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Abstract
Quadratic programming is potentially capable of strategic decision making in real
world problems. However, practical problems rarely conform to crisp parameters, and
hence the prospects of these problems with inexact parameters are inevitably higher.
The existing studies regarding public welfare schemes/ organizations reveal that their
objectives end up as minimization of cost functions and are governed by linear or
concave quadratic programming problems. The present study proposes a method
that can be applied to concave type quadratic objective function subject to linear
constraints with inexact parameters. A comparison is also drawn with existing
methods to establish its simplicity and efficiency. Further, a numerical example is
illustrated, and finally, a waste management problem is formulated and solved using
the proposed method.
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1 Introduction
Waste management (WM) problem is paramount, in particular, both to the public and en-
vironment. Human rate of consumption and consequently production of various wastes
has far outrun nature’s capacity to rejuvenate. Improper handling of the problem can cause
considerable damage and can even trigger a catastrophic situation. WM affects our daily
activities and is of prime concern to the environmentalists, administrators, and industry.
The WM issue has drawn huge attention from researchers with focus on different aspects
of this problem. Mathematicians, in particular, are trying to fit a suitable programming
model with imprecise parameters, which can in general be applied to WM. Primarily, lin-
ear programming (LP) model with interval parameters happens to be the first choice due
to its simplicity. These models have been used to find solution of many real life problems
viz. WM, ground water allocation, and flood control.

There have been many studies related to WM on various directions. Chang and Lu [1]
worked on creating WM planning alternatives in view of fuzzy environmental resources.
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Further, Sakai and Hiraoka [2] investigated WM solution by focussing on recycling of in-
cinerator residue. Thereafter, Cai et al. [3] proposed a model with a combination of in-
terval, fuzzy, and stochastic approach for WM. Next, Fan et al. [4] introduced a solution
method for fuzzy LP to reduce computational requirements in the WM problem. Sun et
al. [5] worked on the WM problem using a constrained quadratic model and provided an
effective tool for reflecting system cost variations. Further, Tan et al. [6] identified optimal
plans in fuzzy environment using a two-step solution method. On a different note, Lu et
al. [7] and He et al. [8] focussed on controlling gas emission in WM using dynamic op-
timization and mixed integer programming approach, respectively. Thereafter, Astrup et
al. [9] investigated the incinerator performance linked to emissions and residues. Li and
Chen [10] suggested fuzzy stochastic interval parameters in LP model for WM. Next, Fan
and Huang [11] proposed a two-step method for WM to avoid loss of decision related in-
formation, while Li and Huang [12] demonstrated a robust quadratic programming model
to handle long term WM planning and decisions. Later, Ionescu et al. [13] stressed on an
integrated WM model using pretreatment and revenue generating processes. Rada et al.
[14] proposed an integrated solution for WM by maintaining a balance between energy
and environment. Next, Xu et al. [15] presented a model to deal with possibilistic or prob-
abilistic uncertainties and tackle complexities derived from capacity-expansion issues.

In reference to the various methodologies proposed in the literature, Sugimoto et al.
[16] introduced a parallel relaxation method for quadratic programming problems. Later,
Van Thorai [17] presented a finite branch and bound algorithm as an optimization tech-
nique for a quadratic programming problem. Further, Gao et al. [18] proposed a rectangle
branch and reduce approach for faster convergence of nonconvex quadratic programming
algorithm. Next, Liu and Wang [19] proposed a numerical solution method for interval
quadratic programming. Fan et al. [20] illustrated an effective robust method for interval
LP in uncertain environmental decision making. Thereafter, Fan et al. [21] described gen-
eralized fuzzy method for uncertainties in the form of fuzzy sets and developed a method
using α-cut and membership functions.

On a different note, Atalay and Apaydin [22] suggested a method based on gamma dis-
tribution for stochastic programming model while a method for nonlinearly optimization
using quadratic programming was proposed by Zhu et al. [23]. Next, an algorithm for gen-
eralized vector quasi-complementarity problems with an application to traffic network
problems was proposed by Van Hung et al. [24]. Recently, Van Hung et al. [25] discussed
convergence of solution sets for fuzzy optimization problems, and then a new class of
generalized multiobjective games with fuzzy mappings was proposed by Van Hung et al.
[26]. Further, Van Hung and Keller [27] improvised the traffic network problem in [24]
to a traffic network under uncertainty by establishing convergence of fuzzy vector quasi-
optimization problems.

