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Abstract
Let X1,X2, . . . ,Xn be independent integral-valued random variables, and let
Sn =

∑n
j=1 Xj . One of the interesting probabilities is the probability at a particular point,

i.e., the density of Sn. The theorem that gives the estimation of this probability is called
the local limit theorem. This theorem can be useful in finance, biology, etc. Petrov
(Sums of Independent Random Variables, 1975) gave the rate O( 1n ) of the local limit
theorem with finite third moment condition. Most of the bounds of convergence are
usually defined with the symbol O. Giuliano Antonini and Weber (Bernoulli
23(4B):3268–3310, 2017) were the first who gave the explicit constant C of error
bound C√

n
. In this paper, we improve the convergence rate and constants of error

bounds in local limit theorem for Sn. Our constants are less complicated than before,
and thus easy to use.
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1 Introduction
Let X1, X2, . . . , Xn be independent integral-valued random variables with means μj and
variances σ 2

j for j = 1, 2, . . . , n. Let Sn =
∑n

j=1 Xj, μ =
∑n

j=1 μj, and σ 2 =
∑n

j=1 σ 2
j . One of

the interesting probabilities is the probability at a particular point, i.e., P(Sn = k), where
k = 1, 2, . . . . There are two density functions, i.e., discretized normal and normal, to ap-
proximate this probability. The discretized normal random variable (Z̃μ,σ 2 ) has the prob-
ability mass function

P(Z̃μ,σ 2 = k) = P
(k – μ – 1

2
σ

< Zμ,σ 2 ≤ k – μ + 1
2

σ

)

=
1

σ
√

2π

∫ k–μ+ 1
2

σ

k–μ– 1
2

σ

e– x2
2 dx,

where Zμ,σ 2 is a normal distribution with mean μ and variance σ 2.
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To approximate P(Sn = k) by using the discretized normal density function, we can apply
the Berry–Esseen theorem. Berry [3] and Esseen [4] were the first two mathematicians
who gave the bound between P(Sn ≤ k) and the normal distribution. Here is their result.

If E|Xj|3 ≤ ∞ for j = 1, 2, . . . , n, then

sup
k∈R

∣
∣
∣
∣P

(
Sn – μ

σ
≤ k

)

–
1√
2π

∫ k

–∞
e– x2

2 dx
∣
∣
∣
∣ ≤ C0

σ 3

n∑

j=1

E|Xj – μj|3, (1)

where C0 is an absolute constant.
We can apply (1) to show that

∣
∣
∣
∣P(Sn = k) –

1√
2π

∫ k–μ+ 1
2

σ

k–μ– 1
2

σ

e– x2
2 dx

∣
∣
∣
∣ ≤ 2C0

σ 3

n∑

j=1

E|Xj – μj|3. (2)

The constant C0 in (2) was found and improved by many mathematicians (see, [3–10]
for examples). The best C0 obtained by Shevtsova [8] in 2013 was 0.5583 for the case of
non-identically and 0.469 for the case of identically.

The local limit theorem describes how the probability mass function of a sum of inde-
pendent discrete random variables approaches the normal density.

Let

εn(k) =
∣
∣
∣
∣P(Sn = k) –

1
σ
√

2π
e– (k–μ)2

2σ2

∣
∣
∣
∣.

De Moivre and Laplace (see [11]) established the local limit theoremDe Moivre and
Laplace (see [11]) established the local limit theorem for the binomial case in 1754. For
sums of independent random variables, we can prove the local limit theorem by using the
Berry–Esseen theorem and get the rate convergence O( 1√

n ) (see [2]).
In 1971, Ibragimov and Linnik improved the rate of convergence from O( 1√

n ) to O( 1

n
1
2 +α

),

0 < α < 1
2 , in the case of Xjs being identical and square integrable random variables.

For the non-identical case, Petrov (1975, [1]) showed that if
1 σ 2 → ∞ as n → ∞,
2

∑n
j=1 E|Xj – μj|3 = O(σ 2),

3 P(Xj = 0) ≥ P(Xj = m) for all j and m and
4 gcd{m : 1

log n
∑n

j=1 P(Xj = 0)P(Xj = m) → ∞ as n → ∞} = 1,
then

εn(k) ≤ C1

σ 2 .

