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1 Introduction

Let X1,Xa,...,X, be independent integral-valued random variables with means u; and
variances o for j = 1,2,...,n. Let S, = 33", Xj, w = >, and 0 = 377, 0. One of
the interesting probabilities is the probability at a particular point, i.e., P(S, = k), where
k=1,2,.... There are two density functions, i.e., discretized normal and normal, to ap-
proximate this probability. The discretized normal random variable (Z 1,02) has the prob-

ability mass function

- k—p-13 k-—p+t
P(Zw,z:k):P(L <ZM,2§L>
o o
e+
1 e,

o

where Z,, ;2 is a normal distribution with mean p and variance o2,
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To approximate P(S, = k) by using the discretized normal density function, we can apply
the Berry—Esseen theorem. Berry [3] and Esseen [4] were the first two mathematicians
who gave the bound between P(S, < k) and the normal distribution. Here is their result.

IfE|X;|* <ooforj=1,2,...,n, then

Su—p 1 (ke Co v 3
sup P( §k>—— e Tdx| < — E|X; — i, (1)
keR o V2 Joxo o3 ; / ’
where Cj is an absolute constant.
We can apply (1) to show that
k"“% n
1 g %2 2C()

P(Sy=k)— —= [, 1 e 7dx| <=2 EIX;—wl®. (2)
’ V2m J=2 o7 A

The constant Cp in (2) was found and improved by many mathematicians (see, [3—10]
for examples). The best Cy obtained by Shevtsova [8] in 2013 was 0.5583 for the case of
non-identically and 0.469 for the case of identically.

The local limit theorem describes how the probability mass function of a sum of inde-
pendent discrete random variables approaches the normal density.

Let

1 (k=p)?
202

€n(k) = |P(S, = k) -

-
o2

De Moivre and Laplace (see [11]) established the local limit theoremDe Moivre and
Laplace (see [11]) established the local limit theorem for the binomial case in 1754. For
sums of independent random variables, we can prove the local limit theorem by using the
Berry—Esseen theorem and get the rate convergence O(ﬁ) (see [2]).

In 1971, Ibragimov and Linnik improved the rate of convergence from O( ﬁ) to O(n%ﬁ),

O<ac< %, in the case of X;s being identical and square integrable random variables.
For the non-identical case, Petrov (1975, [1]) showed that if
1 62— coasn— oo,
2 Y EIX; -l = 0(e?),
3 P(X; =0) > P(X; = m) for all j and m and
4 gcd{m: @ ZI’LIP(X,» =0)P(X; =m) —> coasn— o0} =1,
then

)< 3.
o

Furthermore, Petrov ([1], see also [2]) improved the rate of convergence from O(G%) to
O(ﬁ) in the case of a symmetric binomial.

In the previous studies, no one gave the explicit constants of error bounds. Most of the
theorems were usually presented in the form of O. Therefore, finding the constants has
been interesting. In 2018, Zolotukhin, Nagaev, and Chebotarev [12] gave the convergence
with a constant of error bound in the case that S, is a binomial. They showed that

®3)

(k) < min{ 1 0.516 }

a«/Ze’ a2 |
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After that Siripraparat and Neammanee [13] relaxed the identically condition and ob-
tained the convergence in the case of Poisson binomial in 2020. Their result is

€q(k) < + +
g o2(1-2)P o od1l-2

0.1194 0.0749 0.2107 0.4579 0.4725\ _30
G e 2. (4)

o oo

Furthermore, in the case of S,, = Bi(%) being a symmetric binomial, i.e., P(X; = 1) = % =
1 - P(X; = 0), they showed that

) < 0.5992 3.3984 337.8048 (0.6476 1.3365) _# 5)
en(k) < + + + e T,
nyn  n2(l- —232)4 nd/n(1 - —2%)8 ni ni

In 2017, Giuliano Antonini and Weber [2] gave the rate of convergence O(%) with a
constant of error bound in the case of sums of independent lattice random variables. X is
a lattice random variable when the value of X is in L(a, b) = {vi}, where vy = a + bk, k € Z,
a and b > 0 are real numbers. They gave the following theorem.

Theorem 1.1 (See [2]) Let X1, X>,...,X, be independent square integrable random vari-
ables taking values in a lattice L(a, b) and S,, = Z/'.ilXj.LetaX =Y ez MIN{P(X = ), P(X =
V1)) and Vs, L;s, €;s be such that

V,»+e,'ble=)Xj forallj=1,2,...,n,

where P(L; = 0) = P(L; = 1) = %, P(ej =1) =1-P(e; = 0) = gj, where 0 < g; < ay; for all
j=12,...,n,and (V;,€) and L; are independent for each j=1,2,...,n.

