseu-
domonotonicity of the bifunction f . From expression (7), we have

〈
�n – zn, zn – ξ ∗〉 ≥ λf (yn, zn). (8)

Due to the Lipschitz-type continuity of a bifunction f , we have

f (�n, zn) ≤ f (�n, yn) + f (yn, zn) + c1‖�n – yn‖2 + c2‖yn – zn‖2. (9)

Combining expressions (8) and (9), we have

〈
�n – zn, zn – ξ ∗〉 ≥ λ

{
f (�n, zn) – f (�n, yn)

}
– c1λ‖�n – yn‖2 – c2λ‖yn – zn‖2. (10)

Since zn ∈ Hn and by the definition of Hn, we obtain

〈�n – λtn – yn, zn – yn〉 ≤ 0,

which implies that

〈�n – yn, zn – yn〉 ≤ λ〈tn, zn – yn〉. (11)

Since tn ∈ ∂2f (�n, yn), by using the subdifferential definition, we have

f (�n, y) – f (�n, yn) ≥ 〈tn, y – yn〉, ∀y ∈H.

By substituting y = zn in the above expression, we obtain

f (�n, zn) – f (�n, yn) ≥ 〈tn, zn – yn〉. (12)
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It follows from inequalities (11) and (12) that

λ
{

f (�n, zn) – f (�n, yn)
} ≥ 〈�n – yn, zn – yn〉. (13)

From (10) and (13), we have

〈
�n – zn, zn – ξ ∗〉 ≥ 〈�n – yn, zn – yn〉 – c1λ‖�n – yn‖2 – c2λ‖yn – zn‖2. (14)

We have the following equalities:

2
〈
�n – zn, zn – ξ ∗〉 =

∥
∥�n – ξ ∗∥∥2 – ‖zn – �n‖2 –

∥
∥zn – ξ ∗∥∥2

and

2〈yn – �n, yn – zn〉 = ‖�n – yn‖2 + ‖zn – yn‖2 – ‖�n – zn‖2.

The above facts and (14) complete the proof. �

Now, we are in a position to prove our weak convergence theorem.

Theorem 3.2 The sequences {�n}, {xn}, {yn}, and {zn} generated by Algorithm 1 are weakly
convergent to an element ξ ∗ ∈ SEP(f ,C).

Proof From the value of xn+1 and Lemma 2.1, we have

∥∥xn+1 – ξ ∗∥∥2 =
∥∥(1 – βn)�n + βnzn – ξ ∗∥∥2

=
∥∥(1 – βn)

(
�n – ξ ∗) + βn

(
zn – ξ ∗)∥∥2

= (1 – βn)
∥∥�n – ξ ∗∥∥2 + βn

∥∥zn – ξ ∗∥∥2 – βn(1 – βn)‖�n – zn‖2

≤ (1 – βn)
∥
∥�n – ξ ∗∥∥2 + βn

∥
∥zn – ξ ∗∥∥2. (15)

By using Lemma 3.1, we have

∥
∥zn – ξ ∗∥∥2 ≤ ∥

∥�n – ξ ∗∥∥2 – (1 – 2c1λ)‖�n – yn‖2 – (1 – 2c2λ)‖zn – yn‖2. (16)

Combining expressions (15) and (16), we obtain

∥∥xn+1 – ξ ∗∥∥2 ≤ (1 – βn)
∥∥�n – ξ ∗∥∥2 + βn

∥∥�n – ξ ∗∥∥2

– βn(1 – 2c1λ)‖�n – yn‖2 – βn(1 – 2c2λ)‖zn – yn‖2

≤ ∥∥�n – ξ ∗∥∥2 – βn(1 – bλ)
[‖�n – yn‖2 + ‖zn – yn‖2]

=
∥∥�n – ξ ∗∥∥2 –

βn(1 – bλ)
2

[
2‖�n – yn‖2 + 2‖zn – yn‖2]

≤ ∥∥�n – ξ ∗∥∥2 –
βn(1 – bλ)

2
[‖�n – yn‖ + ‖zn – yn‖

]2

≤ ∥∥�n – ξ ∗∥∥2 –
βn(1 – bλ)

2
‖zn – �n‖2, (17)
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where b = max{2c1, 2c2}. From the value of xn+1, we have

‖xn+1 – �n‖ =
∥
∥(1 – βn)�n + βnzn – �n

∥
∥ =

∥
∥βn(zn – �n)

∥
∥. (18)

Combining (17) and (18), we have

∥∥xn+1 – ξ ∗∥∥2 ≤ ∥∥�n – ξ ∗∥∥2 –
(1 – bλ)

