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Abstract
For nonhomogeneous wavelet bi-frames in a pair of dual spaces (Hs(Rd),H–s(Rd)) with
s �= 0, smoothness and vanishing moment requirements are separated from each
other, that is, one system is for smoothness and the other one for vanishing moments.
This gives us more flexibility to construct nonhomogeneous wavelet bi-frames than
in L2(Rd). In this paper, we introduce the reducing subspaces of Sobolev spaces, and
characterize the nonhomogeneous wavelet bi-frames under the setting of a general
pair of dual reducing subspaces of Sobolev spaces.
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1 Introduction
Most classical nonhomogeneous wavelet systems are derived from a refinable structure
(see [2, 5, 7, 9, 21] and the references therein). To obtain the stability of frames or bi-frames,
some technical restrictions are imposed on refinable masks in this literature. Observe that
for wavelet systems derived from refinable structures, one of the most important features
is their associated fast wavelet transform. Due to lack of a refinable function, the corre-
spondence between the homogeneous systems and fast wavelet transforms is not exact,
while the nonhomogeneous systems are different. Moreover, Han in [12] showed that non-
homogeneous wavelet systems are closely related to nonstationary wavelets (see [6, 14]).
Based on these considerations, in this paper, we will dicuss the nonhomogeneous wavelet
bi-frames under the setting of the reducing subspaces of Sobolev spaces.

The notion of frames was first introduced in [10], which dealt with nonharmonic Fourier
series. Let I be a countable set, andH be a separable Hilbert space. The sequence {ei}i∈I ⊂
H is called a Bessel sequence in H if there exists C > 0 such that

∑

i∈I

∣∣〈f , ei〉
∣∣2 ≤ C‖f ‖2 for f ∈H;
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this is called a frame for H if there exist 0 < C1 ≤ C2 < +∞ such that

C1‖f ‖2 ≤
∑

i∈I

∣∣〈f , ei〉
∣∣2 ≤ C2‖f ‖2 for f ∈H.

Given two frames {ei}i∈I and {ẽi}i∈I for H, we call {ẽi}i∈I a dual of {ei}i∈I if

f =
∑

i∈I
〈f , ẽi〉ei for f ∈H. (1.1)

It is easy to check that (1.1) is equivalent to

f =
∑

i∈I
〈f , ei〉ẽi for f ∈H.

So, in the case, we also say ({ei}i∈I , {ẽi}i∈I ) is a pair of bi-frames. It is well known that
({ei}i∈I , {ẽi}i∈I ) is a pair of bi-frames for H if {ei}i∈I and {ẽi}i∈I are Bessel sequences sat-
isfying (1.1).

Let d be a positive integer. The Fourier transform of an integrable function f ∈ L1(Rd)
is defined by

f̂ (·) =
∫

Rd
f (x)e–2π i〈x,·〉 dx

and is naturally extended to the tempered distribution spaces, where 〈·, ·〉 means the Eu-
clidean inner product in R

d . Similarly, its inverse Fourier transform is defined as

f̌ =
∫

Rd
f (x)e2π i〈x,·〉 dx.

For functions f and g on R
d , we define

[f , g]t(·) =
∑

k∈Zd

f (· + k)g(· + k)
(
1 + | · +k|2)t , t ∈R,

if it is well-defined in some sense, where | · | denotes its Euclidean norm. We denote by χE

the characteristic function of a Lebesgue measurable set E and by δ the Dirac sequence.
The support of a distribution f on R

d is defined by

supp(f ) =
{

x ∈R
d : f (x) �= 0

}

which is well-defined up to a null set. Given s ∈ R, let Hs(Rd) be the Sobolev space con-
sisting of all tempered distributions f such that

‖f ‖2
Hs(Rd) =

∫

Rd

∣∣f̂ (ξ )
∣∣2(1 + |ξ |2)s dξ < ∞.

It is easy to check that Hs(Rd) is a Hilbert space under the inner product:

〈f , g〉Hs(Rd) =
∫

Rd
f̂ (ξ )ĝ(ξ )

(
1 + |ξ |2)s dξ for f , g ∈ Hs(

R
d).
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In particular, H0(Rd) is the usual Hilbert space L2(Rd) by the Plancherel theorem. More-
over, for every g ∈ H–s(Rd),

〈f , g〉 =
∫

Rd
f̂ (ξ )ĝ(ξ ) dξ for f ∈ Hs(

R
d)

defines a continuous linear functional on Hs(Rd). So the spaces Hs(Rd) and H–s(Rd) con-
stitute a pair of dual spaces.

We say that an integer matrix A is expansive if all its eigenvalues are greater than 1 in
module. Throughout this paper, we always assume that A is isotropic, i.e. A is similar to
a diagonal matrix diag(λ1,λ2, ·,λd) satisfying |λ1| = |λ2| = · = |λd| = |det A| 1

d . We always
denote by A∗ its conjugate transpose for a matrix A. Define a function κ : Zd → Z by

κ(n) = sup
{

j ∈ Z+ : A∗–jn ∈ Z
d}, (1.2)

where Z+ denotes the set of the natural integers. It is obvious that κ(0) = +∞. Define the
shift operator Tk with k ∈ Z

d and the dilation operator by

Tkf (·) = f (· – k) and Df (·) = |det A| 1
2 f (A·)

for a distribution f , respectively. For convenience, we write m = |det A| 1
d , and write

fj,k = DjTkf and f s
j,k = m–jsfj,k

for s ∈ R, j ∈ Z and k ∈ Z
d . Given L ∈ N. Let ψ0 ∈ Hs(Rd) be a tempered distribution,

and 	 = {ψ1, . . . ,ψL} ⊂ Hs(Rd) a finite set of tempered distributions, we denote the ho-
mogeneous wavelet system Xs(	) and the nonhomogeneous wavelet system Xs(ψ0;	) in
Hs(Rd), respectively, by

Xs(	) =
{
ψ s

l,j,k : j ∈ Z, k ∈ Z
d, l = 1, . . . , L

}
(1.3)

and

Xs(ψ0;	) =
{
ψ0,0,k : k ∈ Z

d} ∪ {
ψ s

l,j,k : j ∈ Z+, k ∈ Z
d, l = 1, . . . , L

}
. (1.4)

