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1 Introduction
Sparse domination is a relatively new tool to prove weighted estimates for singular inte-
grals. The sparse method has been developed over the past five years by many researchers
in harmonic analysis, with significant works by Lerner [1], Lacey [2], Conde-Alonso [3],
and the references therein.

A collection S is an n-sparse family of cubes in R if for every Q € S there exists Eq C Q
such that |[Eg| > |Q| (here 0 < n < 1), and Eq N Ey = & when Q # Q'. For an n-sparse
collection of cubes S, we use the notation

o =1Q7 If xoll-

This averaging form is then easily controlled, facilitating the proof of weighted A,-type
estimates.

Lerner [1] proved a pointwise sparse domination for @ Calder6n—Zygmund operators.
The key role in his proof is played by the grand maximal operator

Mr(f)x) = sQup eséss(t;p| T(fRd\SQ)(S)|.

Later, Li [4] established sparse domination theorem for multilinear singular integral opera-
tors with the kernel satisfying the L"-Hérmander condition. Cao and Yabuta [5] developed

sparse dominations for the multilinear Littlewood—-Paley operators with the same kernel
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condition. Wen, Wu, and Xue [6] gave a sparse domination for the iterated commutators of
multilinear pseudo-differential operators. Recently Lerner and Ombrosi [7] improved the
results in [1] by weakening the assumption on T and by replacing M r(f)(x) with a more
flexible operator. Motivated by the above works, the purpose of this paper is to establish a
sparse domination for the iterated commutators of multi(sub)linear operator with weaker
hypotheses than [4, 5].

Motivated by Lerner and Ombrosi [7], we assume that T is an operator satisfying the
following W, property instead of assuming 7 is bounded from L x --- x L1 — L1/,
there is a nonincreasing function 1, such that, for any f; € L9(Q) with j = 1,...,m and

any cube Q,

<AlQl (0<i<1). (1.1)

{x €Q: |T(fo)(x)| > I/fT,q(}»)l_[(mq,Q]

j=1

It is easy to see that L7 x --- x LY — L4™> implies that T satisfies the W, property with

WT,q = ||T”LqX...XLqﬁLq/mvoo)fW%
Let o > 0, we define

/\/le'a (}?)(x) = Zup essstgp| T(fXRd\aQ)(E) - T(fXRd\aQ)(E/) |
>x £&'e

Given an operator T, « > 0, the iterated commutators of T are defined by

T @) = (b [b2,.. 16, T)e 1,1, (), (1.2)

where b = b© = (b1,...,bp) (1 <€ < m). Throughout this paper, 7, = {1,...,m}. The sym-
bol |t| denotes the number of the elements in 7. " = 7,,\ 7 is the complementary set.

Our main results of this paper are as follows.

Theorem 1.1 Assume that the multi(sub)linear integral T satisfies the W, condition and
./\/le,a is bounded from L" x --- x L' — L’/m'oofor some o >3.Let 1 <q,r <00, and s =
max({q, r}. Then, for any compactly supported functions f; € L*(R?), i = 1,...,m, there exist
3% sparse families S; such that, for a.e. x € R%,

T4 () ()|
3d
<Y 3 S [ 1tsolbi) - bio] x [T (- bradfi)yo x [] dsoxo
j=1 1Cr QeS; iet ketg\t tety\1p

Where C= Cd,s,a(lp]"yq(lllz . (20()d) + ”M%ﬂ ”er___XLr_)Lr/m,oo).

Remark 1.1 Our Theorem 1.1 is the commutators result of [7]. Compared with the hy-
potheses in [4, 5], the .MuT’a makes our proof concise and clear. Further, the W, condition

of T is weaker than the assumption L7 x - -- x LI — L4 of T in [4, 5].
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Let 1 <py,...,pm < 00, W= (W,...,w,,), and each w; is a nonnegative function on R

w is said to satisfy the following Az, condition if

m ppi-T)
1 1 T Pir
W, =sup| — [ vy dx —/W P (% dx) ,
Wl Qp<|Q|/Q )E(m O

where v; = [}, WZ/” k. When r =1, Ay, is the A; weight class defined by Lerner et al. [8].
With the pointwise sparse domination result, we can obtain the following quantitative
weighted estimates and endpoint estimates from Sect. 3 in [5] immediately.