2βn
‖xn+1 – �n‖2. (19)

Due to the condition on λ, we infer that 1–bλ
2 ≥ 1

6 , and expression (19) is converted into

∥∥xn+1 – ξ ∗∥∥2 ≤ ∥∥�n – ξ ∗∥∥2 –
1

6βn
‖xn+1 – �n‖2. (20)

By taking the value of �n, we have

∥∥�n – ξ ∗∥∥2 =
∥∥xn + ϑn(xn – xn–1) – ξ ∗∥∥2

=
∥∥(1 + ϑn)

(
xn – ξ ∗) – ϑn

(
xn–1 – ξ ∗)∥∥2

= (1 + ϑn)
∥∥xn – ξ ∗∥∥2 – ϑn

∥∥xn–1 – ξ ∗∥∥2 + ϑn(1 + ϑn)‖xn – xn–1‖2. (21)

By taking the value of �n, we have

‖xn+1 – �n‖2 =
∥
∥xn+1 – xn – ϑn(xn – xn–1)

∥
∥2

= ‖xn+1 – xn‖2 + ϑ2
n‖xn – xn–1‖2 + 2ϑn〈xn – xn+1, xn – xn–1〉 (22)

≥ ‖xn+1 – xn‖2 + ϑ2
n‖xn – xn–1‖2

– ρnϑn‖xn+1 – xn‖2 –
ϑn

ρn
‖xn – xn–1‖2

≥ (1 – ρnϑn)‖xn+1 – xn‖2 +
(

ϑ2
n –

ϑn

ρn

)
‖xn – xn–1‖2, (23)

where ρn = 1
δβn+ϑn

. It follows from (20), (21), and (23) that

∥
∥xn+1 – ξ ∗∥∥2

≤ (1 + ϑn)
∥
∥xn – ξ ∗∥∥2 – ϑn

∥
∥xn–1 – ξ ∗∥∥2 + ϑn(1 + ϑn)‖xn – xn–1‖2

–
1

6βn

[
(1 – ρnϑn)‖xn+1 – xn‖2 +

(
ϑ2

n –
ϑn

ρn

)
‖xn – xn–1‖2

]
(24)

= (1 + ϑn)
∥
∥xn – ξ ∗∥∥2 – ϑn

∥
∥xn–1 – ξ ∗∥∥2 –

1
6βn

(1 – ρnϑn)‖xn+1 – xn‖2

+
[
ϑn(1 + ϑn) –

1
6βn

(
ϑ2

n –
ϑn

ρn

)]
‖xn – xn–1‖2

= (1 + ϑn)
∥∥xn – ξ ∗∥∥2 – ϑn

∥∥xn–1 – ξ ∗∥∥2 –
1

6βn
(1 – ρnϑn)‖xn+1 – xn‖2

+ γn‖xn – xn–1‖2, (25)
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where

γn = ϑn(1 + ϑn) –
1

6βn

(
ϑ2

n –
ϑn

ρn

)
= ϑn(1 + ϑn) +

1
6βn

(
ϑn

ρn
– ϑ2

n

)
> 0. (26)

By taking the value {ρn}, we have

γn = ϑn(1 + ϑn) +
1

6βn

(
ϑn

ρn
– ϑ2

n

)
≤ ϑ(1 + ϑ) +

1
6
ϑδ. (27)

Set �n = ‖xn – ξ ∗‖2 – ϑn‖xn–1 – ξ ∗‖2 + γn‖xn – xn–1‖2. By using (25), we have

�n+1 – �n =
∥∥xn+1 – ξ ∗∥∥2 – ϑn+1

∥∥xn – ξ ∗∥∥2 + γn+1‖xn+1 – xn‖2

–
∥
∥xn – ξ ∗∥∥2 + ϑn

∥
∥xn–1 – ξ ∗∥∥2 – γn‖xn – xn–1‖2

≤ ∥
∥xn+1 – ξ ∗∥∥2 – (1 + ϑn)

∥
∥xn – ξ ∗∥∥2 + ϑn

∥
∥xn–1 – ξ ∗∥∥2

+ γn+1‖xn+1 – xn‖2 – γn‖xn – xn–1‖2

≤ –
(

1
6βn

(1 – ρnϑn) – γn+1

)
‖xn+1 – xn‖2. (28)

Observe that

1
6βn

(1 – ρnϑn) – γn+1 ≥ σ ⇐⇒ (1 – ρnϑn) – 6βnγn+1 ≥ 6βnσ

⇐⇒ (1 – ρnϑn) – 6βn(γn+1 + σ ) ≥ 0

⇐⇒ δβn

δβn + ϑn
– 6βn(γn+1 + σ ) ≥ 0

⇐⇒ –6(γn+1 + σ )(δβn + ϑn) ≥ –δ. (29)