Assume that

10 < L here b, =Y 0 g5

Ay — 147 j
_ 2 1
2 <@a§§;>) < (gi%)? for all k € L(na, b).
Then
1
b (k=ESy)> logh, \2 &8,+A17!
‘P(S,,:k)——e"m 5@[5;( o2 > ¢ Ot ]
/27 Var(S,) Var(S,))\,, Vo
where
Cy =27 { 8 c}
= maxy —, N
2 m 3

Cs
=< =
~nyn

Cs is the constant  such that  sup
z

(1 2 _@zn?
P|\Bi| - )=2z)—-,/—e =
2 T

8 P( Sn— ES, ) P(Z, ) d
n = Su —— <X | — 1 <X)|, an
wenl \ Var(s)) o1

b n n

Sy = W+ By W,y = YV, and B,=) e
j=1 J=1

Note that if we choose the constant of error bound Cjs in (5), then C, is 36.1082 and the

rate of Theorem 1.1 is O(i). We can see that the bound of [2] depends on C; and is still
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complicated. In this work, we improve the rate of convergence of [2] to be O(U%) and also
give the constant of error bound. Our constants are not complicated and can be applied
easily. The results are shown in the following.

Theorem 1.2 Let X1, X,,...,X, beindependent integral-valued random variables and o =
23 b, where py = P(X; =1). If ;> 0 forall j=1,2,...,n, then

'[204

2.2075¢ 2 1.7898 5
en(k) < =————+ ==} EIXP,

Jj=1

n

1
— anda=> ., a;.
10357, ElXP3 j=177

b is said to be maximal when there are no other numbers a’ and 4’ > b for which P(X €
L(d,b))=1.

where T =

Theorem 1.3 Let X1,Xs,..., X, be independent random variables in a maximal lattice
L(a,b) and

b (b(mz+kb)—(u—na))2

8,.(k) = |P(S, = na + kb) — e 202
(k) = |P( ) =

Then

2
ta n

2.2075¢” =2 1.7898b*
8u(k) < + > EIX;P,

T o :
j=1

n

where o =23 % pupjus), pjt = P(Xj=a + bl),and o = 3 .

Theorem 1.4 If X1,Xy,...,X, in Theorem 1.3 are independent identically distributed

(i.i.d.), then
‘[2a
2.2075¢ =2 1.7898b*
8a(k) < + —EIXi?,
T noy
_ 1 _ 0 _ _
where T = NSV anda =2ny ;" pip.1, pi = P(X1 =a+bl).

Observe that the constant in Theorems 1.2—-1.4 is easier than the constant in Theo-
rem 1.1.

We organize this paper as follows. In Sect. 2, we give the exponential bounds of a char-
acteristic function which will be used to prove the main theorems in Sect. 3. After that we
give some examples in Sect. 4.

2 Exponential bounds of a characteristic function
In this section, we let X be an integral-valued random variable with characteristic function
Y and 6(t) = argument of v (£). Then

o0
V() = Z Pjeijt, where p;=P(X =j) fort e R
Jj=—00
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and

> oo pjsin(jt) )

0(t) = amtan(W

(6)

Characteristic functions are important in probability theory and statistics, especially
in local limit theorems, stability problems, etc. In the study of local limit theorems, it is
required to estimate the bounds for modulus |y (¢)| of a characteristic function . The
various bounds for |/ (£)| play a key role in the investigation of the rate of convergence in
the local limit theorems. Previous studies have shown the bounds for |y (¢)| in the case
of continuous and bounded random variable in a variety of versions (see [14—18] for ex-
ample). In addition, the bounds for |(£)| of a lattice random variable have been shown
in a number of research works (see [18—21] for example). Furthermore, there is the expo-
nential bound for |y (¢)| of a Poisson binomial distribution as shown in Neammanee [22].
In this section, we use the idea of Neammanee [22] to obtain the exponential bound for

| (2)] of an integral-valued random variable. The following lemmas are our results.
1,2
Lemma2.1 Lett€[0,7)and o =2 "  ppj1. Then |y (t)| <e c.