In the present day scenario of a continuously changing and competitive market, the de-
cision making has to be handled with utmost care when crisp parameters fail to provide a
satisfactory solution. The volatile data in practical problems can be conveniently accom-
modated using interval parameters in comparison to all other types of imprecise param-
eters. Using interval parameters in an LP model, Li et al. [28] studied flood control plan-
ning. Further, Li and Huang [29] introduced a stochastic quadratic programming method
to handle uncertainties and nonlinearities in water management. Later, Fan et al. [30] ex-
plained a generalized fuzzy LP model for air quality management. Further, Jin et al. [31]
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investigated allocation of water for irrigation purposes. Miao et al. [32] worked on an in-
terval fuzzy programming method for water resource planning. An inexact water quality
management model supporting economic and environmental management was proposed
by Zhang et al. [33]. Thereafter, Huang et al. [34] studied controlling of noise in urban
localities with the help of interval data. Though the LP models with interval parameters
take care of the uncertainty part, governing all costs by a constant function may not tackle
every practical situation.

As an application to WM under imprecise environment with linearly decreasing costs,
Chen and Huang [35] initiated the application of quadratic programming problem using
inexact parameters. The solution of resulting concave quadratic programming problem
was found by applying derivative algorithm. The WM problem was further investigated by
Kong et al. [36] and solved using duality approach in an effort to give an alternate method.
However, duality results are applicable under certain conditions without which the re-
sults are misleading and do not comply with the characteristics of duality theorem. The
present article not only provides an alternate strategy to tackle the WM problem, but also
highlights and rectifies the discrepancy in Kong et al. [36].

The proposed algorithm is based on a two-level interval programming procedure which
ultimately yields an interval solution of the given problem. The remaining part of the ar-
ticle is organized as follows. Section 2 reviews some basic definitions. Section 3 develops
a methodology to solve inexact concave quadratic programming problems. Section 4 il-
lustrates an example to display the steps involved in the proposed methodology. Section 5
deals with the application of inexact quadratic programming in the WM problem using
the proposed approach. Next, a counterexample is constructed to describe the discrep-
ancy in Kong et al. [36]. Further, computational efficiency of the proposed algorithm and
some limitations of the inexact quadratic programming model are also discussed. Finally,
conclusions with some future directions are presented in Sect. 6.

2 Basic definitions
Throughout the paper, R denotes the set of real numbers. Some of the definitions related
to interval parameters are given below.

Definition 2.1 ([36]) An interval number A± is defined as an interval with known upper
and lower bounds, but unknown distribution information and is defined as follows:

A± =
[
A–, A+]

=
[
a ∈R|A– ≤ a ≤ A+]

,

where A– and A+ are the lower and upper bounds of A±, respectively.

Arithmetic operations on intervals
Suppose that A± and B± are two intervals, then for k1, k2 ∈ R,

k1
[
A–, A+]

+ k2
[
B–, B+]

=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

[k1A– + k1B–, k1A+ + k2B+] if k1 ≥ 0, k2 ≥ 0,

[k1A– + k2B+, k1A+ + k2B–] if k1 ≥ 0, k2 ≤ 0,

[k1A+ + k2B–, k1A– + k2B+] if k1 ≤ 0, k2 ≥ 0,

[k1A+ + k2A+, k1A– + k2B–] if k1 ≤ 0, k2 ≤ 0.
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Definition 2.2 ([36]) The ordering on two intervals A± and B± is defined as follows:

A± ≤ B± iff A– ≤ B– and A+ ≤ B+,

A± < B± iff A– < B– and A+ < B+.

3 The inexact quadratic programming problem
To capture real world uncertainties, usual precise parameters do not serve the purpose.
Among various methods to handle imprecise data, use of inexact or interval parameters is
one of the simplest ways to handle realistic problems. An inexact quadratic programming
problem can be formulated in the following manner:

Minimize Z =
n∑

j=1

(
C±

j xj + D±
j x2

j
)

(IQP)

subject to
n∑

j=1

A±
ij xj ≤ B±

i , i = 1, 2, . . . , m, xj ≥ 0, j = 1, 2, . . . , n,

where, for all i and j, C±
j = [C–

j , C+
j ], D±

j = [D–
j , D+

j ], A±
ij = [A–

ij , A+
ij], and B±

i = [B–
i , B+

i ]. Fur-
ther, it is assumed that D+

j ≤ 0 for all j.
As Z fluctuates due to inexact parameters in an objective function as well as in con-

straints, it lies between two values Z– and Z+ (say), that is, Z = [Z–, Z+]. Now, to obtain
these lower and the upper bounds of (IQP), the problem is further divided into the follow-
ing two sub-problems:

Z– = min
S

(

min
x

( n∑

j=1

(
Cjxj + Djx2

j
)
)

(LIQP)

subject to
n∑

j=1

Aijxj ≤ Bi, xj ≥ 0, i = 1, 2, . . . , m, j = 1, 2, . . . , n

)

and

Z+ = max
S

(

min
x

( n∑

j=1

(
Cjxj + Djx2

j
)
)

(UIQP)

subject to
n∑

j=1

Aijxj ≤ Bi, xj ≥ 0, i = 1, 2, . . . , m, j = 1, 2, . . . , n

)

,

where S = {(Cj, Dj, Aij, Bi)|Cj ∈ [C–
j , C+

j ], Dj ∈ [D–
j , D+

j ], Aij ∈ [A–
ij , A+

ij], Bi ∈ [B–
i , B+

i ],∀i
and j}.

Now, both the problems above involve bi-level optimization criteria (max-min type for
Z+ and min-min type for Z–) with varying feasible region. Hence, to compute the bounds,
it is necessary to convert these problems into single level optimization models with fixed
feasible region. Before discussing the equivalent problems to evaluate these bounds, first
we shall compute the smallest and largest feasible region of the problem (IQP). Consider
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the following extreme cases of the feasible region:

S1 =

{

x ∈R
n
∣∣
∣∣

n∑

j=1

A+
ijxj ≤ B–

i , xj ≥ 0,∀i, j

}

,

S2 =

{

x ∈R
n
∣∣
∣∣

n∑

j=1

A–
ijxj ≤ B+

i , xj ≥ 0,∀i, j

}

,

S3 =

{

x ∈R
n
∣∣
∣∣

n∑

j=1

A+
ijxj ≤ B+

i , xj ≥ 0,∀i, j

}

,

S4 =

{

x ∈R
n
∣∣
∣∣

n∑

j=1

A–
ijxj ≤ B–

i , xj ≥ 0,∀i, j

}

.

Let x ∈ S1 and as A–
ij ≤ A+

ij , B–
i ≤ B+

i ,∀i and j, therefore

n∑

j=1

A–
ijxj ≤

n∑

j=1

A+
ijxj ≤ B–

i ≤ B+
i , ∀i.

Hence, by the above inequality x ∈ S2. Similarly, x ∈ S3 implies x ∈ S2 and x ∈ S4 yields
x ∈ S2. This implies S1 ∪ S2 ∪ S3 ∪ S4 = S2. Thus, the largest feasible region of (IQP) is S2.
Further, x ∈ S1 yields x ∈ S2, x ∈ S3, and x ∈ S4. That is, S1 ⊆ S2, S1 ⊆ S3, S1 ⊆ S4 and hence
S1 ∩ S2 ∩ S3 ∩ S4 = S1. This proves that the smallest feasible region of (IQP) is S1.

Next, we shall discuss the problems to evaluate Z– and Z+.

3.1 Model to compute Z–

Observe the following facts about the problem (LIQP):
1. It has the same nature of optimization (min-min type).
2. C–

j ≤ Cj, D–
j ≤ Dj, xj ≥ 0 for all j and hence

n∑

j=1

(
C–

j xj + D–
j x2

j
) ≤

n∑

j=1

(
Cjxj + Djx2

j
)
.

3. Among all the feasible regions, the largest feasible region S2 defined by the
constraints of the problem (LIQP) yields the best minimum value of the objective
function,

it finally reduces to

Z– = min
x

( n∑

j=1

(
C–

j xj + D–
j x2

j
)
)

(LIQPP)

subject to
n∑

j=1

A–
ijxj ≤ B+

i , i = 1, 2, . . . , m, xj ≥ 0, j = 1, 2, . . . , n.

3.2 Model to compute Z+

To solve (UIQP), which involves different nature of optimization viz. max-min type, we
proceed as follows:



Mahajan et al. Journal of Inequalities and Applications         (2021) 2021:60 Page 6 of 19

As Cj ≤ C+
j , Dj ≤ D+

j , and xj ≥ 0 for all j, therefore

n∑

j=1

(
Cjxj + Djx2

j
) ≤

n∑

j=1

(
C+

j xj + D+
j x2

j
)
.