From expressions (2), (3), and (27), we have

–6(γn+1 + σ )(δβn + ϑn) ≥ –6
[
ϑ(1 + ϑ) +

1
6
ϑδ + σ

]
(δβn + ϑn) ≥ –δ. (30)

It follows that

�n+1 – �n ≤ –σ‖xn+1 – xn‖2 ≤ 0. (31)

The above implies that the sequence {�n} is nonincreasing. From �n+1 we have

�n+1 =
∥
∥xn+1 – ξ ∗∥∥2 – ϑn+1

∥
∥xn – ξ ∗∥∥2 + γn+1‖xn+1 – xn‖2

≥ –ϑn+1
∥∥xn – ξ ∗∥∥2. (32)

From the value of �n, we have

�n =
∥
∥xn – ξ ∗∥∥2 – ϑn

∥
∥xn–1 – ξ ∗∥∥2 + γn‖xn – xn–1‖2

≥ ∥∥xn – ξ ∗∥∥2 – ϑn
∥∥xn–1 – ξ ∗∥∥2. (33)
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From expression (33), we obtain

∥∥xn – ξ ∗∥∥2 ≤ �n + ϑn
∥∥xn–1 – ξ ∗∥∥2

≤ �1 + ϑ
∥∥xn–1 – ξ ∗∥∥2

≤ · · ·
≤ �1

(
ϑn–1 + · · · + 1

)
+ ϑn∥∥x0 – ξ ∗∥∥2

≤ �1

1 – ϑ
+ ϑn∥∥x0 – ξ ∗∥∥2. (34)

Combining expressions (33) and (34), we obtain

–�n+1 ≤ ϑn+1
∥
∥xn – ξ ∗∥∥2 ≤ ϑ

∥
∥xn – ξ ∗∥∥2 ≤ ϑ

�1

1 – ϑ
+ ϑn+1∥∥x0 – ξ ∗∥∥2. (35)

Following inequalities (31) and (35), we can write

σ

k∑

n=1

‖xn+1 – xn‖2 ≤ �1 – �k+1

≤ �1 + ϑ
�1

1 – ϑ
+ ϑk+1∥∥x0 – ξ ∗∥∥2

≤ �1

1 – ϑ
+

∥
∥x0 – ξ ∗∥∥2. (36)

By letting k → +∞ in (36), we get

+∞∑

n=1

‖xn+1 – xn‖2 < +∞, (37)

which implies that

lim
n→∞‖xn+1 – xn‖ = 0. (38)

By (22) and (38), we obtain

lim
n→∞‖xn+1 – �n‖ = 0. (39)

From the value of xn+1, we have

‖xn+1 – �n‖ =
∥∥(1 – βn)�n + βnzn – �n

∥∥ = βn‖zn – �n‖, (40)

and from (39) and (40), we have

lim
n→∞‖zn – �n‖ = 0. (41)

By using the triangular inequality with expressions (38) and (39), we obtain

lim
n→∞‖xn – �n‖ ≤ lim

n→∞‖xn – xn+1‖ + lim
n→∞‖xn+1 – �n‖ = 0 (42)
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and

lim
n→∞‖xn – zn‖ ≤ lim

n→∞‖xn – �n‖ + lim
n→∞‖�n – zn‖ = 0. (43)

From (24), (37), and Lemma 2.3, it follows that

lim
n→∞

∥∥xn – ξ ∗∥∥2 = l for some l ≥ 0. (44)

From expressions (42) and (43), we have

lim
n→∞

∥∥�n – ξ ∗∥∥2 =
∥∥zn – ξ ∗∥∥2 = l. (45)

Thus, Lemma 3.1 implies that

(1 – 2c1λ)‖�n – yn‖2 ≤ ∥∥�n – ξ ∗∥∥2 –
∥∥zn – ξ ∗∥∥2, (46)

with expressions (44) and (45), we have

lim
n→∞‖�n – yn‖ = 0, lim

n→∞
∥
∥yn – ξ ∗∥∥2 = l. (47)

The above implies that the sequences {xn}, {�n}, {yn}, and {zn} are bounded, and for each
ξ ∗ ∈ SEP(f ,C), limn→∞ ‖xn –ξ ∗‖2 exists. Next, our aim is to prove that the solution set SEP(f ,C)

contains all sequential weak cluster points of the sequence {xn}. Let z be an arbitrary weak
cluster point of the sequence {xn}. Then there exists a subsequence {xnk } of {xn} such that
{xnk } weakly converges to z. It follows from (42) and (43) that the subsequences {ynk } and
{znk } are weakly convergent to z ∈ C. Next, we show that z ∈ SEP(f ,C). Due to inequality (6),
the Lipschitz-type continuity of f and (13), we obtain