Proof Lett e [0,m). If [(£)| = 0, then Lemma 2.1 holds. Assume that | (¢)| > 0.
Note that

v (@) = v v @)

oo oo
_ Z i eijt Z p e—ilt
j=—00 I=—00
oo oo
_ Z Z eit(j—l)pjpl

j=—00 l=—00
= Z Z cos((j— Dt)ppi + i Z sin((j - Dt)pipr.
e I ey —

Since | (2)|? is real, we get

W@ = > cos((i- bty

j=—00 l=—00

B> (1—2sin2<(j—l)§)>p/pl
j=—00 [=—00

=3 > pm-2) Y sin2(o—z)§)p,~pz
j=—00 l=—00 Jj=—00 [=—00

=1-2 Z Z sin2<(j—l)%>pjpl. (7)

j=—00 l=—00
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From this fact and the fact that |1/ (¢)| > 0, we have

0<2Z Zsm ((; ) )p,p,<1.

—00 [=—00

By (7) and (8), we get

In|y(t)] = ln(l 2 Z Z sin ( )P;Pz)
= —% i%% i i sin ((1—1) )Iﬂjpz}k
<- i i sin® ((i— l)%)l”jpl

j=—00 [=—00

where we use the fact that sin(%) >
1 2
= at’

Hence, [Y(t)| <e =

L
'

Lemma 2.2 Fort e [0,7],
[ (0)] < &30 OSSN,

Proof The lemma holds if |y (¢)| = 0. Assume that |y (¢)| > 0.
Note that

00 e 2

> Su-mn= Y 3 (o)

Jj=—00 [=—00 —00 [=—00 m=0

2 oo oo

S () S 5 e
m=0 Jj=—00 I=—00
Z( 1)2 m< > XmEX2 m

= EX? - 2(EX)* + EX?

=20%(X)

on [0, ) in the last inequality.

Page 6 of 18
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and
[o¢] [o¢] 3 [o¢] [o.¢]
SO+ =4y Y (1P + 1P)pp = 8EIXP,
Jj=—00 [=—00 Jj=—00 [=—00
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(11)

where we use the fact that (a + b)¥ < 2K-1(aX + bX), a,b > 0, and k € N in the first inequality.

From the fact that
I oo 153
cos(at) =1 - Ea t°+ ga t°sin(t;) for some

and (9), (10), (11), we get

-y Sin2<(j—l)%>pjpl

cos((j - l)t):|p/pl

N

3 Z:%_

==y Y _%—%(1— G0+~ (, D3 sin((j - l)t1)>]pjpl

oo oo r

__ Z Z i(]_ )%t — %(]_ 033 sin((i— l)t})]Pjpl

j=—00 [=—00 =

2 o0 [09)
<- %Z D=0+ o Z Z - 1P
j=—00I=—00 }7 00 [=—00
<——02<X)t +— Z Z Il + 1) pi

22
1 2
<=’ X)* + ZEIXPE.
2 3
Hence, |1/(£)] < e~ 20 X2+ FEXPE,

Lemma 2.3 Let 1] = Then

1

Eix;3°
1. 2 2 2 3.3

V()] z e 2 O forr e [0,m].

Proof Since |sin(f)| < |6| and (10),

2 Z Z sin ((] l) )p,p; Z Z(j_[)ijplthUZ(X).

—00 [=—00 j=—oo I=—00

Note that

2
3

o?(X) <E(X?) < (EIX]%)3.

(12)

(13)
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From (12), (13), and the fact that > < —1—,
100(E|X|3)3

0<ZZ Zsm <(] 0) )p]pl_l(l)o

j=—00 l=—00

Therefore,

1-2 Z Z sin <(] D= )p,p;_ 100 (14)

Jj=—00l=—00

and
1 - 100 (15)
1-23 0 32 osin*((G=DHpp — 99
By (9), (12), (13), and (15), we get
[o¢] [o¢] t
nfy@)=->">" sinz((j—l)i)pjp;
Jj=—00 [=—00
Ienl|. & ‘
_ EZ |:2 Z Z sin ((] ) )p,p;]
k=2 —00 [=—00
1 2062 237 o X o sin’ (= D Hppi]?
o _Z
2 41-2377 3T sin*((-0) )3)pip1
2
1,0, 100
> 008 - ( )[ Z;OIZ sin ( )P/P1i|
> _102()(),;2 - —cr‘L(X)t4
- 2 99
1,y 4
Z_EU (X)t" - (Ele )3
1,0, 25, .+ 1
> =020 - 2 (EIX]P)? ———t
2 99( ) 10JE(X|3
1 2
> ——o2(X)® - ZEIX3E.
2 3
Hence, |y (¢)| > e 30 COP-ZEIXPE g0 4 o [0,71]. d
Lemma 2.4
M(0) = EX.
@(0)=0

3 109(t)| < 4.2874E|X|? for t € [0,11].
Proof 1. By (6), we get

oo o0 .
(1)(0) _ Z’:—oo Zl:—oo]p/pl _ EX‘

PRGBSy 7 )

Page 8 of 18
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2. Let A(t) = Z/Of_oo Y sojcos((i—Dt)pp; and B(¢) = Z;f_oo Yo cos((f = Dt)ppr.