This further implies

min
x

( n∑

j=1

(
Cjxj + Djx2

j
)
)

≤ min
x

( n∑

j=1

(
C+

j xj + D+
j x2

j
)
)

.

Hence

max
S

(

min
x

( n∑

j=1

(
Cjxj + Djx2

j
)
))

= max
S′

(

min
x

( n∑

j=1

(
C+

j xj + D+
j x2

j
)
))

,

where S′ = {(Aij, Bi)|Aij ∈ [A–
ij , A+

ij], Bi ∈ [B–
i , B+

i ],∀i and j}.
Therefore, the problem (UIQP) is equivalent to

Z+ = max
S′

(

min
x

( n∑

j=1

(
C+

j xj + D+
j x2

j
)
))

subject to
n∑

j=1

Aijxj ≤ Bi, xj ≥ 0, i = 1, 2, . . . , m, j = 1, 2, . . . , n.

Further, from the varying feasible regions, following best/ worst value criterion, we get

min
S2,x

( n∑

j=1

(
C+

j xj + D+
j x2

j
)
)

≤ min
S′ ,x

( n∑

j=1

(
C+

j xj + D+
j x2

j
)
)

≤ min
S1,x

( n∑

j=1

(
C+

j xj + D+
j x2

j
)
)

This yields

max
S′

(

min
x

( n∑

j=1

(
C+

j xj + D+
j x2

j
)
))

= min
S1,x

( n∑

j=1

(
C+

j xj + D+
j x2

j
)
)

.

That is, out of all the possible, feasible regions corresponding to S′, the best value of Z+

will be obtained over the smallest region S1 since it gives the worst value of

min
x

( n∑

j=1

(
C+

j xj + D+
j x2

j
)
)

.

So, the problem of finding Z+ is finally reduced to

Z+ = min
x

( n∑

j=1

(
C+

j xj + D+
j x2

j
)
)

(UIQPP)

subject to
n∑

j=1

A+
ijxj ≤ B–

i , i = 1, 2, . . . , m, xj ≥ 0, j = 1, 2, . . . , n.
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Figure 1 Flow chart of proposed algorithm

Remark 1
1. It is to be noted that, for all j, D–

j ≤ 0 and D+
j ≤ 0, which yield that the Hessian

matrices of the problems (LIQPP) and (UIQPP) are negative semi-definite, and hence
the problems are concave optimization models.

2. Due to the concave nature of the objective functions of (LIQPP) and (UIQPP), duality
theory is also not applicable as shown in Kong et al. [36].

The following theorem guarantees the global optimal solution if the objective function
(minimization type) is concave.

Theorem 1 ([37]) Consider the following problem:

Minimize Z(x) (P)

over S =
{

x : Gi(x) ≤ 0, i = 1, 2, . . . , m
}

,

where Z is a concave function defined onR
n, Gi, (i = 1, 2, . . . , m) are convex functions defined

on R
n whose gradients are continuous, and S is compact such that a point in the strict

interior of the feasible region exists. Then there exists an extreme point x̂ of the convex
compact set S which globally minimizes the problem (P).

Flow chart representation of the proposed algorithm can be viewed in Fig. 1.

4 Numerical example

Minimize f = [2, 5]x1 + [3, 4]x2 – [3, 6]x2
1 – [4, 5]x2

2

subject to [2, 3]x1 + [3, 4]x2 ≤ [10, 12],

[2, 3]x1 + [1, 2]x2 ≥ [4, 6],
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x1, x2 ≥ 0.

Solution: Using LIQPP and UIQPP models to find lower and upper bound, respectively,
the two subproblems are:

Lower bound : f – = Minimize 2x1 + 3x2 – 6x2
1 – 5x2

2

subject to 2x1 + 3x2 ≤ 12,

3x1 + 2x2 ≥ 4,

x1, x2 ≥ 0,

Upper bound : f + = Minimize 5x1 + 4x2 – 3x2
1 – 4x2

2

subject to 3x1 + 4x2 ≤ 10,

2x1 + x2 ≥ 6,

x1, x2 ≥ 0.