Furthermore, Petrov ([1], see also [2]) improved the rate of convergence from O( 1
σ 2 ) to

O( 1
n
√

n ) in the case of a symmetric binomial.
In the previous studies, no one gave the explicit constants of error bounds. Most of the

theorems were usually presented in the form of O. Therefore, finding the constants has
been interesting. In 2018, Zolotukhin, Nagaev, and Chebotarev [12] gave the convergence
with a constant of error bound in the case that Sn is a binomial. They showed that

εn(k) ≤ min

{
1

σ
√

2e
,

0.516
σ 2

}

. (3)
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After that Siripraparat and Neammanee [13] relaxed the identically condition and ob-
tained the convergence in the case of Poisson binomial in 2020. Their result is

εn(k) ≤ 0.1194
σ 2(1 – 3

4σ
)3

+
0.0749

σ 3 +
0.2107

σ 3(1 – 3
4σ

)6
+

(
0.4579√

σ
+

0.4725
σ
√

σ

)

e– 3σ
2 . (4)

Furthermore, in the case of Sn = Bi( 1
2 ) being a symmetric binomial, i.e., P(Xj = 1) = 1

2 =
1 – P(Xj = 0), they showed that

εn(k) ≤ 0.5992
n
√

n
+

3.3984
n2(1 – 3

2
√

n )4
+

337.8048
n3√n(1 – 3

2
√

n )8
+

(
0.6476

n 1
4

+
1.3365

n 3
4

)

e– 3
√

n
4 . (5)

In 2017, Giuliano Antonini and Weber [2] gave the rate of convergence O( 1
σ

) with a
constant of error bound in the case of sums of independent lattice random variables. X is
a lattice random variable when the value of X is in L(a, b) = {vk}, where vk = a + bk, k ∈ Z,
a and b > 0 are real numbers. They gave the following theorem.

Theorem 1.1 (See [2]) Let X1, X2, . . . , Xn be independent square integrable random vari-
ables taking values in a lattice L(a, b) and Sn =

∑n
j=1 Xj. Let αX =

∑
k∈Z min{P(X = vk), P(X =

vk+1)} and Vjs, Ljs, εjs be such that

Vj + εjbLj
D= Xj for all j = 1, 2, . . . , n,

where P(Lj = 0) = P(Lj = 1) = 1
2 , P(εj = 1) = 1 – P(εj = 0) = qj, where 0 < qj ≤ αXj for all

j = 1, 2, . . . , n, and (Vj, εj) and Lj are independent for each j = 1, 2, . . . , n.
Assume that
1 logλn

λn
≤ 1

14 , where λn =
∑n

j=1 qj

2 (k–ESn)2

Var(Sn) ≤ ( λn
14 logλn

) 1
2 for all k ∈ L(na, b).

Then

∣
∣
∣
∣P(Sn = k) –

b√
2π Var(Sn)

e– (k–ESn)2
2 Var Sn

∣
∣
∣
∣ ≤ C2

[

b
(

logλn

Var(Sn)λn

) 1
2

+
δn + λ–1

n√
λn

]

,

where

C2 = 2
7
2 max

{
8√
2π

, C3

}

,

C3 is the constant such that sup
z

∣
∣
∣
∣P

(

Bi

(
1
2

)

= z
)

–
√

2
πn

e– (2z–n)2
2n

∣
∣
∣
∣ ≤ C3

n
√

n
,

δn = sup
x∈R

∣
∣
∣
∣P

(
S′

n – ES′
n√

Var(S′
n)

< x
)

– P(Z0,1 < x)
∣
∣
∣
∣, and

S′
n = Wn +

b
2

Bn, Wn =
n∑

j=1

Vj and Bn =
n∑

j=1

εj.

Note that if we choose the constant of error bound C3 in (5), then C2 is 36.1082 and the
rate of Theorem 1.1 is O( 1

σ
). We can see that the bound of [2] depends on C3 and is still
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complicated. In this work, we improve the rate of convergence of [2] to be O( 1
σ 2 ) and also

give the constant of error bound. Our constants are not complicated and can be applied
easily. The results are shown in the following.

Theorem 1.2 Let X1, X2, . . . , Xn be independent integral-valued random variables and αj =
2
∑∞

l=–∞ pjlpj(l+1), where pjl = P(Xj = l). If αj > 0 for all j = 1, 2, . . . , n, then

εn(k) ≤ 2.2075e– τ2α

π2

τα
+

1.7898
σ 4

n∑

j=1

E|Xj|3,

where τ = 1
10 3

√∑n
j=1 E|Xj|3

and α =
∑n

j=1 αj.

b is said to be maximal when there are no other numbers a′ and b′ > b for which P(X ∈
L(a′, b′)) = 1.

Theorem 1.3 Let X1, X2, . . . , Xn be independent random variables in a maximal lattice
L(a, b) and

δn(k) =
∣
∣
∣
∣P(Sn = na + kb) –

b
σ
√

2π
e– (b(na+kb)–(μ–na))2

2σ2

∣
∣
∣
∣.

Then

δn(k) ≤ 2.2075e– τ2α

π2

τα
+

1.7898b4

σ 4

n∑

j=1

E|Xj|3,

where αj = 2
∑∞

l=–∞ pjlpj(l+1), pjl = P(Xj = a + bl), and α =
∑n

j=1 αj.

Theorem 1.4 If X1, X2, . . . , Xn in Theorem 1.3 are independent identically distributed
(i.i.d.), then

δn(k) ≤ 2.2075e– τ2α

π2

τα
+

1.7898b4

nσ 4
1

E|X1|3,

where τ = 1
10 3√nE|X1|3 and α = 2n

∑∞
l=–∞ plpl+1, pl = P(X1 = a + bl).