In particular, we write

X0(	) = X(	) and X0(ψ0;	) = X(ψ0;	)

for simplicity.
Han in [15] studied nonhomogeneous wavelet frames in (Hs(Rd), H–s(Rd)). In particu-

lar, when s �= 0 and A is the dyadic matrix 2Id , [15, Theorem 1.1], not only established the
mixed extension principle for nonhomogeneous wavelet bi-frames in (Hs(Rd), H–s(Rd)),
but also characterized the functions in Hs(Rd) and H–s(Rd) using such bi-frames. The
characterization is different from the one in [3, 4], using homogeneous wavelet bi-
frames in L2(Rd). The homogeneous wavelet bi-frames used in [3, 4] are required to have
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vanishing moments and positive regularity simultaneously, however, this pair of compet-
ing requirements can be completely separated for two wavelet systems in nonhomoge-
neous wavelet bi-frames used in [15, Theorem 1.1]. Without loss of generality, assum-
ing that s > 0, then one can demand the synthesis system to adapt the desired order
of regularity, while requiring the analysis system to have the desired order of vanishing
moments to achieve the sparsity. This gives great flexibility in constructing bi-frames in
(Hs(Rd), H–s(Rd)). Two variations of [15, Theorem 1.1] are obtained in [11, Theorem 2.1]
and [20, Theorem 4.1]. Li and Zhang in [18] obtained the following characterization for a
nonhomogeneous wavelet bi-frames of (Hs(Rd), H–s(Rd)).

Proposition 1.1 Let Xs(ψ0;	) and X–s(ψ̃0; 	̃) be Bessel sequences in Hs(Rd) and H–s(Rd),
respectively. Then (Xs(ψ0;	), X–s(ψ̃0; 	̃)) is a nonhomogeneous wavelet bi-frames in
(Hs(Rd), H–s(Rd)) if and only if, for every k ∈ Z

d ,

ψ̂0(·)ψ̂0(· + k) +
L∑

l=1

κ(k)∑

j=0

ψ̂l
((

A∗)–j·) ˆ̃
ψl

((
A∗)–j(· + k)

)
= δ0,k a.e. on R

d. (1.5)

In particular, when s �= 0, Proposition 1.1 reduces to the one in [19, Lemma 2.5], with tak-
ing 
 = R

d . [19, Lemma 2.5], is a variation of [13, Theorems 9, 11] and [1, Proposition 2.3].
[13, Theorems 9, 11] are for frequency-based nonhomogeneous wavelet bi-frames in space
of distribution. And [1, Proposition 2.3], is for wavelet bi-frames in L2(Rd). Observe that
all the above work concerns the whole space Hs(Rd) or L2(Rd). This paper addresses non-
homogeneous wavelet bi-frames under the setting of reducing subspaces of Hs(Rd) which
is more general than Hs(Rd). Now, we introduce the definition of reducing subspaces of
Hs(Rd).

Definition 1.1 Given s ∈R and a d × d expansive matrix A, a nonzero closed linear sub-
space X of Hs(Rd) is called a reducing subspace if DX = X and TkX = X for every k ∈ Z

d ,
and

(
1 +

∣∣(A∗)–1·∣∣2) s
2 X̂ =

(
1 + | · |2) s

2 X̂, (1.6)

where X̂ = {f̂ : f ∈ X}.

Observe that (1.6) is trivial if s = 0. Definition 1.1 is a generalization of the notion of
reducing subspaces of L2(Rd). The following proposition gives a Fourier-domain charac-
terization for reducing subspaces of L2(Rd).

Proposition 1.2 ([8, Theorem 1]) For a d×d expansive matrix A, X is a reducing subspace
of L2(Rd) if and only if X = FL2(
) for some 
 ⊂ R

d with nonzero measure satisfying 
 =
A∗
, where

FL2(
) :=
{

f ∈ L2(
R

d) : supp(f̂ ) ⊂ 

}

.

Before proceeding, let us introduce some notations and notions. For 
 ⊂ R
d with

nonzero measure, we write

FHs(
) =
{

f ∈ Hs(
R

d) : supp(f̂ ) ⊂ 

}

,
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and FH0(
) = FL2(
). Then FHs(Rd) = Hs(Rd). Obviously, for each g ∈ FH–s(
),

〈f , g〉 =
∫

Rd
f̂ (ξ )ĝ(ξ ) dξ for f ∈ FHs(
)

defines a continuous linear functional on FHs(
). Then (FHs(
), FH–s(
)) constitutes a
pair of dual spaces, as we discussed above as regards (Hs(Rd), H–s(Rd)).

Theorem 2.1 in Sect. 2 claims that X is a reducing subspace of Hs(Rd) if and only if
X = FHs(
) for some nonzero measure set 
 ⊂R

d satisfying 
 = A∗
. So, specifically, we
denote as FHs(
) a reducing subspace of Hs(Rd) in place of X.

Next, we introduce the definition of a nonhomogeneous wavelet bi-frames in reduc-
ing subspaces of Sobolev spaces. Let FHs(
) and FH–s(
) be reducing subspaces of
Hs(Rd) and H–s(Rd), respectively. ψ0 ∈ FHs(
), ψ̃0 ∈ FH–s(
), 	 and 	̃ be finite sub-
sets of FHs(
) and FH–s(
), respectively. We say that Xs(ψ0;	) is a nonhomogeneous
wavelet frame (Bessel sequence) in FHs(
) if it is a frame (Bessel sequence) in FHs(
),
and that (Xs(ψ0;	), X–s(ψ̃0; 	̃)) is a nonhomogeneous wavelet bi-frames (NWBFs) in
(FHs(
), FH–s(
)) if

(1) Xs(ψ0;	) is a frame for FHs(
) and X–s(ψ̃0; 	̃) is a frame in FH–s(
);
(2) the identity

〈f , g〉 =
∑

k∈Zd

〈f , ψ̃0,0,k〉〈ψ0,0,k , g〉 +
L∑

l=1

∞∑

j=0

∑

k∈Zd

〈
f , ψ̃–s

l,j,k
〉〈
ψ s

l,j,k , g
〉

(1.7)

holds for all f ∈ FHs(
) and g ∈ FH–s(
).
The notion of NWBFs herein is a direct generalization of the one in [16], which deals with
(Hs(Rd), H–s(Rd)). Observe that Xs(ψ0;	) and X–s(ψ̃0; 	̃) cannot be replaced by X(ψ0,	)
and X(ψ̃0, 	̃) in the above definitions when s �= 0. An argument for this can be found in
[17].