Observe that

) o BOAE®) - ABB (@)

0 (t)_B(t) and 6Y(¢) = B0)? , (16)
where

At)=- Z Z j(j =D sin((j - De)pjpr and
j

j=—00 [=—00

B(t) = Z Z (- Dsin(( - De)ppr.

—00 [=—00

Since A’(0) = 0 and B'(0) = 0, 6@(0) = 0.
3. Note that

A()] = Z Z;cos G- Dt)pipi| < EIX|, (17)

j=—00 [=—00

similarly to (10), we get

[o e o]

3N G- e = EXP - EXPEX.

Jj=—00l=—00

Therefore,

SN G- 0mm| < 2EIXP.

j=—00 I=—00

Hence,

o]

=3 > G- Dsin(G - De)ppr

Jj=—00 l=—00

4@ =

[o el o]

> G-

j=—00 [=—00

=

[o el o]

Yo ii-0pe

j=—00 [=—00

=7

<2nEIX]?
<——FEX?
10YE|X?

Page 9 of 18
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and
|A"(2)] = Z Z}(]—Z)Zcos (- Dt)ppu
j=—00 l=—00
1(1 D’pipi
—00 [=—00
§2E|X|3.
By (14), we get

B&)=")_ > cos((j-Dt)ppi

Jj=—00 [=—00

[ee]

SIS

j=—00 I=—00

Z ijpl 2ZZsm <(I i )P;Pl

Jj=—00l=—00

=1-2 Z Z sin2((j_2l)t)19ipz

j=—00 [=—00

From this fact and B(¢) <1,

99
— <B(t)<1.
100 —

By (10) and (13), we obtain

1B@|=|->_ > G-Dsin((G-Dt)ppy

j=—00 I=—00

<> D i-Dwm

j=—00 I=—00

=2110%(X)

N

< #(E|X|3)
T 10YEIX]?

_1 3\3
L)

and

B'®)] ={- Y > G -D>cos(( - Dt)pps

j=—00 l=—00

(19)

(20)

(21)

Page 10 of 18
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<> Y G-Dpp

J=—00 l=—00
=20%(X)

2(EIXP) i (22)

By (16), we obtain
3 (B(t))*A"(t) - B(t)A(£)B"(t) — 2B (t)B(t)A'(t) — 2A()(B'(1))*
09() = )
(B(1))?

From this fact and (17)—(22), we get |8®)(¢)| < 4.2874E|X|>. O

3 Proof of the main results

Let Xi,X5,...,X, be independent integral-valued random variables. Let S, := Z:’Zl X,
= ES, and o2 := VarS,,. Let ¥, vs,..., ¥, and ¥ be the characteristic functions of
X1,X5,...,X, and S, respectively. Then, forj=1,2,...,n,

V() = Z pie Z pjcos(lt) +i Z pjsin(lt)
1= I— I—

and

Note that ¥;(¢) = [;(2) [,

where 0;(¢) := argument of ;(¢) = arctan(w)

‘ Yoo pjicos(lt)
Hence, ¥ (t) = p(£)e??®, where 6(¢ Z} 1 6;(t)(mod2rr) and p(z) = ]_[;’=1 [;(2)].
From Siripraparat and Neammanee [13], we know that

P(S,=k) = % /071 p(t) cos((k — )t — a(t)) dt, (23)

where «(t) = 6(t) — ut.
To prove our main theorems, we give the bound of p(¢) and cos((k — u)t — a(£)) in
Lemma 3.1 and Lemma 3.2, respectively.