Observe that the constant in Theorems 1.2–1.4 is easier than the constant in Theo-
rem 1.1.

We organize this paper as follows. In Sect. 2, we give the exponential bounds of a char-
acteristic function which will be used to prove the main theorems in Sect. 3. After that we
give some examples in Sect. 4.

2 Exponential bounds of a characteristic function
In this section, we let X be an integral-valued random variable with characteristic function
ψ and θ (t) = argument of ψ(t). Then

ψ(t) =
∞∑

j=–∞
pjeijt , where pj = P(X = j) for t ∈R
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and

θ (t) = arctan

( ∑∞
j=–∞ pj sin(jt)

∑∞
j=–∞ pj cos(jt)

)

. (6)

Characteristic functions are important in probability theory and statistics, especially
in local limit theorems, stability problems, etc. In the study of local limit theorems, it is
required to estimate the bounds for modulus |ψ(t)| of a characteristic function ψ . The
various bounds for |ψ(t)| play a key role in the investigation of the rate of convergence in
the local limit theorems. Previous studies have shown the bounds for |ψ(t)| in the case
of continuous and bounded random variable in a variety of versions (see [14–18] for ex-
ample). In addition, the bounds for |ψ(t)| of a lattice random variable have been shown
in a number of research works (see [18–21] for example). Furthermore, there is the expo-
nential bound for |ψ(t)| of a Poisson binomial distribution as shown in Neammanee [22].
In this section, we use the idea of Neammanee [22] to obtain the exponential bound for
|ψ(t)| of an integral-valued random variable. The following lemmas are our results.

Lemma 2.1 Let t ∈ [0,π ) and α = 2
∑∞

j=–∞ pjpj+1. Then |ψ(t)| ≤ e– 1
π2 αt2

.

Proof Let t ∈ [0,π ). If |ψ(t)| = 0, then Lemma 2.1 holds. Assume that |ψ(t)| > 0.
Note that

∣
∣ψ(t)

∣
∣2 = ψ(t)ψ(t)

=
∞∑

j=–∞
pjeijt

∞∑

l=–∞
ple–ilt

=
∞∑

j=–∞

∞∑

l=–∞
eit(j–l)pjpl

=
∞∑

j=–∞

∞∑

l=–∞
cos

(
(j – l)t

)
pjpl + i

∞∑

j=–∞

∞∑

l=–∞
sin

(
(j – l)t

)
pjpl.

Since |ψ(t)|2 is real, we get

∣
∣ψ(t)

∣
∣2 =

∞∑

j=–∞

∞∑

l=–∞
cos

(
(j – l)t

)
pjpl

=
∞∑

j=–∞

∞∑

l=–∞

(

1 – 2 sin2
(

(j – l)
t
2

))

pjpl

=
∞∑

j=–∞

∞∑

l=–∞
pjpl – 2

∞∑

j=–∞

∞∑

l=–∞
sin2

(

(j – l)
t
2

)

pjpl

= 1 – 2
∞∑

j=–∞

∞∑

l=–∞
sin2

(

(j – l)
t
2

)

pjpl. (7)
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From this fact and the fact that |ψ(t)| > 0, we have

0 ≤ 2
∞∑

j=–∞

∞∑

l=–∞
sin2

(

(j – l)
t
2

)

pjpl < 1. (8)

By (7) and (8), we get

ln
∣
∣ψ(t)

∣
∣ =

1
2

ln

(

1 – 2
∞∑

j=–∞

∞∑

l=–∞
sin2

(

(j – l)
t
2

)

pjpl

)

= –
1
2

∞∑

k=1

1
k

[

2
∞∑

j=–∞

∞∑

l=–∞
sin2

(

(j – l)
t
2

)

pjpl

]k

(9)

≤ –
∞∑

j=–∞

∞∑

l=–∞
sin2

(

(j – l)
t
2

)

pjpl

= –
∞∑

j=–∞

∞∑

l=–∞
sin2

(

|j – l| t
2

)

pjpl

≤ –
∞∑

j=–∞

∞∑

l=–∞
|j–l|≤1

(j – l)2t2

π2 pjpl

= –
1
π2 αt2,

where we use the fact that sin( t
2 ) ≥ t

π
on [0,π ) in the last inequality.

Hence, |ψ(t)| ≤ e– 1
π2 αt2

. �

Lemma 2.2 For t ∈ [0,π ],

∣
∣ψ(t)

∣
∣ ≤ e– 1

2 σ 2(X)t2+ 2
3 E|X|3t3

.