Denote

D =
{

f : f̂ ∈ L∞(
R

d), supp(f̂ ) is bounded
}

.

It is well known that D is dense in Hs(Rd) and D ∩ FHs(
) is dense in FHs(
) for every
s ∈R, respectively.

The paper is organized as follows. In Sect. 2, we characterize the reducing subspaces of
Hs(Rd) and give some auxiliary lemmas used later. In Sect. 3, we establish a characteriza-
tion of a NWBFs in (FHs(
), FH–s(
)) via a pair of equations.

2 Reducing subspaces of Hs(Rd) and some auxiliary lemma
In this section, we characterize the reducing subspaces of Sobolev spaces, and give some
auxiliary lemmas used later.

By a careful computation, we get the following lemma.

Lemma 2.1 Let s ∈ R, and let 
 be a measurable set in R
d with nonzero measure. Define

λ by

λ̂f (·) =
(
1 + | · |2) s

2 f̂ (·)
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for f ∈ Hs(Rd). Then
(i) λ and λ2 are unitary operators from Hs(Rd) onto L2(Rd) and onto H–s(Rd), respec-

tively;
(ii) λ(FHs(
)) = FL2(
), and λ2(FHs(
)) = FH–s(
);
(iii)

(λfj,k )̂(·) = |det A|– j
2
(
1 + | · |2) s

2 e–2π i〈k,(A∗)–j·〉 f̂
((

A∗)–j·)

=
(

1 + | · |2
1 + |(A∗)–j · |2

) s
2 [

(λf )j,k
]̂
(·)

for f ∈ Hs(Rd).

Theorem 2.1 Given s ∈ R and a d × d expansive matrix A, X is a reducing subspace of
Hs(Rd) if and only if X = FHs(
) for some 
 ⊂ R

d with nonzero measure satisfying 
 =
A∗
.

Proof Necessity. Suppose X is a reducing subspace of Hs(Rd). Defined λ as in Lemma 2.1,
and denote X1 = λX., Then we only need to prove that

X1 = FL2(
)

for some measurable set 
 in R
d with 
 = A∗
 by Lemma 2.1. By the unitarity of λ, X1 is

a linear closed subspace of L2(Rd). So it is sufficient to prove that

DX1 = X1 and TkX1 = X1 for k ∈ Z
d (2.1)

by Proposition 1.2. A simple computation shows that

D̂X1 =
(
1 +

∣∣(A∗)–1·∣∣2) s
2 D̂X = D̂X1 =

(
1 +

∣∣(A∗)–1·∣∣2) s
2 X̂ =

(
1 + | · |2) s

2 X̂ = X̂1,

T̂kX1 =
(
1 + | · |2) s

2 T̂kX = T̂kX1 =
(
1 + | · |2) s

2 X̂ = X̂1 for k ∈ Z
d,

according to Definition 1.1 and the fact that X is a reducing subspace of Hs(Rd). Hence
(2.1) holds.

Sufficiency. Assume that X = FHs(
), A∗
 = 
. Obviously, (1.6) holds. By Lemma 2.1,
λ is a unitary operator, FHs(
) = λ–1(FL2(
)). Furthermore, FL2(
) is a linear closed sub-
space of L2(Rd). So X is a linear closed subspace of Hs(Rd). For k ∈ Z

d , we have

T̂kX = e–2π i〈k,·〉X̂ = X̂ and D̂X = D–1X̂ = X̂

due to the fact that A∗
 = 
. It follows that

DX = X and TkX = X for k ∈ Z
d.

Therefore, X is a reducing subspace of Hs(Rd). The lemma is proved. �

The following three lemmas are borrowed from [18, Lemmas 3.6, 3.9 and 3.11].
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Lemma 2.2 Let s ∈ R and φ ∈ Hs(Rd). Then
(i) {Tkφ : k ∈ Z

d} is a Bessel sequence in Hs(Rd) if and only if

[φ̂, φ̂]s ∈ L∞(
T

d).

In this case, ‖[φ̂, φ̂]s‖L∞(Td) is a Bessel bound.
(ii) If {Tkφ : k ∈ Z

d} is a Bessel sequence in Hs(Rd), then {φs
j,k : k ∈ Z

d} is a Bessel sequence
in Hs(Rd).

Lemma 2.3 Let s ∈R and j ∈ Z. Given φ ∈ Hs(Rd) and f ∈ H–s(Rd). Then the kth Fourier
coefficient of [|det A| j

2 f̂ ((A∗)j·), φ̂(·)]0(ξ ) is 〈f ,φj,k〉 for k ∈ Z
d . In particular,

[|det A| j
2 f̂

((
A∗)j·), φ̂(·)]0(ξ ) =

∑

k∈Zd

〈f ,φj,k〉e–2π i〈k,ξ 〉 (2.2)

if {Tkφ : k ∈ Z
d} is a Bessel sequence in Hs(Rd).

Lemma 2.4 Given s ∈R, let Xs(ψ0;	) be a Bessel sequence in Hs(Rd). Then

∣∣ψ̂0(·)∣∣2 +
L∑

l=1

∞∑

j=0

m–2js∣∣ψ̂l
((

A∗)–j·)∣∣2 ≤ B
(
1 + | · |2)–s (2.3)

holds a.e. on R
d .

Lemma 2.5 Given s ∈R. If g ∈D, then [ĝ, ĝ]s(·) ≤ C.

Proof By g ∈ D, we have ĝ ∈ L∞(Rd) and supp(ĝ) ⊂ K for some bounded set K . Observe
that

[ĝ, ĝ]s(ξ ) =
∑

k∈Zd

∣∣ĝ(ξ + k)
∣∣2(1 + |ξ + k|2)s

is Zd-periodic. So we only need to prove that [ĝ, ĝ]s(·) ≤ C on T
d . Combining this with the

boundedness of supp(ĝ), we can deduce that there are only finitely many nonzero terms
|ĝ(ξ + k)|2(1 + |ξ + k|2)s in

∑
k∈Zd |ĝ(ξ + k)|2(1 + |ξ + k|2)s for ξ ∈ T

d and thus [ĝ, ĝ]s(·) ≤ C.
The lemma is completed. �

Lemma 2.6 Let K ⊂ R
d be a bounded set. Then there exist finite sets F1 ⊂ Z+ and F2 ⊂

Z
d \ {0} such that

K ∩ (
K + A∗k

)
= ∅ (2.4)

for (j, k) /∈ F1 × F2 with k �= 0.