λf (ynk , y) ≥ λf (ynk , znk ) + 〈�nk – znk , y – znk 〉
≥ λf (�nk , znk ) – λf (�nk , ynk ) – c1λ‖�nk – ynk ‖2

– c2λ‖ynk – znk ‖2 + 〈�nk – znk , y – znk 〉
≥ 〈�nk – ynk , znk – ynk 〉 – c1λ‖�nk – ynk ‖2

– c2λ‖ynk – znk ‖2 + 〈�nk – znk , y – znk 〉, (48)

where y is an arbitrary element in Hn. It follows from (41), (42), (43), and the boundedness
of {xn} that the right-hand side goes to zero. From λ > 0, condition (A3), and ynk ⇀ z, we
have

0 ≤ lim sup
k→∞

f (ynk , y) ≤ f (z, y), ∀y ∈ Hn. (49)

The above implies that f (z, y) ≥ 0 for all y ∈ C, and hence z ∈ SEP(f ,C). This completes the
proof. �

Setting ϑn = 0 in Algorithm 1, we have the following variant of Anh et al. [4].
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Corollary 3.3 Let f : H × H → R be a bifunction satisfying conditions (A1)–(A4). Then
{yn}, {zn}, and {xn} are the sequences generated in the following manner:

Initialization: Let x0 ∈H arbitrarily and choose 0 < λ < min{ 1
2c1

, 1
2c2

}, and {βn} is a
control parameter.
Step 1: Compute yn = arg miny∈C{λf (xn, y) + 1

2‖xn – y‖2}. If yn = xn, then stop and xn is
the solution of the problem (EP). Otherwise go to the next step.
Step 2: Next, construct a half-space Hn = {z ∈H : 〈xn – λtn – yn, z – yn〉 ≤ 0}, where
tn ∈ ∂2f (xn, yn), and then compute zn = arg miny∈Hn{λf (yn, y) + 1

2‖xn – y‖2}.
Step 3: Evaluate xn+1 = (1 – βn)xn + βnzn, where {βn} is a real sequence and there exist
β , δ,σ > 0 such that 0 < β ≤ βn ≤ 1

6σ
. Then the sequences {xn}, {yn}, and {zn} are

weakly convergent to ξ ∗ ∈ SEP(f ,C).

4 Applications
4.1 Variational inequalities
In this subsection we apply our results for solving variational inequality problems involv-
ing a pseudomonotone and Lipschitz-type continuous operator. Let us recall that an op-
erator G : H→ H is said to be

(1) monotone on C if

〈
G(x) – G(y), x – y

〉 ≥ 0, ∀x, y ∈ C;

(2) L-Lipschitz continuous on C if

∥
∥G(x) – G(y)

∥
∥ ≤ L‖x – y‖, ∀x, y ∈ C;

(3) pseudomonotone on C if

〈
G(x), y – x

〉 ≥ 0 �⇒ 〈
G(y), x – y

〉 ≤ 0, ∀x, y ∈ C.

The variational inequality problem is defined as follows:

Find ξ ∗ ∈ C such that
〈
G

(
ξ ∗), y – ξ ∗〉 ≥ 0 for all y ∈ C. (VIP)

If we define f (x, y) := 〈G(x), y – x〉 for all x, y ∈ C, then the equilibrium problem becomes
the problem of variational inequality described above where L = 2c1 = 2c2. From the above
value of the bifunction f , we have

yn = arg min
y∈C

{
λf (�n, y) +

1
2
‖�n – y‖2

}

= arg min
y∈C

{
λ
〈
G(�n), y – �n

〉
+

1
2
‖�n – y‖2 +

λ2

2
∥∥G(�n)

∥∥2 –
λ2

2
∥∥G(�n)

∥∥2
}

= PC
(
�n – λG(�n)

)
. (50)

The value zn in Algorithm 1 is converted into

zn = PHn

(
�n – λG(yn)

)
.
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Since tn ∈ ∂2f (�n, yn) and by the subdifferential definition, we obtain

〈tn, z – yn〉 ≤ 〈
G(�n), z – �n

〉
–

〈
G(�n), yn – �n

〉

=
〈
G(�n), z – yn

〉
, ∀z ∈H, (51)

which further implies that 0 ≤ 〈G(�n) – tn, z – yn〉 for all z ∈ H. Thus

〈
�n – λG(�n) – yn, z – yn

〉

≤ 〈
�n – λG(�n) – yn, z – yn

〉
+ λ

〈
G(�n) – tn, z – yn

〉

= 〈�n – λtn – yn, z – yn〉. (52)