Proof The lemma holds if |ψ(t)| = 0. Assume that |ψ(t)| > 0.
Note that

∞∑

j=–∞

∞∑

l=–∞
(j – l)2pjpl =

∞∑

j=–∞

∞∑

l=–∞

2∑

m=0

(
2
m

)

jm(–l)2–mpjpl

=
2∑

m=0

(–1)2–m
(

2
m

) ∞∑

j=–∞
jmpj

∞∑

l=–∞
l2–mpl

=
2∑

m=0

(–1)2–m
(

2
m

)

EXmEX2–m

= EX2 – 2(EX)2 + EX2

= 2σ 2(X) (10)
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and

∞∑

j=–∞

∞∑

l=–∞

(|j| + |l|)3pjpl ≤ 4
∞∑

j=–∞

∞∑

l=–∞

(|j|3 + |l|3)pjpl = 8E|X|3, (11)

where we use the fact that (a + b)k ≤ 2k–1(ak + bk), a, b ≥ 0, and k ∈ N in the first inequality.
From the fact that

cos(at) = 1 –
1
2

a2t2 +
1
6

a3t3 sin(t1) for some t1

and (9), (10), (11), we get

ln
∣
∣ψ(t)

∣
∣

≤ –
∞∑

j=–∞

∞∑

l=–∞
sin2

(

(j – l)
t
2

)

pjpl

= –
∞∑

j=–∞

∞∑

l=–∞

[
1
2

–
1
2

cos
(
(j – l)t

)
]

pjpl

= –
∞∑

j=–∞

∞∑

l=–∞

[
1
2

–
1
2

(

1 –
1
2

(j – l)2t2 +
1
6

(j – l)3t3 sin
(
(j – l)t1

)
)]

pjpl

= –
∞∑

j=–∞

∞∑

l=–∞

[
1
4

(j – l)2t2 –
1

12
(j – l)3t3 sin

(
(j – l)t1

)
]

pjpl

≤ –
t2

4

∞∑

j=–∞

∞∑

l=–∞
(j – l)2pjpl +

t3

12

∞∑

j=–∞

∞∑

l=–∞
|j – l|3pjpl

≤ –
1
2
σ 2(X)t2 +

t3

12

∞∑

j=–∞

∞∑

l=–∞

(|j| + |l|)3pjpl

≤ –
1
2
σ 2(X)t2 +

2
3

E|X|3t3.

Hence, |ψ(t)| ≤ e– 1
2 σ 2(X)t2+ 2

3 E|X|3t3 . �

Lemma 2.3 Let τ1 = 1
10 3√E|X|3 . Then

∣
∣ψ(t)

∣
∣ ≥ e– 1

2 σ 2(X)t2– 2
3 E|X|3t3

for t ∈ [0, τ1].

Proof Since | sin(θ )| ≤ |θ | and (10),

2
∞∑

j=–∞

∞∑

l=–∞
sin2

(

(j – l)
t
2

)

pjpl ≤ t2

2

∞∑

j=–∞

∞∑

l=–∞
(j – l)2pjpl = t2σ 2(X). (12)

Note that

σ 2(X) ≤ E
(
X2) ≤ (

E|X|3) 2
3 . (13)
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From (12), (13), and the fact that t2 ≤ 1

100(E|X|3)
2
3

,

0 ≤ 2
∞∑

j=–∞

∞∑

l=–∞
sin2

(

(j – l)
t
2

)

pjpl ≤ 1
100

.

Therefore,

1 – 2
∞∑

j=–∞

∞∑

l=–∞
sin2

(

(j – l)
t
2

)

pjpl ≥ 99
100

(14)

and

–
1

1 – 2
∑∞

j=–∞
∑∞

l=–∞ sin2((j – l) t
2 )pjpl

≥ –
100
99

. (15)

By (9), (12), (13), and (15), we get

ln
∣
∣ψ(t)

∣
∣ = –

∞∑

j=–∞

∞∑

l=–∞
sin2

(

(j – l)
t
2

)

pjpl

–
1
2

∞∑

k=2

1
k

[

2
∞∑

j=–∞

∞∑

l=–∞
sin2

(

(j – l)
t
2

)

pjpl

]k

≥ –
1
2
σ 2(X)t2 –

1
4

[2
∑∞

j=–∞
∑∞

l=–∞ sin2((j – l) t
2 )pjpl]2

1 – 2
∑∞

j=–∞
∑∞

l=–∞ sin2((j – l) t
2 )pjpl

≥ –
1
2
σ 2(X)t2 –

1
4

(
100
99

)[

2
∞∑

j=–∞

∞∑

l=–∞
sin2

(

(j – l)
t
2

)

pjpl

]2

≥ –
1
2
σ 2(X)t2 –

25
99

σ 4(X)t4

≥ –
1
2
σ 2(X)t2 –

25
99

(
E|X|3) 4

3 t4

≥ –
1
2
σ 2(X)t2 –

25
99

(
E|X|3) 4

3 1
10 3

√
E|X|3 t3

≥ –
1
2
σ 2(X)t2 –

2
3

E|X|3t3.

Hence, |ψ(t)| ≥ e– 1
2 σ 2(X)t2– 2

3 E|X|3t3 for t ∈ [0, τ1]. �

Lemma 2.4
1 θ (1)(0) = EX .
2 θ (2)(0) = 0.
3 |θ (3)(t)| ≤ 4.2874E|X|3 for t ∈ [0, τ1].