Proof Since A is expansive, we have

lim
j→∞

∥∥(
A∗)–j∥∥ 1

j < r for some 0 < r < 1.
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Take δ > diamter(K). It follows that there exists J0 > – logr δ such that

∥∥(
A∗)–j∥∥ < rj for r > J0.

So 1 ≤ |k| < rj|(A∗)jk| and it leads to

∣∣(A∗)jk
∣∣ > r–j > δ > diameter(K) (2.5)

for j > J0 and 0 �= k ∈ Z
d . Below we consider the case 0 ≤ j ≤ J0. By the definition of the

operator norm, we get

|k| ≤
(

max
0≤j≤J0

∥∥(
A∗)–j∥∥

)∣∣(A∗)jk
∣∣

for k ∈ Z
d . Again using (2.5), we have

∣∣(A∗)jk
∣∣ ≥ |k|

max0≤j≤J0 ‖(A∗)–j‖ > diameter(K) (2.6)

if |k| > (max0≤j≤J0 ‖(A∗)–j‖)δ. Take

F1 = {j ∈ Z : 0 ≤ j ≤ J0}

and

F2 =
{

k ∈ Z
d \ {0} : |k| ≤

(
max

0≤j≤J0

∥∥(
A∗)–j∥∥

)
δ
}

.

Then (2.4) holds by (2.5) and (2.6). The lemma is proved. �

3 The characterization of NWBFs
In this section, we focus on characterizing a NWBFs in (FHs(
), FH–s(
)). For this pur-
pose, we first give two lemmas.

Lemma 3.1 Given s ∈ R, let {Tkψ0 : k ∈ Z
d} ∪ {Tkψl : k ∈ Z

d, 1 ≤ l ≤ L} be a Bessel se-
quence in Hs(Rd). Then

∑

k∈Zd

∣∣〈g,ψ0,0,k〉
∣∣2 +

L∑

l=1

∞∑

j=0

∑

k∈Zd

∣∣〈g,ψ s
l,j,k

〉∣∣2

=
∫

Rd

∣∣ĝ(ξ )
∣∣2

(
∣∣ψ̂0(ξ )

∣∣2 +
L∑

l=1

∞∑

j=0

m–2js∣∣ψ̂l
((

A∗)–j
ξ
)∣∣2

)
dξ

+
∫

Rd
ĝ(ξ )

∑

0 �=k∈Zd

ĝ(ξ + k)

×
(

ψ̂0(ξ )ψ̂0(ξ + k) +
L∑

l=1

κ(k)∑

j=0

m–2jsψ̂l
((

A∗)–j
ξ
)
ψ̂l

((
A∗)–j(ξ + k)

)
)

dξ (3.1)

for g ∈D.
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Proof Applying Lemma 2.3, we obtain

∑

k∈Zd

∣∣〈g,ψ0,0,k〉
∣∣2 +

L∑

l=1

∞∑

j=0

∑

k∈Zd

∣∣〈g,ψ s
l,j,k

〉∣∣2

=
∫

Td

∣∣∣∣
∑

k∈Zd

ĝ(ξ + k)ψ̂0(ξ + k)
∣∣∣∣
2

dξ

+
L∑

l=1

∞∑

j=0

mj(d–2s)
∫

Td

∣∣∣∣
∑

k∈Zd

ĝ
((

A∗)j(ξ + k)
)
ψ̂l(ξ + k)

∣∣∣∣
2

dξ

=
∫

Td

(∑

k∈Zd

ψ̂0(ξ + k)ĝ(ξ + k)
)(∑

k∈Zd

ĝ(ξ + k)ψ̂0(ξ + k)
)

dξ

+
L∑

l=1

∞∑

j=0

mj(d–2s)
∫

Td

(∑

k∈Zd

ψ̂l(ξ + k)ĝ
((

A∗)j(ξ + k)
))

×
(∑

k∈Zd

ĝ
((

A∗)j(ξ + k)
)
ψ̂l(ξ + k)

)
dξ

=
∫

Td

(∑

k∈Zd

ψ̂0(ξ + k)ĝ(ξ + k)
)

E0(ξ ) dξ

+
L∑

l=1

∞∑

j=0

mj(d–2s)
∫

Td

(∑

k∈Zd

ψ̂l(ξ + k)ĝ
((

A∗)j(ξ + k)
))

El,j(ξ ) dξ

=: I1 + I2, (3.2)

where E0(·) =
∑

k∈Zd ĝ(ξ + k)ψ̂0(ξ + k) and El,j(·) =
∑

k∈Zd ĝ((A∗)j(ξ + k))ψ̂l(ξ + k). Note
that {Tkψ0 : k ∈ Z

d} is a Bessel sequence in Hs(Rd) and g ∈ D, then we have |E0(·)| ≤
[ĝ, ĝ]

1
2
–s(·)[ψ̂0, ψ̂0]

1
2
s (·) < ∞ by Lemma 2.2 (i) and Lemma 2.5. It follows that

∫

Td

∑

k∈Zd

∣∣ĝ(ξ + k)ψ̂0(ξ + k)E0(ξ )
∣∣dξ ≤ ‖E0‖L∞(Td)

∫

Td
[ĝ, ĝ]

1
2
–s(ξ )[ψ̂0, ψ̂0]

1
2
s (ξ ) dξ < ∞,

and thus

∫

Td

(∑

k∈Zd

ψ̂0(ξ + k)ĝ(ξ + k)
)(∑

k∈Zd

ĝ(ξ + k)ψ̂0(ξ + k)
)

dξ

=
∫

Rd
ψ̂0(ξ )g(ξ )

∑

k∈Zd

ĝ(ξ + k)ψ̂0(ξ + k) dξ

by the Fubini–Tonelli theorem. Furthermore, we have

∫

Rd

∣∣ψ̂0(ξ )g(ξ )
∣∣
∑

k∈Zd

∣∣ĝ(ξ + k)ψ̂0(ξ + k) dξ
∣∣ ≤

∫

supp(ĝ)

(∑

k∈Zd

∣∣ĝ(ξ + k)ψ̂0(ξ + k) dξ
∣∣
)2

dξ
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≤
∫

supp(ĝ)
[ĝ, ĝ]–s(ξ )[ψ̂0, ψ̂0]s(ξ ) dξ

< ∞

since [ĝ, ĝ]–s(·)[ψ̂0, ψ̂0]s(·) is essentially bounded by Lemma 2.2. It follows that