Suppose that G satisfies the following conditions:
(G1) G is pseudomonotone on C and a solution set VI(G, C) �= ∅;
(G2) G is L-Lipschitz continuous on C through a positive constant L > 0;
(G3) lim supn→∞〈G(xn), y – xn〉 ≤ 〈G(p∗), y – p∗〉 for all y ∈ C, where {xn} ⊂ C satisfies

xn ⇀ p∗.
As a consequence of the results in Sect. 3, we have the following results.

Corollary 4.1 Let G : C →H be a mapping satisfying conditions (G1)–(G3). Let {�n}, {yn},
{zn}, and {xn} be the sequences generated in the following way:

Initialization: Let x–1, x0 ∈H, 0 < λ < 1
L , {ϑn} and {βn} are control parameters.

Step 1: Compute yn = PC(�n – λG(�n)), where �n = xn + ϑn(xn – xn–1). If yn = �n, then
�n is a solution of the problem (VIP).
Step 2: Construct a half-space Hn = {z ∈H : 〈�n – λG(�n) – yn, z – yn〉 ≤ 0} and
compute zn = PHn (�n – λG(yn)).
Step 3: Compute xn+1 = (1 – βn)�n + βnzn, where {ϑn} and {βn} are real sequences.
Here, we assume that the sequence {ϑn} is nondecreasing with 0 ≤ ϑn ≤ ϑ < 1 for each
n ≥ 1 and that there exist β , δ,σ > 0 such that

δ >
6ϑ[ϑ(1 + ϑ) + σ ]

1 – ϑ2 (53)

and

0 < β ≤ βn ≤ δ – 6ϑ[ϑ(1 + ϑ) + σ + 1
6ϑδ]

6δ[ϑ(1 + ϑ) + σ + 1
6ϑδ]

. (54)

Then the sequences {�n}, {yn}, {zn}, and {xn} converge weakly to ξ ∗ ∈ VI(G, C).

Corollary 4.2 Let G : C → H be a mapping satisfying conditions (G1)–(G3). Then {xn} is
the sequence generated in the following manner:

Initialization: Choose x0 ∈H, 0 < λ < 1
L , and {βn} is a control parameter.

Step 1: Compute yn = PC(xn – λG(xn)). If yn = xn, then xn is the solution of the problem.
Step 2: Next, construct a half-space Hn = {z ∈H : 〈xn – λG(xn) – yn, z – yn〉 ≤ 0} and
compute zn = PHn (xn – λG(yn)).
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Step 3: Evaluate xn+1 = (1 – βn)xn + βnzn, where {βn} is a real sequence and there are
β , δ,σ > 0 such that 0 < β ≤ βn ≤ 1

6σ
. Then the sequences {yn}, {zn}, and {xn} converge

weakly to ξ ∗ ∈ VI(G, C).

Note that condition (G3) could be deleted when G is monotone. Indeed, this condition,
which is a particular case of condition (A3), is only used to prove (49). Without condition
(G3), inequality (49) can be obtained by imposing the monotonicity of G. In that case, we
can write

〈
G(y), y – yn

〉 ≥ 〈
G(yn), y – yn

〉
, ∀y ∈ C. (55)

By the use of f (x, y) = 〈G(x), y – x〉 in (48), we have

lim sup
k→∞

〈
G(ynk ), y – ynk

〉 ≥ 0, ∀y ∈ Hn. (56)

Combining (55) and (56), we obtain

lim sup
k→∞

〈
G(y), y – ynk

〉 ≥ 0, ∀y ∈ C. (57)

Let yt = (1 – t)z + ty for all t ∈ [0, 1]. Due to the convexity of the set C, yt ∈ C for every
t ∈ (0, 1). Since ynk ⇀ z ∈ C and 〈G(y), y – z〉 ≥ 0 for every y ∈ C, we have

0 ≤ 〈
G(yt), yt – z

〉
= t

〈
G(yt), y – z

〉
. (58)

Thus, 〈G(yt), y – z〉 ≥ 0 for all t ∈ (0, 1). Since yt → z as t → 0 and due to the continuity of
G, we have 〈G(z), y – z〉 ≥ 0 for all y ∈ C, which gives that z ∈ VI(G, C).

Remark 4.1 From the above discussion, it can be concluded that Corollary 4.1 and Corol-
lary 4.2 still hold, even if we remove condition (G3) in the case of monotone bifunctions.