Proof 1. By (6), we get

θ (1)(0) =
∑∞

j=–∞
∑∞

l=–∞ jpjpl
∑∞

j=–∞
∑∞

l=–∞ pjpl
= EX.
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2. Let A(t) =
∑∞

j=–∞
∑∞

l=–∞ j cos((j – l)t)pjpl and B(t) =
∑∞

j=–∞
∑∞

l=–∞ cos((j – l)t)pjpl .
Observe that

θ (1)(t) =
A(t)
B(t)

and θ (2)(t) =
B(t)A′(t) – A(t)B′(t)

(B(t))2 , (16)

where

A′(t) = –
∞∑

j=–∞

∞∑

l=–∞
j(j – l) sin

(
(j – l)t

)
pjpl and

B′(t) = –
∞∑

j=–∞

∞∑

l=–∞
(j – l) sin

(
(j – l)t

)
pjpl.

Since A′(0) = 0 and B′(0) = 0, θ (2)(0) = 0.
3. Note that

∣
∣A(t)

∣
∣ =

∣
∣
∣
∣
∣

∞∑

j=–∞

∞∑

l=–∞
j cos

(
(j – l)t

)
pjpl

∣
∣
∣
∣
∣
≤ E|X|, (17)

similarly to (10), we get

∞∑

j=–∞

∞∑

l=–∞
j(j – l)2pjpl = EX3 – EX2EX.

Therefore,

∣
∣
∣
∣
∣

∞∑

j=–∞

∞∑

l=–∞
j(j – l)2pjpl

∣
∣
∣
∣
∣
≤ 2E|X|3.

Hence,

∣
∣A′(t)

∣
∣ =

∣
∣
∣
∣
∣
–

∞∑

j=–∞

∞∑

l=–∞
j(j – l) sin

(
(j – l)t

)
pjpl

∣
∣
∣
∣
∣

≤
∣
∣
∣
∣
∣

∞∑

j=–∞

∞∑

l=–∞
j(j – l)2tpjpl

∣
∣
∣
∣
∣

≤ τ1

∣
∣
∣
∣
∣

∞∑

j=–∞

∞∑

l=–∞
j(j – l)2pjpl

∣
∣
∣
∣
∣

≤ 2τ1E|X|3

≤ 2
10 3

√
E|X|3 E|X|3

=
1
5
(
E|X|3) 2

3 (18)
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and

∣
∣A′′(t)

∣
∣ =

∣
∣
∣
∣
∣
–

∞∑

j=–∞

∞∑

l=–∞
j(j – l)2 cos

(
(j – l)t

)
pjpl

∣
∣
∣
∣
∣

≤
∣
∣
∣
∣
∣

∞∑

j=–∞

∞∑

l=–∞
j(j – l)2pjpl

∣
∣
∣
∣
∣

≤ 2E|X|3. (19)

By (14), we get

B(t) =
∞∑

j=–∞

∞∑

l=–∞
cos

(
(j – l)t

)
pjpl

=
∞∑

j=–∞

∞∑

l=–∞

(

1 – 2 sin2
(

(j – l)t
2

))

pjpl

=
∞∑

j=–∞

∞∑

l=–∞
pjpl – 2

∑

i

∑

j

sin2
(

(j – l)t
2

)

pjpl

= 1 – 2
∞∑

j=–∞

∞∑

l=–∞
sin2

(
(j – l)t

2

)

pjpl

≥ 99
100

.

From this fact and B(t) ≤ 1,

99
100

≤ B(t) ≤ 1. (20)

By (10) and (13), we obtain

∣
∣B′(t)

∣
∣ =

∣
∣
∣
∣
∣
–

∞∑

j=–∞

∞∑

l=–∞
(j – l) sin

(
(j – l)t

)
pjpl

∣
∣
∣
∣
∣

≤
∞∑

j=–∞

∞∑

l=–∞
(j – l)2tpjpl

= 2τ1σ
2(X)

≤ 2
10 3

√
E|X|3

(
E|X|3) 2

3

=
1
5
(
E|X|3) 1

3 (21)

and

∣
∣B′′(t)

∣
∣ =

∣
∣
∣
∣
∣
–

∞∑

j=–∞

∞∑

l=–∞
(j – l)2 cos

(
(j – l)t

)
pjpl

∣
∣
∣
∣
∣
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≤
∞∑

j=–∞

∞∑

l=–∞
(j – l)2pjpl

= 2σ 2(X)

≤ 2
(
E|X|3) 2

3 . (22)

By (16), we obtain

θ (3)(t) =
(B(t))2A′′(t) – B(t)A(t)B′′(t) – 2B′(t)B(t)A′(t) – 2A(t)(B′(t))2

(B(t))3 .