Lemma 3.1 Let T = min(————, 7). Then
(10 I B3 )

lp(t)—e 3% |<0667ZZE|X| Be 1 forte[0,7).
j=1

Proof By Lemma 2.2 and Lemma 2.3, we get

e 2 ODPFENGPE < |y ()] < e 3 PR FENGPE, (24)

Page 11 0f 18
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By (24), we obtain
67%02:2% YL EG PR <p(0) < e—%ozter% 27:1E|X,v\3z3'
Thus,
(e ITRENPE _ )30 < p(p) g
< (TR et
Hence,

1

2 n
Y EXPAE < ple) - eh
j=1

2¢ 3,3 3V EXPE 16272
5§;EIXj| e DA ENPE o (25)
pn

where we have used the fact
ef—-1<xe® and e*-1>-x forx>0.
. _1.2.2 1.2
Since £3 < W and (25), |p(t) — €727 <0.6672 ) | E|X;|t?e 27" O

Lemma 3.2 For t € [0, 1], we have cos((k — )t — a(t)) = cos((k — w)t) + A, where |A| <
0.7152 Z;’=1E|X,«|3t3.

Proof Using Taylor’s expansion, we have

cos(a(t)) =1- % COS(tg)(Ol(t))z for some t,, (26)
sin(a(f)) = a(f) - % sin(t3)(«(®)”  for some t3, and (27)
6(t) = 0V (0)¢ + %9}”(0)# + %9j(3)(t4)t3 for some £,. (28)

By Lemma 2.4, (28) and the fact that t < 73, we get
1 n
()] = = 21437 (EIX;10” (X)) + EIXP)
j=1

n
<0.7146 Y E|X;’. (29)
j=1

By (26) and (27), we obtain

cos((k — w)t —a(2))
= cos((k — w)t) cos(a(2)) + sin((k — p)t) sin(a(£))

Page 12 0of 18



Siripraparat and Neammanee Journal of Inequalities and Applications (2021) 2021:57 Page 13 0f 18

= cos((k — w)t) |:1 - % cos(tz)ozz(t):| + sin((k — p)t) [a(t) - % sin(tg)ozz(t)]

=cos((k—u)t) + A,

where
|A] < Ja(®)] + (). (30)
By (29) and £3 < m, we obtain |a(t)] < %.
From this fact, (29) and (30) imply that |A| < 0.7152 37, E|X;PE. O
We are now ready to prove Theorem 1.2.
Proof of Theorem 1.2 Note that
1 (" 1 (7
— / p(t) cos((k — W)t — a(t)) dt=— f o(t) cos((k — W)t — a(t)) dt + Ay, (31)
T Jo T Jo

where Ay = 1 [ p(2) cos((k — )t — a(t)) dt.

g2 _%
By Lemma 2.1, |A| <1 [Tp()dt <1 [Te 2 gy < F—e 2.
From the fact that

o0
2
/ Be 27 gt = (32)
0

ot
and Lemma 3.1, we have

1

- /T p(t)cos((k — w)t — a(t)) dt = 1 /r e 207 cos((k — w)t—a(t))dt + Ay, (33)
0

4 T Jo

where

" T
| As| 50.66722E|Xj|3/ tge_%aztz at
j=1 0

n 00
<0.6672 ) ELX;? / Be 190 gt
0

j=1

1.3344 <

-7y e o
j=1

From (32) and Lemma 3.2, we get

1 [° 1 (T
- / e 2" cos((k — )t — a(t)) dt = — / e 2" cos((k — p)t) dt + As, (35)
T Jo T Jo
where
0.7152 3 [ 5 1,20, 04554 3
|Asl < —— > Elx;| /0 Be 17 gy = - > ElxP. (36)

j=1 j=1
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By(31) and (33)—(36), we obtain

%/0 p(t)cos((k — )t — a(t)) dt = %/ P cos((k — p)t) dt + Ag,

0

where

|Ag] < |A1] + [Ag] + [As]

7 _t%  1.3344 < 0.4554
<—e = + E|X;|? + E|X;|?
2T o? Jzﬂ: 1l ot ,Z=1: 1l

T e 1.7898 <
=—e 2 + E|X;.
2To ot le i

From (10), we can see that

n 00 n 00 00
=2 Z Z Pipbji+1) = <Z Z (- m)zpﬂpjm> <202,

j=1 l=—c0 j=1 \l=—00 m=-00
|l-m|<1

which implies that e~27°%" < =%, From this fact, we get

1

T

® 1 a9 1 [ 129
/ e 27 cos((k — p)t) dt| < —/ e 27" dt
T s T

o0
< l/. e 3 gt
T T

e 1 .2
< — te 2% dt
Tt J,
2 T2Ot

= —e 4 ,
TTH

From this fact and (37) and (38), we have

% /0 p(t) cos((k — W)t — Ol(t)) dt = % / o307 cos((k - ,u)t) dt + As,

0
where
1| [ _1,2p
[As] < [Agl + = e 27" cos((k — p)t) dt
T T
_.m o 17898 iE|X|3 2
o€ ™ + i+ ——e .
T 2t ot = 7 mta
Using the fact that

) 1 2
_/ e_atz COS(bt) dt=— Ze_i_a fora>0
0 2V a

37)

(38)

(39)

(40)
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(see [13], p. 7), we obtain

1 _tew?