4.2 Fixed points
Following Sect. 3, we show how our results can be applied for solving fixed point problems
involving a κ-strict pseudocontraction mapping. Let us recall that a mapping T : C → C
is said to be

(i) κ-strict pseudocontraction [11] on C if

‖Tx – Ty‖2 ≤ ‖x – y‖2 + κ
∥∥(x – Tx) – (y – Ty)

∥∥2, ∀x, y ∈ C,

that is equivalent to

〈Tx – Ty, x – y〉 ≤ ‖x – y‖2 –
1 – κ

2
∥∥(x – Tx) – (y – Ty)

∥∥2, ∀x, y ∈ C;

(ii) sequentially weakly continuous on C if

T(xn) ⇀ T
(
x∗) for any sequence in C satisfying xn ⇀ x∗ (weakly converges).



Rehman et al. Journal of Inequalities and Applications         (2021) 2021:63 Page 15 of 27

If we consider that the mapping T is a κ-strict pseudocontraction and weakly contin-
uous, then f (x, y) = 〈x – Tx, y – x〉 satisfies conditions (A1)–(A4) (see [43] for details) and
2c1 = 2c2 = 3–2κ

1–κ
. The values of yn and zn turn into the following:

⎧
⎨

⎩
yn = arg miny∈C{λf (�n, y) + 1

2‖�n – y‖2} = PC[�n – λ(�n – T(�n))],

zn = arg miny∈Hn{λf (yn, y) + 1
2‖�n – y‖2} = PHn [�n – λ(yn – T(yn))].

(59)

As a consequence of the results in Sect. 3, we have the following results.

Corollary 4.3 Let C be a nonempty, convex, and closed subset of a Hilbert space H, and
T : C → C be a κ-strict pseudocontraction and weakly continuous with a solution set
Fix(T) �= ∅. Let {xn} be the sequence generated in the following way:

Initialization: Let x–1, x0 ∈H, 0 < λ < 1–κ
3–2κ

, {ϑn} and {βn} are control parameters.
Step 1: Compute yn = PC[�n – λ(�n – T(�n))], where �n = xn + ϑn(xn – xn–1). If yn = �n,
then �n is a solution of the fixed point problem.
Step 2: Construct a half-space Hn = {z ∈H : 〈(1 – λ)�n + λT(�n) – yn, z – yn〉 ≤ 0} and
calculate zn = PHn [�n – λ(yn – T(yn))].
Step 3: Compute xn+1 = (1 – βn)�n + βnzn, where {ϑn} and {βn} are real sequences.
Here, we assume that the sequence {ϑn} is nondecreasing with 0 ≤ ϑn ≤ ϑ < 1 for each
n ≥ 1 and that there exist β , δ,σ > 0 such that

δ >
6ϑ[ϑ(1 + ϑ) + σ ]

1 – ϑ2 (60)

and

0 < β ≤ βn ≤ δ – 6ϑ[ϑ(1 + ϑ) + σ + 1
6ϑδ]

6δ[ϑ(1 + ϑ) + σ + 1
6ϑδ]

. (61)

Then the sequences {�n}, {yn}, {zn}, and {xn} converge weakly to ξ ∗ ∈ Fix(T).

Corollary 4.4 Let C be a nonempty, convex, and closed subset of a Hilbert space H and
T : C → C be a κ-strict pseudocontraction and weakly continuous with a solution set
Fix(T) �= ∅. Let {xn} be the sequences generated in the following way:

Initialization: Choose x0 ∈H, 0 < λ < 1–κ
3–2κ

, and {βn} is a control parameter.
Step 1: Compute yn = PC[xn – λ(xn – T(xn))]. If yn = xn, then xn is a solution of the
fixed point problem.
Step 2: Construct a half-space Hn = {z ∈H : 〈(1 – λ)xn + λT(xn) – yn, z – yn〉 ≤ 0} and
calculate zn = PHn [xn – λ(yn – T(yn))].
Step 3: Evaluate xn+1 = (1 – βn)xn + βnzn, where {βn} is a real sequence and there are
β , δ,σ > 0 such that 0 < β ≤ βn ≤ 1

6σ
. Then the sequences {yn}, {zn}, and {xn} converge

weakly to ξ ∗ ∈ Fix(T).

5 Numerical examples
In this section we present four numerical examples with comparisons to related results
in the literature. The examples are both in infinite and infinite dimensional spaces. The
MATLAB implementations are done via MATLAB version 9.5 (R2018b) on the Intel(R)
Core(TM)i5-6200 CPU PC @ 2.30 GHz 2.40 GHz, RAM 8.00 GB.
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(1) For Tran et al. [37] (egA), we use

λ = min

{
1

3c1
,

1
3c2

}
, Dn = ‖xn – yn‖2.