From this fact and (17)–(22), we get |θ (3)(t)| ≤ 4.2874E|X|3. �

3 Proof of the main results
Let X1, X2, . . . , Xn be independent integral-valued random variables. Let Sn :=

∑n
i=1 Xi,

μ := ESn and σ 2 := Var Sn. Let ψ1,ψ2, . . . ,ψn and ψ be the characteristic functions of
X1, X2, . . . , Xn and Sn, respectively. Then, for j = 1, 2, . . . , n,

ψj(t) =
∞∑

l=–∞
pjleilt =

∞∑

l=–∞
pjl cos(lt) + i

∞∑

l=–∞
pjl sin(lt)

and

ψ(t) =
n∏

j=1

ψj(t).

Note that ψj(t) = |ψj(t)|eiθj(t),
where θj(t) := argument of ψj(t) = arctan(

∑∞
l=–∞ pjl sin(lt)

∑∞
l=–∞ pjl cos(lt) ).

Hence, ψ(t) = ρ(t)eiθ (t), where θ (t) =
∑n

j=1 θj(t)(mod2π ) and ρ(t) =
∏n

j=1 |ψj(t)|.
From Siripraparat and Neammanee [13], we know that

P(Sn = k) =
1
π

∫ π

0
ρ(t) cos

(
(k – μ)t – α(t)

)
dt, (23)

where α(t) = θ (t) – μt.
To prove our main theorems, we give the bound of ρ(t) and cos((k – μ)t – α(t)) in

Lemma 3.1 and Lemma 3.2, respectively.

Lemma 3.1 Let τ = min( 1
10 3

√∑n
j=1 E|Xj|3

,π ). Then

∣
∣ρ(t) – e– 1

2 σ 2t2 ∣∣ ≤ 0.6672
n∑

j=1

E|Xj|3t3e– 1
2 σ 2t2

for t ∈ [0, τ ).

Proof By Lemma 2.2 and Lemma 2.3, we get

e– 1
2 σ 2(Xj)t2– 2

3 E|Xj|3t3 ≤ ∣
∣ψj(t)

∣
∣ ≤ e– 1

2 σ 2(Xj)t2+ 2
3 E|Xj|3t3

. (24)
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By (24), we obtain

e– 1
2 σ 2t2– 2

3
∑n

j=1 E|Xj|3t3 ≤ ρ(t) ≤ e– 1
2 σ 2t2+ 2

3
∑n

j=1 E|Xj|3t3
.

Thus,

(
e– 2

3
∑n

j=1 E|Xj|3t3
– 1

)
e– 1

2 σ 2t2 ≤ ρ(t) – e– 1
2 σ 2t2

≤ (
e

2
3

∑n
j=1 E|Xj|3t3

– 1
)
e– 1

2 σ 2t2
.

Hence,

–
2
3

n∑

j=1

E|Xj|3t3e– 1
2 σ 2t2 ≤ ρ(t) – e– 1

2 σ 2t2

≤ 2
3

n∑

j=1

E|Xj|3t3e
2
3

∑n
j=1 E|Xj|3t3

e– 1
2 σ 2t2

, (25)

where we have used the fact

ex – 1 ≤ xex and e–x – 1 > –x for x > 0.

Since t3 ≤ 1
1000

∑n
j=1 E|Xj|3 and (25), |ρ(t) – e– 1

2 σ 2t2 | ≤ 0.6672
∑n

j=1 E|Xj|3t3e– 1
2 σ 2t2 . �

Lemma 3.2 For t ∈ [0, τ ], we have cos((k – μ)t – α(t)) = cos((k – μ)t) + 	, where |	| ≤
0.7152

∑n
j=1 E|Xj|3t3.

Proof Using Taylor’s expansion, we have

cos
(
α(t)

)
= 1 –

1
2

cos(t2)
(
α(t)

)2 for some t2, (26)

sin
(
α(t)

)
= α(t) –

1
2

sin(t3)
(
α(t)

)2 for some t3, and (27)

θj(t) = θ
(1)
j (0)t +

1
2
θ

(2)
j (0)t2 +

1
6
θ

(3)
j (t4)t3 for some t4. (28)

By Lemma 2.4, (28) and the fact that τ ≤ τ1, we get

∣
∣α(t)

∣
∣ ≤ 1

6

n∑

j=1

2.1437
(
E|Xj|σ 2(Xj) + E|Xj|3

)
t3

≤ 0.7146
n∑

j=1

E|Xj|3t3. (29)

By (26) and (27), we obtain

cos
(
(k – μ)t – α(t)

)

= cos
(
(k – μ)t

)
cos

(
α(t)

)
+ sin

(
(k – μ)t

)
sin

(
α(t)

)
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= cos
(
(k – μ)t

)
[

1 –
1
2

cos(t2)α2(t)
]

+ sin
(
(k – μ)t

)
[

α(t) –
1
2

sin(t3)α2(t)
]

= cos
(
(k – μ)t

)
+ 	,

where

|	| ≤ ∣
∣α(t)

∣
∣ + α2(t). (30)

By (29) and t3 ≤ 1
1000

∑n
j=1 E|Xj|3 , we obtain |α(t)| ≤ 0.7146

1000 .