Noting that the objective functions of the above problems are negative semi-definite,
the model happens to be concave optimization. Using MAPLE-12, we get f – = –204 (at
x1 = 6, x2 = 0) and f + = –16.67 (at x1 = 3.33, x2 = 0). Hence, f = [–204, –16.67].

5 Application to waste management
The proposed method is applied to a WM study (Fig. 2) on three localities and two WM
facilities viz. the landfill and the incinerator. Total time span is fifteen years, which is split
into three time spans of five years each. Due to impreciseness in all of collection and trans-
portation costs, landfill and incinerator operating costs, residue disposal cost, and earn-
ings from generated energy sales, an interval quadratic programming model is most ap-
propriate. The capacity of the landfill is approximately 3.75×106 to 4.00×106 tonnes and
the incinerator capacity is 500 to 650 tonnes per day. It is observed that the incinerator
leaves residues of nearly 30% of the incoming waste. The problem is to allocate appropri-
ate waste flows from the localities to the suitable facility while minimizing the aggregate
cost.

Taking into account the transportation costs, running costs of facilities, and earnings
from energy generated out of the incinerator as some of the factors while determining the
problem, the IQP problem to be investigated is formulated as follows:

Minimize f = the sum of
(1) Collection and transportation cost:

∑2
i=1

∑3
j=1

∑3
k=1 LkTR±

ijkxijk ,
(2) Running cost of the landfill/ incinerator:

∑2
i=1

∑3
j=1

∑3
k=1 LkOP±

ikxijk ,
(3) Cost of disposal of incinerator residue in the landfill:

∑3
j=1

∑3
k=1 LkFE(FT±

k + OP±
2k)x2jk ,

(4) Earnings from sale of energy: –
∑3

j=1
∑3

k=1 LkRE±
k x2jk

subject to
(I) Landfill capacity constraint:

∑3
j=1

∑3
k=1 Lk(x1jk + FEx2jk) ≤ TL±,

(II) Incinerator capacity constraint:
∑3

j=1 x2jk ≤ TE±
k ,∀k,

(III) Waste disposal demand constraint:
∑2

i=1 xijk ≥ WG±
jk ,∀j, k,

(IV) Nonnegativity constraint: xijk ≥ 0,∀i, j, k.
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Figure 2 Waste management system

Table 1 Waste generation data (in tonnes/day)

Time span (k = 1) Time span (k = 2) Time span (k = 3)

WG±
1k [250, 350] [300, 400] [350, 440]

WG±
2k [150, 250] [185, 265] [215, 285]

WG±
3k [250, 350] [250, 350] [300, 400]

Table 2 Facility running cost (in dollars)

Time span (k = 1) Time span (k = 2) Time span (k = 3)

OP±
1k [35, 37.5] [50, 53] [64, 65]

OP±
2k [62.5, 63] [75, 77] [83.5, 87.5]

where:
f is the aggregate cost of waste disposal ($),
i = 1, 2 stands for the facility; (1 for the landfill and 2 for the incinerator),
j = 1, 2, 3 stands for the locality,
k = 1, 2, 3 stands for the time span,
Lk is length of the time span k (=1825 days for all k),
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Table 3 Waste transportation cost (in dollars)

Time span (k = 1) Time span (k = 2) Time span (k = 3)

TR±
11k [–0.0161X + 15.08, [–0.0181X + 16.02, [–0.0195X + 17.65,

–0.0121X + 19.50] –0.0139X + 21.30] –0.0146X + 23.45]
TR±

12k [–0.0142X + 12.63, [–0.0146X + 13.92, [–0.0169X + 15.31,
–0.0105X + 16.89] –0.0116X + 18.58] –0.0127X + 20.35]

TR±
13k [–0.0170X + 15.30, [–0.0188X + 16.84, [–0.0209X + 18.45,

–0.0130X + 20.50] –0.0142X + 22.54] –0.0158X + 24.70]
TR±

21k [–0.0130X + 11.55, [–0.0144X + 12.75, [–0.0155X + 14.01,
–0.0098X + 15.40] –0.0109X + 16.97] –0.0118X + 18.66]

TR±
22k [–0.0136X + 12.17, [–0.0149X + 13.40, [–0.0164X + 14.75,

–0.0103X + 16.15] –0.0113X + 17.75] –0.0124X + 19.55]
TR±

23k [–0.0120X + 10.05, [–0.0130X + 11.65, [–0.0143X + 12.83,
–0.0090X + 14.02] –0.0098X + 15.52] –0.0108X + 17.06]