1
e 2072 . (41)

© 1 2.2
—f e 27 cos((k — p)t) dt =

T Jo o 21

By (23), (39), (40), and (41), we can conclude that

_lew?
P(S,=k)= e 22 4+ /g,
o2
2
2.2075 S 1.7898 N\ 3
where |Ag| < =520 — + =05 Z}.:IE|X/| . d

Proof of Theorem 1.3 Let Y; = )% — 4. Then
/L na o?
Y; , Vi Yi|=—

P(S,,:na+kb)=P< szk)
1

j=

and

X;

(Y k) P(;_E_k) (}—Il+bk)

Since b is maximal, we have o = 377, & > 0,
where o; = 2 fo_oopjzpj(ul), pji = P(Xj =a+bl).
From Theorem 1.2, we obtain Theorem 1.3. O

4 Examples of the main results

In this section, we give applications including Poisson binomial, binomial, and negative
binomial that our main theorems can be applied as shown in Example 1-Example 3. In
addition, the example that our main results can be applied to, unlike the result of Petrov

[1], as shown in Example 4.

Example 1 1f X1,X,,...,X, are independent Bernoulli random variables with P(X; = 1) =
pj and P(X; = 0) = g;, where p; + g; = 1 for j = 1,2,...,n, S, is a Poisson binomial random
variable. Then

_L
& :; 11.03753/ﬁe s0m (Y , 17898y

o2 o2 o?

P(S, =k) - (42)

where =37, pjand o= > P

Proof Note that E|X;|> = p; and

o= Z%—ZZZPIZPJIH

j=1 1=0
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n 1
:222P(X,:l)P(X,-zl+1)

j=1 1=0

=2) P(X;=0)P(X;=1)
j=1

n
=2) pa
j=1
=202

Hence, by Theorem 1.2, we see that (42) holds. O

Example 2 Let S,, ~ Bi(p). Then

npq

P(S, - 1) 1 w2 11.0375 y/pe (¥ 17898
— - e , =< + .
! V2rnpq n%pq npq*

Proof We can apply Example 1 by letting p; = p and g, = q. 0

Observe that the results in Example 1 and Example 2 have the same order as (3) and (4)
but the constants are bigger. However, (3) and (4) cannot be applied with the following
example.

Example 3 If X1,X5,...,X, are i.i.d. geometric random variables with parameter p. Then

P(S, =k - L
=k) - e
" 2mq
_ ”534
_ 11.0375(1 + q) V/p? + 6ge sor2 (L) (N np?+60)% ] 7898p(p® + 64) (43)
= + ’
n3 g ng?*
where g=1-p.
Proof Let v be the characteristic function of X;. Then v (t) = -2 eiti and
] 1-geit
5O = ipe't(q*e* + 4ge + 1)
(1 -ge*)*

®@ 2+6
Hence, EX® = wl—;) = 1%.
Note that

oo o0
@=2nY pupi =21y PXy=DP(X;=1+1)
I=1 =1

~o

M2

v
q

21

=2n q

~
Il
—

2npq
l+g

Hence, by Theorem 1.4, we get (43). O
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Example 4 Let X, be a sequence of independent random variables such that

3 3
P()(}:O)z ,P()(]=1)=§ and P()(/=2)=§

NNy

forallj=1,2,...,n. Then

0.5111 k—9nm)2 0.069 1 16.2671
‘p(sn k) - o | < T ero0omnd 200 (44)
n3 n
Proof Note that E|X;|* = %, ES, = %”, Var$, = ?’6%“, and
n n 2
o= Z%’ =2 Z ij,lpj,m
j=1 j=1 1=0
n 2
=ZZZP(X]»:1)P(X,-:I+ 1)
j=1 1=0
n
=2) "(P(X; = 0)P(X; = 1) + P(X; = 1)P(X; = 2))
j=1
n
1 3 3 3
=2 — — o+ — —
2(4 “gtg” 8)
j=1
B 15n
C 32
Hence, by Theorem 1.2, we see that (44) holds. O

One can see that Theorem 1.2 can be applied to Example 4 and get the rate of conver-
gence O(%), but Petrov’s theorem [1] cannot be applied because this example does not

satisfy its assumption 3.
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