From this fact, (29) and (30) imply that |	| ≤ 0.7152
∑n

j=1 E|Xj|3t3. �

We are now ready to prove Theorem 1.2.

Proof of Theorem 1.2 Note that

1
π

∫ π

0
ρ(t) cos

(
(k – μ)t – α(t)

)
dt =

1
π

∫ τ

0
ρ(t) cos

(
(k – μ)t – α(t)

)
dt + 	1, (31)

where 	1 = 1
π

∫ π

τ
ρ(t) cos((k – μ)t – α(t)) dt.

By Lemma 2.1, |	1| ≤ 1
π

∫ π

τ
ρ(t) dt ≤ 1

π

∫ ∞
τ

e– 1
π2 αt2

dt ≤ π
2τα

e– τ2α

π2 .
From the fact that

∫ ∞

0
t3e– 1

2 σ 2t2
dt =

2
σ 4 (32)

and Lemma 3.1, we have

1
π

∫ τ

0
ρ(t) cos

(
(k – μ)t – α(t)

)
dt =

1
π

∫ τ

0
e– 1

2 σ 2t2
cos

(
(k – μ)t – α(t)

)
dt + 	2, (33)

where

|	2| ≤ 0.6672
n∑

j=1

E|Xj|3
∫ τ

0
t3e– 1

2 σ 2t2
dt

≤ 0.6672
n∑

j=1

E|Xj|3
∫ ∞

0
t3e– 1

2 σ 2t2
dt

=
1.3344

σ 4

n∑

j=1

E|Xj|3. (34)

From (32) and Lemma 3.2, we get

1
π

∫ τ

0
e– 1

2 σ 2t2
cos

(
(k – μ)t – α(t)

)
dt =

1
π

∫ τ

0
e– 1

2 σ 2t2
cos

(
(k – μ)t

)
dt + 	3, (35)

where

|	3| ≤ 0.7152
π

n∑

j=1

E|Xj|3
∫ ∞

0
t3e– 1

2 σ 2t2
dt =

0.4554
σ 4

n∑

j=1

E|Xj|3. (36)
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By(31) and (33)–(36), we obtain

1
π

∫ π

0
ρ(t) cos

(
(k – μ)t – α(t)

)
dt =

1
π

∫ τ

0
e– 1

2 σ 2t2
cos

(
(k – μ)t

)
dt + 	4, (37)

where

|	4| ≤ |	1| + |	2| + |	3|

≤ π

2τα
e– τ2α

π2 +
1.3344

σ 4

n∑

j=1

E|Xj|3 +
0.4554

σ 4

n∑

j=1

E|Xj|3

=
π

2τα
e– τ2α

π2 +
1.7898

σ 4

n∑

j=1

E|Xj|3. (38)

From (10), we can see that

α = 2
n∑

j=1

∞∑

l=–∞
pjlpj(l+1) =

n∑

j=1

( ∞∑

l=–∞

∞∑

m=–∞
|l–m|≤1

(l – m)2pjlpjm

)

≤ 2σ 2,

which implies that e– 1
2 σ 2t2 ≤ e– 1

4 αt2 . From this fact, we get

1
π

∣
∣
∣
∣

∫ ∞

τ

e– 1
2 σ 2t2

cos
(
(k – μ)t

)
dt

∣
∣
∣
∣ ≤ 1

π

∫ ∞

τ

e– 1
2 σ 2t2

dt

≤ 1
π

∫ ∞

τ

e– 1
4 αt2

dt

≤ 1
πτ

∫ ∞

τ

te– 1
4 αt2

dt

=
2

πτα
e– τ2α

4 .

From this fact and (37) and (38), we have

1
π

∫ π

0
ρ(t) cos

(
(k – μ)t – α(t)

)
dt =

1
π

∫ ∞

0
e– 1

2 σ 2t2
cos

(
(k – μ)t

)
dt + 	5, (39)

where

|	5| ≤ |	4| +
1
π

∣
∣
∣
∣

∫ ∞

τ

e– 1
2 σ 2t2

cos
(
(k – μ)t

)
dt

∣
∣
∣
∣

≤ π

2τα
e– τ2α

π2 +
1.7898

σ 4

n∑

j=1

E|Xj|3 +
2

πτα
e– τ2α

4 . (40)

Using the fact that

∫ ∞

0
e–at2

cos(bt) dt =
1
2

√
π

a
e– b2

4a for a > 0
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(see [13], p. 7), we obtain

1
π

∫ ∞

0
e– 1

2 σ 2t2
cos

(
(k – μ)t

)
dt =

1
σ
√

2π
e– (k–μ)2

2σ2 . (41)

By (23), (39), (40), and (41), we can conclude that

P(Sn = k) =
1

σ
√

2π
e– (k–μ)2

2σ2 + 	6,

where |	6| ≤ 2.2075e
– τ2α

π2

τα
+ 1.7898

σ 4
∑n

j=1 E|Xj|3. �

Proof of Theorem 1.3 Let Yj = Xj
b – a

b . Then

E

( n∑

j=1

Yj

)

=
μ – na

b
, Var

( n∑

j=1

Yj

)

=
σ 2

b2 ,

P(Sn = na + kb) = P

( n∑

j=1

Yj = k

)

and

P(Yj = k) = P
(

Xj

b
–

a
b

= k
)

= P(Xj = a + bk).