Table 4 Transportation cost from the incinerator to the landfill (in dollars)

Time span (k = 1) Time span (k = 2) Time span (k = 3)

FT±
k [–0.0065X + 5.70, [–0.0070X + 6.27, [–0.0076X + 6.90,

–0.0047X + 7.65] –0.0055X + 8.38] –0.0058X + 9.25]

Table 5 Earnings (dollars) and capacity of the incinerator (in tonnes/day)

Time span (k = 1) Time span (k = 2) Time span (k = 3)

RE±
k [15, 20] [15, 20] [15, 20]

TE±
k [500, 650] [500, 650] [500, 650]

xijk is the waste transferred to facility i from locality j during time span k (tonnes/day),
TR±

ijk is collection and transportation cost from locality j to facility i during time span
k ($/tonne),
OP±

ik is running cost of facility i during time span k ($/tonne),
FE is residue flow rate from the incinerator to the landfill (30%),
FT±

k is transportation cost for residue from the incinerator to the landfill during time
span k ($/tonne),
RE±

k is earnings from the incinerator in time span k ($/tonne),
TL± is capacity of the landfill (3.75 × 106 – 4.00 × 106 tonnes),
TE±

k is capacity of the incinerator in time span k (tonnes/day),
WG±

jk is waste generation rate in locality j during time span k (tonnes/day).

The waste collection and transportation cost are governed by market trend of decreas-
ing linear functions, and in particular for locality 1, represented by Figs. 3–6. Similarly,
transportation cost for residue from the incinerator to the landfill is also observed follow-
ing decreasing linear function trend.

Using data in the given model from Tables 1–5, the inexact quadratic programming
problem becomes:

minimize f = 1825
(
[50.08, 57]x111 + [74.51, 84.595]x211 + [47.63, 54.39]x121

+ [75.13, 85.345]x221 + [50.30, 58]x131 + [73.01, 83.215]x231

+ [66.02, 74.3]x112 + [92.13, 104.584]x212 + [63.92, 71.58]x122

+ [92.78, 105.364]x222 + [66.84, 75.54]x132 + [91.03, 103.13]x232
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Figure 3 Lower bound of waste collection and transfer cost from locality 1 to the landfill

Figure 4 Upper bound of waste collection and transfer cost from locality 1 to the landfill

+ [81.65, 88.45]x113 + [104.63, 120.19]x213 + [79.31, 85.35]x123

+ [105.37, 121.075]x223 + [82.45, 89.7]x133 + [103.45, 118.585]x233

+ [–0.0161, –0.0121]x2
111 + [–0.01495, –0.01121]x2

211

+ [–0.0142, –0.0105]x2
121 + [–0.01555, –0.01441]x2

221

+ [–0.0170, –0.0130]x2
131 + [–0.01395, –0.01041]x2

231

+ [–0.0181, –0.0139]x2
112 + [–0.0165, –0.01255]x2

212

+ [–0.0146, –0.0116]x2
122 + [–0.017, –0.01295]x2

222

+ [–0.0188, –0.0142]x2
132 + [–0.0151, –0.01145]x2

232

+ [–0.0195, –0.0146]x2
113 + [–0.01778, –0.01354]x2

213

+ [–0.0169, –0.0127]x2
123 + [–0.01868, –0.01414]x2

223
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Figure 5 Lower bound of waste collection and transfer cost from locality 1 to the incinerator

Figure 6 Upper bound of waste collection and transfer cost from locality 1 to incinerator

+ [–0.0209, –0.0158]x2
133 + [–0.01658, –0.01254]x2

233
)

subject to

1825
(
x111 + x121 + x131 + x112 + x122 + x132 + x113 + x123 + x133

+ 0.3(x211 + x221 + x231 + x212 + x222 + x232 + x213 + x223 + x233)
)

≤ [3.75, 4.00] × 106,

x211 + x221 + x231 ≤ [500, 650],

x212 + x222 + x232 ≤ [500, 650],

x213 + x223 + x233 ≤ [500, 650],

x111 + x211 ≥ [250, 350],

x121 + x221 ≥ [150, 250],
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x131 + x231 ≥ [250, 350],

x112 + x212 ≥ [300, 400],

x122 + x222 ≥ [185, 265],

x132 + x232 ≥ [250, 350],

x113 + x213 ≥ [350, 440],

x123 + x223 ≥ [215, 285],

x133 + x233 ≥ [300, 400],

xijk ≥ 0 ∀i, j, k.