I1 =
∫

Rd
ψ̂0(ξ )g(ξ )

∑

k∈Zd

ĝ(ξ + k)ψ̂0(ξ + k) dξ

=
∫

Rd

∣∣ψ̂0(ξ )
∣∣2∣∣ĝ(ξ )

∣∣2 dξ +
∫

Rd
ψ̂0(ξ )ĝ(ξ )

∑

0 �=k∈Zd

ĝ(ξ + k)ψ̂0(ξ + k) dξ . (3.3)

Below we calculate I2 to finish the proof. Define g̃ by ˆ̃g(·) = ĝ((A∗)j·), then we deduce that

[
ĝ
((

A∗)j·), ĝ
((

A∗)j·)]–s(·) ≤ C

by g ∈D and Lemma 2.5. So |El,j(·)| ≤ [ĝ((A∗)j·), ĝ((A∗)j·)] 1
2
–s(·)[ψ̂l, ψ̂l]

1
2
s (·) < ∞ and thus

I2 =
L∑

l=1

∞∑

j=0

mj(d–2s)
∫

Rd
ψ̂l(ξ )ĝ

((
A∗)j

ξ
) ∑

k∈Zd

ĝ
((

A∗)j(ξ + k)
)
ψ̂l(ξ + k) dξ .

Take K as a bounded set in R
d such that supp(ĝ) ⊂ K . By Lemma 2.6, we have

K ∩ (
K +

(
A∗)jk

)
= ∅ for (j, k) /∈ F1 × F2 with k �= 0,

where F1 ⊂ Z+ and F2 ⊂ Z
d \ {0} are two finite sets. It follows that

I2 =
L∑

l=1

∑

j∈F1

mj(d–2s)
∫

Rd
ψ̂l(ξ )ĝ

((
A∗)j

ξ
) ∑

k∈F2

ĝ
((

A∗)j(ξ + k)
)
ψ̂l(ξ + k) dξ .

Denote S =
⋃

k∈F2∪{0}(
⋃

j∈F1
(A∗)–jK + k). Then we deduce that

∫

Rd

∣∣ψ̂l(ξ )ĝ
((

A∗)j
ξ
)
ĝ
((

A∗)j
ξ +

(
A∗)jk

)
ψ̂l(ξ + k)

∣∣dξ

≤ ‖ĝ‖2
L∞(Rd)

∫

(A∗)–jK

∣∣ψ̂l(ξ )ψ̂l(ξ + k)
∣∣dξ

≤ ‖ĝ‖2
L∞(Rd)

(∫

(A∗)–jK

∣∣ψ̂l(ξ )
∣∣2 dξ

) 1
2
(∫

(A∗)–jK

∣∣ψ̂l(ξ + k)
∣∣2 dξ

) 1
2

≤ ‖ĝ‖2
L∞(Rd)

∫

S

∣∣ψ̂l(ξ )
∣∣2 dξ

for each (j, k) ∈ F1 × F2. Also observe the fact 1 ≤ (maxξ∈S(1 + |ξ |2)–s)(1 + |ξ |2)s for ξ ∈ S.
It follows that

∫

Rd

∣∣ψ̂l(ξ )ĝ
((

A∗)j
ξ
)
ĝ
((

A∗)j
ξ +

(
A∗)jk

)
ψ̂l(ξ + k)

∣∣dξ
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≤
(

max
ξ∈S

(
1 + |ξ |2)–s

)
‖ĝ‖2

L∞(Rd)

∫

S

∣∣ψ̂l(ξ )
∣∣2(1 + |ξ |2)s dξ

≤
(

max
ξ∈S

(
1 + |ξ |2)–s

)
‖ĝ‖2

L∞(Rd)‖ψl‖2
Hs(Rd)

< ∞.

Combining the above formula, then we have

I2 =
∫

Rd

L∑

l=1

∞∑

j=0

mj(d–2s)∣∣ψ̂l(ξ )
∣∣2∣∣ĝ

((
A∗)j

ξ
)∣∣2 dξ

+
∫

Rd

L∑

l=1

∞∑

j=0

mj(d–2s)ĝ
((

A∗)j
ξ
)
ψ̂l(ξ )

∑

0 �=k∈Zd

ĝ
((

A∗)j
ξ +

(
A∗)jk

)
ψ̂l(ξ + k) dξ

=
∫

Rd

L∑

l=1

∞∑

j=0

m–2js∣∣ψ̂l
((

A∗)–j
ξ
)∣∣2∣∣ĝ(ξ )

∣∣2 dξ

+
∫

Rd

L∑

l=1

∞∑

j=0

m–2jsĝ(ξ )ψ̂l
((

A∗)–j
ξ
) ∑

0 �=k∈Zd

ĝ
(
ξ +

(
A∗)jk

)
ψ̂l

((
A∗)–j

ξ + k
)

dξ

=
∫

Rd

L∑

l=1

∞∑

j=0

m–2js∣∣ψ̂l
((

A∗)–j
ξ
)∣∣2∣∣ĝ(ξ )

∣∣2 dξ

+
∫

Rd
ĝ(ξ )

∑

0 �=k∈Zd

ĝ(ξ + k)
L∑

l=1

κ(k)∑

j=0

m–2jsψ̂l
((

A∗)–j
ξ
)
ψ̂l

((
A∗)–j

ξ + k
)

dξ (3.4)

by the definition of κ(k). It leads to (3.1) by (3.2), (3.3) and (3.4). The lemma is proved. �

Lemma 3.2 Given s ∈ R, let Xs(ψ0;	) and X–s(ψ̃0; 	̃) be Bessel sequences in Hs(Rd) and
H–s(Rd), respectively. Then

∑

k∈Zd

〈f , ψ̃0,0,k〉〈ψ0,0,k , g〉 +
L∑

l=1

∞∑

j=0

∑

k∈Zd

〈
f , ψ̃–s

l,j,k
〉〈
ψ s

l,j,k , g
〉

=
∫

Rd
f̂ (ξ )ĝ(ξ )

(
ψ̂0(ξ ) ˆ̃

ψ0(ξ ) +
L∑

l=1

∞∑

j=0

ψ̂l
((

A∗)–j
ξ
) ˆ̃
ψl

((
A∗)–j

ξ
)
)

dξ

+
∫

Rd
ĝ(ξ )

∑

0 �=k∈Zd

f̂ (ξ + k)

×
(

ψ̂0(ξ ) ˆ̃
ψ0(ξ + k) +

L∑

l=1

κ(k)∑

j=0

ψ̂l
((

A∗)–j
ξ
) ˆ̃
ψl

((
A∗)–j(ξ + k)

)
)

dξ (3.5)

for f , g ∈D.