(2) For Hieu et al. [19] (iHegA), we use

θ = 0.45, λ =
1

2c2 + 8c1
,

Dn = max
{‖xn+1 – yn‖2,‖xn+1 – wn‖2}.

(3) For Rehman et al. [38] (iRegA), we use

αn = 0.20, βn = 0.80,

λ = 0.8
( 1

2 – 2α – 1
2α2

(c1 + c2)(1 – α)2

)
, Dn = ‖wn – yn‖2.

(4) For Vinh et al. [42] (iVegA), we use

εn =
1
n2 , θ = 0.45,

λ = min

{
1

3c1
,

1
3c2

}
, Dn = ‖wn – yn‖2.

(5) For Algorithm 1 (Algo1), we use

ϑn = 0.50, βn = 0.80,

λ = min

{
1

3c1
,

1
3c2

}
, Dn = ‖wn – yn‖2.

Example 5.1 Assume that the bifunction f : C × C →R is defined by

f (x, y) = 〈Px + Qy + c, y – x〉, ∀x, y ∈ C,

where c ∈ R
n and P, Q are matrices of order n. The matrix P is symmetric positive semi-

definite and the matrix Q – P is symmetric negative semi-definite with Lipschitz-type con-
stants c1 = c2 = 1

2‖P – Q‖ (see [37] for details). The matrices P, Q are taken randomly.1 The
constraint set C ⊂R

n is defined by

C :=
{

x ∈R
n : –5 ≤ xi ≤ 5, i = 1, 2, . . . , n

}
.

Numerical results are shown in Figs. 1–5 by assuming x–1 = x0 = y0 = (1, . . . , 1) and TOL =
10–8.

1Two diagonal matrices randomly A1 and A2 with entries from [0, 2] and [–2, 0], respectively. Two random orthogonal
matrices O1 = RandOrthMat(n) and O2 = RandOrthMat(n) are generated. Then a positive semi-definite matrix B1 = O1A1OT

1
and a negative semi-definite matrix B2 = O2A2OT

2 are achieved. Finally, set Q = B1 + BT1 , S = B2 + BT2 and P = Q – S.
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Figure 1 Example 5.1 when n = 5: the number of iterations is 63, 56, 46, 38, 44, respectively

Figure 2 Example 5.1 when n = 50: the number of iterations is 137, 145, 120, 119, 126, respectively
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Figure 3 Example 5.1 when n = 200: the number of iterations is 154, 150, 135, 129, 113, respectively

Figure 4 Example 5.1 when n = 400: the number of iterations is 165, 163, 146, 143, 129, respectively
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Figure 5 Example 5.1 when n = 600: the number of iterations is 173, 171, 153, 146, 133, respectively

Example 5.2 Suppose that H = L2([0, 1]) is a Hilbert space with the induced norm

‖x‖ =

√∫ 1

0

∣∣x(t)
∣∣2 dt

and the inner product 〈x, y〉 =
∫ 1

0 x(t)y(t) dt for all x, y ∈H. Assume that C := {x ∈ L2([0, 1]) :
‖x‖ ≤ 1}. Let F : C →H be defined by

F(x)(t) =
∫ 1

0

(
x(t) – H(t, s)f

(
x(s)

))
ds + g(t),

where H(t, s) = 2tse(t+s)

e
√

e2–1
, f (x) = cos x, g(t) = 2tet

e
√

e2–1
. As stated in [18], the operator F is mono-

tone and Lipschitz continuous with L = 2. Figures 6 and 7 show the numerical results
obtained with x–1 = x0 = y0.

Example 5.3 Let G : Rn →R
n be an operator defined by

G(x) = Ax + B(x), ∀x ∈R
n,

where A is a degree n symmetric semi-definite matrix. The proximal mapping B(x) derives
from the function h(x) = 1

4‖x‖4 such that

B(x) = arg min
y∈Rn

{‖y‖4

4
+

1
2
‖y – x‖2

}
.
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Figure 6 Example 5.2 when x0 = 1: the number of iterations is 72, 65, 55, 44, 56, respectively

Figure 7 Example 5.2 when x0 = t: the number of iterations is 83, 76, 69, 59, 65, respectively

The above description implies that F is monotone on C [27]. The feasible set C is defined
by

C :=
{

x ∈R
n : –2 ≤ xi ≤ 5

}
.