Now, using the model (LIQPP), we have

f – = min
x

(
1825

(
50.08x111 + 74.51x211 + 47.63x121 + 75.13x221 + 50.30x131

+ 73.01x231 + 66.02x112 + 92.131x212 + 63.92x122 + 92.781x222 + 66.84x132

+ 91.031x232 + 81.65x113 + 104.63x213 + 79.31x123 + 105.37x223 + 82.45x133

+ 103.45x233 – 0.0161x2
111 – 0.01495x2

211 – 0.0142x2
121 – 0.01555x2

221

– 0.0170x2
131 – 0.01395x2

231 – 0.0181x2
112 – 0.0165x2

212 – 0.0146x2
122 – 0.017x2

222

– 0.0188x2
132 – 0.0151x2

232 – 0.0195x2
113 – 0.01778x2

213 – 0.0169x2
123 – 0.01868x2

223

– 0.0209x2
133 – 0.01658x2

233
))

subject to

1825
(
x111 + x121 + x131 + x112 + x122 + x132 + x113 + x123 + x133

+ 0.3(x211 + x221 + x231 + x212 + x222 + x232 + x213 + x223 + x233)
)

≤ 4.00 × 106,

x211 + x221 + x231 ≤ 650,

x212 + x222 + x232 ≤ 650,

x213 + x223 + x233 ≤ 650,

x111 + x211 ≥ 250,

x121 + x221 ≥ 150,

x131 + x231 ≥ 250,

x112 + x212 ≥ 300,

x122 + x222 ≥ 185,

x132 + x232 ≥ 250,

x113 + x213 ≥ 350,

x123 + x223 ≥ 215,
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Table 6 Optimal values of variables for lower bound f –

Time span (k) Facility type (i) Locality (j) Optimum waste allocation (tonnes)

1 1 1 x111 = 250
2 x121 = 150
3 x131 = 250

2 1 x211 = 0
2 x221 = 0
3 x231 = 0

2 1 1 x112 = 300
2 x122 = 102
3 x132 = 250

2 1 x212 = 0
2 x222 = 83
3 x232 = 0

3 1 1 x113 = 350
2 x123 = 215
3 x133 = 300

2 1 x213 = 0
2 x223 = 0
3 x233 = 0

Lower bound f – $260,670,295

x133 + x233 ≥ 300,

xijk ≥ 0 ∀i, j, k.

Solving using MAPLE-12, f – = $260,670,295 at the values given in Table 6.
Further, using the model (UIQPP) for upper bound, we obtain

f + = min
x

(
1825

(
57x111 + 84.595x211 + 54.39x121 + 85.345x221 + 58x131 + 83.215x231

+ 74.3x112 + 105.584x212 + 71.58x122 + 105.364x222 + 75.54x132 + 103.134x232

+ 88, 45x113 + 120.185x213 + 85.35x123 + 121.075x223 + 89.7x133 + 118.585x233

– 0.0121x2
111 – 0.01121x2

211 – 0.0105x2
121 – 0.01441x2

221 – 0.0130x2
131

– 0.01041x2
231 – 0.0139x2

112 – 0.01255x2
212 – 0.0116x2

122 – 0.01295x2
222

– 0.0142x2
132 – 0.01145x2

232 – 0.0146x2
113 – 0.01354x2

213

– 0.0127x2
123 – 0.01414x2

223 – 0.0158x2
133 – 0.01254x2

233
))

subject to

1825
(
x111 + x121 + x131 + x112 + x122 + x132 + x113 + x123 + x133

+ 0.3(x211 + x221 + x231 + x212 + x222 + x232 + x213 + x223 + x233)
)

≤ 3.75 × 106,

x211 + x221 + x231 ≤ 500,

x212 + x222 + x232 ≤ 500,

x213 + x223 + x233 ≤ 500,

x111 + x211 ≥ 350,
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Table 7 Optimal values of variables for upper bound f+

Time span (k) Facility type (i) Locality (j) Optimum waste allocation (tonnes)

1 1 1 x111 = 0
2 x121 = 250
3 x131 = 200

2 1 x211 = 350
2 x221 = 0
3 x231 = 150

2 1 1 x112 = 0
2 x122 = 165
3 x132 = 350

2 1 x212 = 400
2 x222 = 100
3 x232 = 0

3 1 1 x113 = 0
2 x123 = 285
3 x133 = 361

2 1 x213 = 440
2 x223 = 0
3 x233 = 39

Upper bound f+ $473,418,686

x121 + x221 ≥ 250,

x131 + x231 ≥ 350,

x112 + x212 ≥ 400,

x122 + x222 ≥ 265,

x132 + x232 ≥ 350,

x113 + x213 ≥ 440,

x123 + x223 ≥ 285,

x133 + x233 ≥ 400,

xijk ≥ 0 ∀i, j, k.