Proof Since Xs(ψ0;	) and X–s(ψ̃0; 	̃) are Bessel sequences in Hs(Rd) and H–s(Rd), re-
spectively, the expression of (3.5) is meaningful. According to an argument similar to
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Lemma 3.1, we can deduce that

∑

k∈Zd

〈f , ψ̃0,0,k〉〈ψ0,0,k , g〉 +
L∑

l=1

∞∑

j=0

∑

k∈Zd

〈
f , ψ̃–s

l,j,k
〉〈
ψ s

l,j,k , g
〉

=
∫

Rd
ψ̂0(ξ )ĝ(ξ )

∑

k∈Zd

f̂ (ξ + k) ˆ̃
ψ0(ξ + k) dξ

+
L∑

l=1

∞∑

j=0

|det A|j
∫

Rd
ψ̂l(ξ )ĝ

((
A∗)j

ξ
) ∑

k∈Zd

f̂
((

A∗)j(ξ + k)
) ˆ̃
ψl(ξ + k) dξ

=: J1 + J2. (3.6)

Observe that

∣∣ψ̂0(·)ĝ(·)∣∣
∑

k∈Zd

∣∣f̂ (· + k) ˆ̃
ψ0(· + k)

∣∣ ≤ [f̂ , f̂ ]
1
2
s (·)[ ˆ̃

ψ0, ˆ̃
ψ0]

1
2
–s(·)[ĝ, ĝ]

1
2
–s(·)[ψ̂0, ψ̂0]

1
2
s (·),

which is bounded by Lemma 2.2 (i). Then we deduce that

∫

Rd

∣∣ψ̂0(ξ )ĝ(ξ )
∣∣
∑

k∈Zd

∣∣f̂ (ξ + k) ˆ̃
ψ0(ξ + k)

∣∣dξ

≤
∫

supp(ĝ)

∣∣ψ̂0(ξ )ĝ(ξ )
∣∣
∑

k∈Zd

∣∣f̂ (ξ + k) ˆ̃
ψ0(ξ + k)

∣∣dξ < ∞,

and thus

J1 =
∫

Rd
f̂ (ξ )ĝ(ξ )ψ̂0(ξ ) ˆ̃

ψ0(ξ ) dξ +
∫

Rd
ψ̂0(ξ )ĝ(ξ )

∑

0 �=k∈Zd

f̂ (ξ + k) ˆ̃
ψ0(ξ + k) dξ . (3.7)

Next we discuss J2 into two parts: the k = 0 term and k �= 0 term. By Lemma 2.4 and the
Cauchy–Schwartz inequality, we have

L∑

l=1

∞∑

j=0

∣∣ψ̂l
((

A∗)–j
ξ
) ˆ̃
ψl

((
A∗)–j

ξ
)∣∣

≤
( L∑

l=1

∞∑

j=0

m–2js∣∣ψ̂l
((

A∗)–j
ξ
)∣∣2

) 1
2
( L∑

l=1

∞∑

j=0

m2js∣∣ ˆ̃
ψl

((
A∗)–j

ξ
)∣∣2

) 1
2

≤ B1B2.

It follows that

∫

Rd

∣∣f̂ (ξ )ĝ(ξ )
∣∣

L∑

l=1

∞∑

j=0

∣∣ψ̂l
((

A∗)–j
ξ
) ˆ̃
ψl

((
A∗)–j

ξ
)∣∣dξ

≤ B1B2
∣∣supp(f̂ ) ∩ supp(ĝ)

∣∣‖f̂ ‖L∞(Rd)‖ĝ‖L∞(Rd)

< ∞. (3.8)
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Take a compact set K ∈R
d such that supp(f̂ ) ∩ supp(ĝ) ⊂ K . Applying Lemma 2.6, we have

K ∩ (
K +

(
A∗)jk

)
= ∅ for (j, k) /∈ F1 × F2 with k �= 0, (3.9)

where F1 ⊂ Z+ and F2 ⊂ Z
d \ {0} are two finite sets. Using an argument similar to I2 in

Lemma 3.1, we obtain

∫

Rd

∣∣ĝ
((

A∗)j
ξ
)
f̂
((

A∗)j(ξ + k)
)
ψ̂l(ξ ) ˆ̃

ψl(ξ + k)
∣∣dξ

≤ ‖ĝ‖L∞(Rd)‖f̂ ‖L∞(Rd)

(∫

(A∗)–jK

∣∣ψ̂l(ξ )
∣∣2 dξ

) 1
2
(∫

(A∗)–jK

∣∣ ˆ̃
ψl(ξ + k)

∣∣2 dξ

) 1
2

≤ ‖ĝ‖L∞(Rd)‖f̂ ‖L∞(Rd)

(∫

S

∣∣ψ̂l(ξ )
∣∣2 dξ

) 1
2
(∫

S

∣∣ ˆ̃
ψl(ξ )

∣∣2 dξ

) 1
2

≤ ‖ĝ‖L∞(Rd)‖f̂ ‖L∞(Rd)

(
max
ξ∈S

(
1 + |ξ |2)– s

2
)(

max
ξ∈S

(
1 + |ξ |2) s

2
)
‖ψl‖Hs(Rd)‖ψ̃l‖H–s(Rd)

< ∞ (3.10)

for (j, k) ∈ F1 × F2, where S =
⋃

k∈F2∪{0}(
⋃

j∈F1
(A∗)–jK + k). According to (3.8) and (3.10),

we have

J2 =
L∑

l=1

∞∑

j=0

∫

Rd
ĝ(ξ )ψ̂l

((
A∗)–j

ξ
) ∑

0 �=k∈Zd

f̂
(
ξ +

(
A∗)jk

) ˆ̃
ψl

((
A∗)–j

ξ + k
)

dξ

=
∫

Rd

L∑

l=1

∞∑

j=0

ĝ(ξ )ψ̂l
((

A∗)–j
ξ
) ∑

0 �=k∈Zd

f̂
(
ξ +

(
A∗)jk

) ˆ̃
ψl

((
A∗)–j

ξ + k
)

dξ

=
∫

Rd
ĝ(ξ )

∑

0 �=k∈Zd

f̂ (ξ + k)
L∑

l=1

κ(k)∑

j=0

ψ̂l
((

A∗)–j
ξ
) ˆ̃
ψl

((
A∗)–j(ξ + k)

)
dξ , (3.11)

where we replace (A∗)jk by k′ in the last step. Collecting (3.6), (3.7) and (3.11), we obtain
(3.5). The lemma is completed. �

The next theorem presents a characterization of NWBFs in (FHs(
), FH–s(
)) via a pair
of equations.