Figures 8–11 show the numerical results by assuming x–1 = x0 = y0.
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Figure 8 Example 5.3 when x0 = (1, 1, 1, 1, 1)T : the number of iterations is 68, 63, 49, 45, 47, respectively

Figure 9 Example 5.3 when x0 = (1, 2, 3, 4, 5)T : the number of iterations is 88, 81, 61, 56, 50, respectively
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Figure 10 Example 5.3 when x0 = (1, 2, 3, 4, 0)T : the number of iterations is 73, 67, 50, 46, 42, respectively

Figure 11 Example 5.3 when x0 = (–1, 2, 0, 3, 4)T : the number of iterations is 87, 80, 60, 56, 53, respectively
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Example 5.4 Let H = l2 be a real Hilbert space having sequences of real numbers that are
square-summable with ‖x‖ =

√∑
i |xi|2 and C = {x ∈ H : ‖x‖ ≤ 10}. Let a bifunction f be

defined by

f (x, y) =
(
13 – ‖x‖)〈x, y – x〉, ∀x, y ∈H.

It is easy to see that SEP(f ,C) �= ∅ and meets condition (A3). Next, we need to prove that f is
Lipschitz-type continuous. In fact, we have successively

f (x, w) – f (x, y) – f (y, w)

=
(
13 – ‖x‖)〈x, w – x〉 –

(
13 – ‖x‖)〈x, y – x〉 –

(
13 – ‖y‖)〈y, w – y〉

=
(
13 – ‖x‖)〈x, w – y〉 –

(
13 – ‖y‖)〈y, w – y〉

=
〈(

13 – ‖x‖)x –
(
13 – ‖y‖)y, w – y

〉

≤ ∥∥(
13 – ‖x‖)x –

(
13 – ‖y‖)y

∥∥‖y – w‖
=

∥∥13(x – y)–
∥∥x

∥∥(x – y) –
(‖x‖ – ‖y‖)y

∥∥‖y – w‖
≤ [

13‖x – y‖ + ‖x‖‖x – y‖ +
∣
∣‖x‖ – ‖y‖∣∣‖y‖]‖y – w‖

≤ [
13‖x – y‖ + 10‖x – y‖ + 10‖x – y‖]‖y – w‖

= 33‖x – y‖‖y – w‖

≤ 33
2

‖x – y‖2 +
33
2

‖y – w‖2,

where x, y, w ∈ C and c1 = c2 = 33
2 . We show that the bifunction is pseudomonotone. Let

x, y ∈ C be such that f (x, y) = (13 – ‖x‖)〈x, y – x〉 ≥ 0, which means that 〈x, y – x〉 ≥ 0. Thus,
we have

f (y, x) =
(
13 – ‖y‖)〈y, x – y〉

≤ (
13 – ‖y‖)〈y, x – y〉 +

(
13 – ‖y‖)〈x, y – x〉

≤ (
13 – ‖y‖)〈y, x – y〉 –

(
13 – ‖y‖)〈x, x – y〉

≤ (‖y‖ – 13
)‖x – y‖2 ≤ 0.

Moreover, we prove that f is not monotone. In fact, let x = ( 13
2 , 0, 0, . . . , 0, . . .) and y =

(10, 0, 0, . . . , 0, . . .) such that

f (x, y) + f (y, x) =
13
2

〈x, y – x〉 + 2〈y, x – y〉 > 0.

A metric projection PC upon C is defined by

PC(x) =

⎧
⎨

⎩
x, if ‖x‖ ≤ 10,
10x
‖x‖ , otherwise.

Numerical results regarding Example 5.4 are shown in Figs. 12–14 and Table 1.
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Figure 12 Example 5.2 when x–1 = x0 = y0 = (2, . . . , 2500, 0, . . .)

Figure 13 Example 5.2 when x–1 = x0 = y0 = (e1, e2, . . . , e500, 0, . . .)
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Figure 14 Example 5.2 when x–1 = x0 = y0 = (12, 22, . . . , 5002, 0, . . .)

Table 1 Numerical results for Figs. 12–14

Algorithm x0 = (2, . . . , 2500, 0, . . .) x0 = (e1, e2, . . . , e500, 0, . . .) x0 = (12, 22, . . . , 5002, 0, . . .)
Iter. Time Iter. Time Iter. Time

egA [37] 80 3.9988 85 4.1997 95 4.5793
iHegA [19] 76 5.5034 74 4.5616 78 4.6297
iRegA [38] 66 3.1513 67 3.2078 74 4.3083
iVegA [42] 55 3.7809 59 3.9825 67 4.4456
Algo1 [1] 57 2.6546 61 2.7995 68 3.0257
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