It yields f + = $473,418,686 (using MAPLE-12). The values at which the function attains
the upper limit are given in Table 7. The graphical interpretation of the results can be seen
in Figs. 7–8. Here, LF stands for the landfill and IC stands for the incinerator.

Remark 2 The objective functions of the given WM problem dealing with f – and f + are of
minimization type with Hessian matrices as diagonal of order 18 × 18 having all negative
entries. This shows that the problems are having concave type objective functions subject
to linear equations. Further, if we apply the duality principle for the concave minimiza-
tion type objective function subject to linear constraints, the optimal values of the two
problems may not be the same. For instance, consider the following example:

Min f (x) = –x2 – y2 + x + y (E1)

subject to 0 ≤ x ≤ 1, 0 ≤ y ≤ 1.

It is to be noticed that the objective function in (E1) is concave subject to linear inequali-
ties. Directly solving the problem, we get x = 1, y = 1, and f (x) = 0 as the optimal solution.
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Figure 7 Amount of waste allocation to achieve f –

Figure 8 Amount of waste allocation to achieve f+

However, on applying duality, we obtain

Max f (x) = x2 + y2 – λ1 – λ2 (E2)

subject to – 2x + λ1 – δ1 = –1,

– 2y + λ2 – δ2 = –1,

x ≥ 0, y ≥ 0,λ1 ≥ 0,λ2 ≥ 0, δ1 ≥ 0, δ2 ≥ 0,

which after solving yields x = 0.5, y = 0.5, and f (x) = 0.5. This implies that the optimal val-
ues of (E1) and (E2) are not the same. It shows that duality is not applicable in (E1) as it is
not a convex optimization problem (see p. 232, Bazaraa et al. [38]).
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Based on the above discussion, it can be concluded that the implementation of the dual-
ity based algorithm by Kong et al. [36] to a WM problem governed by an inexact concave
quadratic programming is erroneous. The present article not only develops a method to
solve IQP with concave type objective function, but also removes a deficiency in the exe-
cution of the duality algorithm to the WM problem in Kong et al. [36].

Computational efficiency of the proposed algorithm versus existing methods
In the literature, a vast number of WM problems follow a linear model due to the as-

sumption of constant costs along with imprecise parameters. However, the concave op-
timization models dealing with WM in [12, 35] are tackled by derivative algorithm. Pro-
posed algorithm scores over the existing algorithms in the following sense:

• The derivative algorithm introduced by Chen and Huang [35] involves 2n variables
and 2(m + n) constraints, whereas the proposed algorithm uses only n variables and
m + n constraints, thus leading to a more computationally efficient algorithm.

• The procedure for derivative algorithm in [12, 35] is more cumbersome for
application purposes in comparison to proposed algorithm which requires to identify
only sense of the objective function and signs of squared terms.

• The duality based algorithm proposed by Kong et al. [36] for convex type quadratic
programming problems involves 2n + m variables and 4n + m constraints which are
also significantly higher in comparison to n variables and m + n constraints in the
proposed algorithm.

6 Conclusions
The problems of WM are commonly governed by either LP problems or concave quadratic
programming problems, depending upon constant or decreasing linear cost functions,
respectively. The present article provides a solution methodology to tackle concave
quadratic programming problems having inexact parameters. It is easy to apply and more
computationally efficient in comparison to the derivative algorithm used in Li and Huang
[12], Chen and Huang [35], and duality approach in Kong et al. [36]. Further, the dis-
crepancy in the implementation of the algorithm to the application in the WM problem
by Kong et al. [36] is also removed. In future, it will be interesting to investigate the al-
gorithm for general model of quadratic/ nonlinear programming problem with inexact
parameters and decision variables. Further, parabolic cost functions may be considered
while dealing with application in WM.
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