Theorem 3.1 Given s ∈ R, let FHs(
) and FH–s(
) be reducing subspaces of Hs(Rd) and
H–s(Rd), respectively, ψ0 ∈ FHs(
), ψ̃0 ∈ FH–s(
), and 	 ⊂ FHs(
), 	̃ ⊂ FH–s(
). Sup-
pose that Xs(ψ0;	) and X–s(ψ̃0; 	̃) are Bessel sequences in FHs(
) and FH–s(
), respec-
tively. Then (Xs(ψ0;	), X–s(ψ̃0; 	̃)) is an NWBFs in (FHs(
), FH–s(
)) if and only if

ψ̂0(·) ˆ̃
ψ0(· + k) +

L∑

l=1

κ(k)∑

j=0

ψ̂l
((

A∗)–j·) ˆ̃
ψl

((
A∗)–j(· + k)

)
= δ0,k a.e. on 
. (3.12)

Proof Since D ∩ FHs(
) is dense in FHs(
),

(
Xs(ψ0;	), X–s(ψ̃0; 	̃)

)
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is an NWBFs in (FHs(
), FH–s(
)) if and only if

∑

k∈Zd

〈f , ψ̃0,0,k〉〈ψ0,0,k , g〉 +
L∑

l=1

∞∑

j=0

∑

k∈Zd

〈
f , ψ̃–s

l,j,k
〉〈
ψ s

l,j,k , g
〉

= 〈f , g〉

for f ∈D ∩ FHs(
) and g ∈D ∩ FH–s(
), equivalently,

∑

k∈Zd

〈
(f̂ χ
)∨, ψ̃0,0,k

〉〈ψ0,0,k ,
〈
(ĝχ
)∨

〉
+

L∑

l=1

∞∑

j=0

∑

k∈Zd

〈
(f̂ χ
)∨, ψ̃–s

l,j,k
〉〈
ψ s

l,j,k , (f̂ χ
)∨
〉

=
〈
(f̂ χ
)∨, (ĝχ
)∨

〉
(3.13)

for f , g ∈ D due to the fact D ∩ FHs(
) = {(ĥχ
)∨ : h ∈ D}. In view of Xs(ψ0;	) and
X–s(ψ̃0; 	̃) being Bessel sequences in Hs(Rd) and H–s(Rd), respectively, we know that the
expression of (3.13) is well-defined. By Lemma 3.2, (3.13) can be rewritten as

∫

Rd
f̂ (ξ )ĝ(ξ )χ
(ξ )

(
ψ̂0(ξ ) ˆ̃

ψ0(ξ ) +
L∑

l=1

∞∑

j=0

ψ̂l
((

A∗)–j
ξ
) ˆ̃
ψl

((
A∗)–j

ξ
)
)

dξ

+
∫

Rd
ĝ(ξ )χ
(ξ )

∑

0 �=k∈Zd

(f̂ χ
)(ξ + k)

×
(

ψ̂0(ξ ) ˆ̃
ψ0(ξ + k) +

L∑

l=1

κ(k)∑

j=0

ψ̂l
((

A∗)–j
ξ
) ˆ̃
ψl

((
A∗)–j(ξ + k)

)
)

dξ

=
∫

Rd
f̂ (ξ )ĝ(ξ )χ
(ξ ) dξ (3.14)

for f , g ∈ D. Obviously, (3.12) leads to (3.14). Now, to finish the proof, we prove the con-
verse statement. Assume that (3.14) holds. Applying the Cauchy–Schwartz inequality, we
get

∣∣ψ̂0(·) ˆ̃
ψ0(· + k)

∣∣ +
L∑

l=1

κ(k)∑

j=0

∣∣ψ̂l
((

A∗)–j·) ˆ̃
ψl

((
A∗)–j(· + k)

)∣∣

≤
(

∣∣ψ̂0(·)∣∣2 +
L∑

l=1

∞∑

j=0

m–2js∣∣ψ̂l
((

A∗)–j·)∣∣2
) 1

2

×
(

∣∣ ˆ̃
ψ0(· + k)

∣∣2 +
L∑

l=1

∞∑

j=0

m2js∣∣ ˆ̃
ψl

((
A∗)–j(ξ + k)

)∣∣2
) 1

2

≤ B1B2
(
1 + | · |2)–s(1 + | · +k|2)s

= Ck < ∞

for each k ∈ Z
d by Lemma 2.4. Thus the series ψ̂0(·) ˆ̃

ψ0(· + k) +
∑L

l=1
∑κ(k)

j=0 ψ̂l((A∗)–j·) ×
ˆ̃
ψl((A∗)–j(· + k)) converges absolutely a.e. on R

d and belongs to L∞(Rd) for every k ∈ Z
d .

So almost all points in R
d are its Lebesgue points. Next, we deal with it for two cases.
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When k = 0. Let ξ0 �= 0 be a Lebesgue point of ψ̂0(·) ˆ̃
ψ0(·) +

∑L
l=1

∑∞
j=0 ψ̂l((A∗)–j·) ˆ̃

ψl((A∗)–j·)
and χ
(·). For 0 < ε < 1

2 , take f and g such that

f̂ (·) = ĝ(·) =
χB(ξ0,ε)(·)√|B(ξ0, ε)|

in (3.14), where B(ξ0, ε) = {ξ ∈R
d : |ξ – ξ0| < ε}. Then

1
|B(ξ0, ε)|

∫

B(ξ0,ε)
χ
(ξ )

(
ψ̂0(ξ ) ˆ̃

ψ0(ξ ) +
L∑

l=1

∞∑

j=0

ψ̂l
((

A∗)–j
ξ
) ˆ̃
ψl

((
A∗)–j

ξ
)
)

dξ

=
1

|B(ξ0, ε)|
∫

B(ξ0,ε)
χ
(ξ ) dξ ,

and letting ε → 0 we obtain

ψ̂0(ξ0) ˆ̃
ψ0(ξ0) +

L∑

l=1

∞∑

j=0

ψ̂l
((

A∗)–j
ξ0

) ˆ̃
ψl

((
A∗)–j

ξ0
)

= 1.