Corollary 1.2 Assume that the multi(sub)linear integral T satisfies the W, condition and
MjT'a is bounded from L" x .-+ x L — L'/’”"’ofor somea > 3. Let 1 <q,r<o00,and s =
max{q,r}, 1% = pil +ee ﬁ with 1 <s<p; <0o0. Set o; = Wil_(pi/S)”i: 1,...,m. Let Tg(f) be

defined as (1.2).

(1) For w € Ayys, there exists a constant C = Cyy 4,5 such that
.
(E72] P

. 4 m
o maxlsism(l:l(%)/}
< clily N (Sl TT e ) TT0bsswo [T 17170
i=1 j=1

TCry jete\t

(2) If w € Az, then for any ). > 0 and &, = (1 + log" t)** it holds that

m . 1/m
vio({: |T£(}?)| > < CB,S,L’H(/Rd @s,g(lﬁsm)widx) .
i-1

We also obtain the local decay estimate, the Coifman—Fefferman inequality with w € A,
weight, and the Fefferman—Stein inequality with arbitrary weights regarding the iterated
commutators. To the best knowledge of the author, these results are new for the iterated

commutators of multi(sub)linear operator.

Theorem 1.3 Assume that the multi(sub)linear integral T satisfies the W, condition and
./\/lea isbounded fromL" x --- xL" — L’/”"”forsomea >3.Letl <gq,r<00,s =max{q,r},
and a > s, then for any functions suppf; C Q,i=1,...,m, there exist constants otq,, and cq,
such that

ITE
HxGQ' Ma(f)

=2 T
> )»” <agm,e [liez, 12:BMOCT IQ, A>0.

Theorem 1.4 Assume that the multi(sub)linear integral T satisfies the W, condition and
./\/leya isboundedfromL” x - x L" — L’/'”""oforsomeoz >3.Let1l <gq,r < 00,s =max{q,r},

and a > s, then for any 1 < p < 00 and any weight w € A,

|75 D oy < cam D LT TH0illan0 | M) -

TC1y iety
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Theorem 1.5 Assume that the multi(sub)linear integral T satisfies the W, condition

and MnT’a is bounded from L x --- x L — L™ for some a > 3. Let 1 < q,r < 00,
the exponents i = pil oot ﬁ with p > s and 1 < py,...,pym < 00, then for all weights

- Ip;
W= Wiy, W), vip = [ 1, W7,

m
175 1oy S T TWillecatnn- (1.3)
i=1

The article is organized as follows. Section 2 contains some definitions and main lem-
mas. The proof of theorems is given in Sect. 3. We present some variations of Theorem 1.1
in Sect. 4.

2 Definitions and main lemmas

We begin by introducing some definitions and notations.
Lemma 2.1 (Generalized Holder inequality, [9]) Let ®¢, D1, ,..., Pk be Young functions. If
O OD; (1) - D (B) < Dy (),

then the following inequality holds:

Wafz - fllog.o < kfilloyollalleso - Vil
for all functions fi, ..., f, and all cubes Q.

In particular, if Zle Sl = % with each s; > 1, then it holds that

1
6 /; Ifle o fkg| = Csnfl ”exple,Q"fZ”expLQ,Q T ”fk”expLsk,Q”g”L(logL)%’Q'

We introduce the weighted maximal operator and the multi(sub)linear maximal operator

which will be used in the proof of our theorem. Let w be a weight and a > 1,

1 . " Lo\
=i [ iy, ) -suo] (7 [ vean)

Qx g

Lemma 2.2 ([5]) Lets>1,t>0,and w € Ay, then there holds that
. 1/
Wligosrr.o S Wl inf M (1) (We

Definition 2.1 The sidelength of Q is denoted by £(Q). Given a cube Qy C R?, let D(Qy)
denote the generation of Qy, that is, the cubes obtained by repeated subdivision of Qp.
Given dyadic grids D, for anyj € Z, the set D; = {Q € D, £(Q) = 2/} forms a partition of R¥.
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3 Proof of theorems

Now we devote to proving Theorem 1.1 with the case £ = m. The other cases are similar
so we omit their proof here. The basic idea of our proof is borrowed from Sect. 3 in [5],
but the definition of W, and /\/luT]a makes our proof more convenient than [5].