Since b is maximal, we have α =
∑n

j=1 αj > 0,
where αj = 2

∑∞
l=–∞ pjlpj(l+1), pjl = P(Xj = a + bl).

From Theorem 1.2, we obtain Theorem 1.3. �

4 Examples of the main results
In this section, we give applications including Poisson binomial, binomial, and negative
binomial that our main theorems can be applied as shown in Example 1–Example 3. In
addition, the example that our main results can be applied to, unlike the result of Petrov
[1], as shown in Example 4.

Example 1 If X1, X2, . . . , Xn are independent Bernoulli random variables with P(Xj = 1) =
pj and P(Xj = 0) = qj, where pj + qj = 1 for j = 1, 2, . . . , n, Sn is a Poisson binomial random
variable. Then

∣
∣
∣
∣P(Sn = k) –

1
σ
√

2π
e– (k–μ)2

2σ2

∣
∣
∣
∣ ≤ 11.0375 3√μe

– σ2
50π2( 3√μ)2

σ 2 +
1.7898μ

σ 4 , (42)

where μ =
∑n

j=1 pj and σ 2 =
∑n

j=1 pjqj.

Proof Note that E|Xj|3 = pj and

α =
n∑

j=1

αj = 2
n∑

j=1

1∑

l=0

pj,lpj,l+1
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= 2
n∑

j=1

1∑

l=0

P(Xj = l)P(Xj = l + 1)

= 2
n∑

j=1

P(Xj = 0)P(Xj = 1)

= 2
n∑

j=1

pjqj

= 2σ 2.

Hence, by Theorem 1.2, we see that (42) holds. �

Example 2 Let Sn ∼ Bi(p). Then

∣
∣
∣
∣P(Sn = k) –

1√
2πnpq

e– (k–np)2
2npq

∣
∣
∣
∣ ≤ 11.0375 3√pe

– npq
50π2( 3√np)2

n 2
3 pq

+
1.7898
npq2 .

Proof We can apply Example 1 by letting pj = p and qj = q. �

Observe that the results in Example 1 and Example 2 have the same order as (3) and (4)
but the constants are bigger. However, (3) and (4) cannot be applied with the following
example.

Example 3 If X1, X2, . . . , Xn are i.i.d. geometric random variables with parameter p. Then
∣
∣
∣
∣P(Sn = k) –

p√
2πq

e– (kp–1)2
2q

∣
∣
∣
∣

≤ 11.0375(1 + q) 3
√

p2 + 6qe
– np3q

50π2(1+q)( 3√n(p2+6q))2

n 2
3 p2q

+
1.7898p(p2 + 6q)

nq2 , (43)

where q = 1 – p.

Proof Let ψ be the characteristic function of Xj. Then ψ(t) = peit

1–qeit and

ψ (3)(t) = –
ipeit(q2e2it + 4qeit + 1)

(1 – qeit)4 .

Hence, EX3 = ψ (3)(0)
i3 = p2+6q

p3 .
Note that

α = 2n
∞∑

l=1

p1,lp1,l+1 = 2n
∞∑

l=1

P(X1 = l)P(X1 = l + 1)

= 2n
p2

q

∞∑

l=1

q2l

=
2npq
1 + q

.

Hence, by Theorem 1.4, we get (43). �
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Example 4 Let Xn be a sequence of independent random variables such that

P(Xj = 0) =
1
4

, P(Xj = 1) =
3
8

and P(Xj = 2) =
3
8

for all j = 1, 2, . . . , n. Then

∣
∣
∣
∣P(Sn = k) –

0.5111√
n

e– (8k–9n)2
72n

∣
∣
∣
∣ ≤ 0.069

n 2
3

e–0.00022n
1
3 +

16.2671
n

. (44)

Proof Note that E|Xj|3 = 27
8 , ESn = 9n

8 , Var Sn = 39n
64 , and

α =
n∑

j=1

αj = 2
n∑

j=1

2∑

l=0

pj,lpj,l+1

= 2
n∑

j=1

2∑

l=0

P(Xj = l)P(Xj = l + 1)

= 2
n∑

j=1

(
P(Xj = 0)P(Xj = 1) + P(Xj = 1)P(Xj = 2)

)

= 2
n∑

j=1

(
1
4

× 3
8

+
3
8

× 3
8

)

=
15n
32

.

Hence, by Theorem 1.2, we see that (44) holds. �

One can see that Theorem 1.2 can be applied to Example 4 and get the rate of conver-
gence O( 1

n ), but Petrov’s theorem [1] cannot be applied because this example does not
satisfy its assumption 3.
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