The case of k �= 0: we fix 0 �= k0 ∈ Z
d , take f and g such that

f̂ (· + k0) = ĝ(·) =
χB(ξ0,ε)(·)√|B(ξ0, ε)|

in (3.14), where 0 < ε < 1
2 . Then

1
|B(ξ0, ε)|

∫

B(ξ0,ε)
χ
(ξ )

×
(

ψ̂0(ξ ) ˆ̃
ψ0(ξ + k0) +

L∑

l=1

κ(k)∑

j=0

ψ̂l
((

A∗)–j
ξ
) ˆ̃
ψl

((
A∗)–j(ξ + k0)

)
)

dξ = 0,

letting ε → 0 and applying the Lebesgue differentiation theorem, we obtain

ψ̂0(ξ0) ˆ̃
ψ0(ξ0 + k0) +

L∑

l=1

κ(k)∑

j=0

ψ̂l
((

A∗)–j
ξ0

) ˆ̃
ψl

((
A∗)–j(ξ0 + k0)

)
= 0.

Due to the arbitrariness of ξ0 and k0, we obtain (3.12). The theorem is proved. �

Acknowledgements
The authors would like to thank the reviewers for carefully reviewing this manuscript and for providing valuable
comments, which greatly improve its quality.

Funding
This work was supported by the National Natural Science Foundation of China (Grant No. 11601290, 11961072).

Availability of data and materials
Not applicable.

Competing interests
The authors declare that they have no competing interests.



Jia and Zhang Journal of Inequalities and Applications         (2021) 2021:55 Page 16 of 16

Authors’ contributions
All authors contributed equally in the writing this paper. All authors read and approved the final manuscript.

Author details
1School of Mathematics Sciences, Shanxi University, Taiyuan, Shanxi 030002, P.R. China. 2College of Mathematics and
Computer Science, Yan’an University, Yan’an, Shaanxi 716000, P.R. China.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 24 March 2020 Accepted: 9 March 2021

References
1. Atreas, N., Melas, A., Stavropoulos, T.: Affine dual frames and extension principles. Appl. Comput. Harmon. Anal. 36,

51–62 (2014)
2. Benedetto, J., Li, S.: The theory of multiresolution analysis frames and applications to filter banks. Appl. Comput.

Harmon. Anal. 5, 389–427 (1998)
3. Borup, L., Gribonval, R., Nielsen, M.: Tight wavelet frames in Lebesgue and Sobolev spaces. J. Funct. Spaces Appl. 2,

227–252 (2004)
4. Borup, L., Gribonval, R., Nielsen, M.: Bi-framelet systems with few vanishing moments characterize Besov spaces. Appl.

Comput. Harmon. Anal. 17, 3–28 (2004)
5. Bownik, M.: Tight frames of multidimensional wavelets. J. Fourier Anal. Appl. 3, 525–542 (1997)
6. Chui, C.K., He, W., Stockler, J.: Nonstationary tight wavelet frames. II. Unbounded intervals. Appl. Comput. Harmon.

Anal. 18, 25–66 (2005)
7. Cohen, A., Daubechies, I., Feauveau, J.-C.: Biorthogonal bases of compactly supported wavelets. Commun. Pure Appl.

Math. 45, 485–560 (1992)
8. Dai, X., Diao, Y., Gu, Q., Han, D.: Frame wavelets in subspaces of L2(Rd). Proc. Am. Math. Soc. 130, 3259–3267 (2002)
9. Daubechies, I., Han, B., Ron, A., Shen, Z.: Framelets, MRA-based constructions of wavelet frames. Appl. Comput.

Harmon. Anal. 14, 1–46 (2003)
10. Duffin, R.J., Scaeffer, A.C.: A class of nonharmonic Fourier series. Trans. Am. Math. Soc. 72, 341–366 (1952)
11. Ehler, M.: The multiresolution structure of pairs of dual wavelet frames for a pair of Sobolev spaces. Jaen J. Approx. 2,

193–214 (2010)
12. Han, B.: Pairs of frequency-based nonhomogeneous dual wavelet frames in the distribution space. Appl. Comput.

Harmon. Anal. 29, 330–353 (2010)
13. Han, B.: Nonhomogeneous wavelet systems in high dimensions. Appl. Comput. Harmon. Anal. 32, 169–196 (2012)
14. Han, B., Shen, Z.: Compactly supported symmetric C∞ wavelets with spectral approximation order. SIAM J. Math.

Anal. 40, 905–938 (2008)
15. Han, B., Shen, Z.: Dual wavelet frames and Riesz bases in Sobolev spaces. Constr. Approx. 29, 369–406 (2009)
16. Han, B., Shen, Z.: Characterization of Sobolev spaces of arbitrary smoothness using nonstationary tight wavelet

frames. Isr. J. Math. 172, 371–398 (2009)
17. Jia, R.-Q., Wang, J.Z., Zhou, D.-X.: Compactly supported wavelet bases for Sobolev spaces. Appl. Comput. Harmon.

Anal. 15, 224–241 (2003)
18. Li, Y.-Z., Zhang, J.-P.: Nonhomogeneous dual wavelet frames and mixed oblique extension principles in Sobolev

spaces. Appl. Anal. 97, 1049–1073 (2018)
19. Li, Y.-Z., Zhang, J.-P.: Extension principles for affine dual frames in reducing subspaces. Appl. Comput. Harmon. Anal.

46, 177–191 (2019)
20. Li, Y.F., Yang, S.Z., Yuan, D.H.: Bessel multiwavelet sequences and dual multiframelets in Sobolev spaces. Adv. Comput.

Math. 38, 491–529 (2013)
21. Ron, A., Shen, Z.: Affine systems in L2(Rd): the analysis of the analysis operator. J. Funct. Anal. 148, 408–447 (1997)


	A characterization of nonhomogeneous wavelet bi-frames for reducing subspaces of Sobolev spaces
	Abstract
	MSC
	Keywords

	Introduction
	Reducing subspaces of Hs(Rd) and some auxiliary lemma
	The characterization of NWBFs
	Acknowledgements
	Funding
	Availability of data and materials
	Competing interests
	Authors' contributions
	Author details
	Publisher's Note
	References