Proof of Theorem 1.1 Fix a cube Qp € R? and let Qj = aQp. Set
MT(;) = max(|T(?)}’M§",a<;))‘

We define the set E as follows:

E:{erozma (M(fXCQo)(x) MT(f> l_[<fseo}

By the weak endpoint estimates of MS(/?) and (1.1), we can choose ¢ = ¢4, and A =
2Yrr,g(1/12 - (20)%) + IIMﬁT,allLrﬁLr,oc such that |E| < Zd_1+2|Q0|~ Then, applying the local
Calder6n-Zygmund decomposition to xz on Qp at A = zd%’ we can get a family of pair-
wisely disjoint cubes {P;} C D(Qp) such that

1
ENP| <-—|P, E P =
<IENP| < 2 IP ‘ \Lle

1
2d+1|Pl|
It is easy to have that ), || < %|QO| and P; (" E° # 0.

| T5(F xq2) ()| xo ()

<| Tz(fXQz)(x)|XQo\ule > Tz(fxag\p;f)(x)b(p, Y T;,(fo;f)(x)IXpl
! 1

=1+ +1I. (3.1)

From [10, Remark 5.1], there exist 3¢ dyadic lattices D; such that for every cube Q C R4
we can find a cube R € D satisfying 3Q C Rq and |Rq| < 9"|Q|. Note that [, (bi(x) —
bi(yz')) = ZICIW, Hier (bl(x) - bi’RQO) l_[jer’(b/:RQO - b](y/)) Then we can write

;7w = 3 [T(bio) - bi,RQO)T(Hﬁ(y,-) [Tz, - b,-(y,-))ﬁ(y») .

TCTy i€T iet jet’

Since |E\ |J, 21| = 0, it follows that

1SA Y [T |bite) = birg, | T T{(5; = big, ), o X0 (3.2)

TCTy i€T jet’

Now we calculate I in (3.1). For x € P; and x’ € P)\E,

Y IT5(F xqge ) @) xe,

=2 2 1) - busg,

I tCty ieT

T(HﬁXQg\P;f [ [®irg, - b/)ﬁXQ;;\P;f)(x) .

iet jetr’

Page 5 of 11
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Denoting EXQ(’;\I)?‘ (%) = ]_[l-erf,-xQS\p;s Hjer’(b/vRQo - b,')ﬁng\p; (x), we can write

| Tgxqper )] < i}}lfM”T,a @x05e7) @) + | T@xgper) ()|

SATTsas [ TG = birg Vi) g + 1T@x0p) ()] + | T@xep) (%)

iet jer’
S2AT [ieas | [ = birg, Wos + 1T@xe) (%) (3.3)
iet jer’

By I[P\ El = 2 and |{x € P |T(F xpr) ()| > AT, (f)spr }| < 2315, We can get that

<A[[@hur = cA] [ (@)scs-

j=1 j=1

inf | T'(g y p
inf|T@xe;)
This allows us to continue (3.3) with

I Taxgner @] < @+ 94 [T sos [ 10~ bing, Mg

iet jer’

Therefore

IS+ 9A Y [ [heoslbi@) = birgy | T T(6 = birg, Vi), o xo- (3.4)

TCTy i€T jetr’

IIT in (3.1) is the term we need. Combining (3.2) with (3.4), it follows that

| T xap)l xao®) S B+ A D [Tthduas|5i® — bigy | [ 1151 = Bigy ), g5 X0

TCTm i€T jet’
3
l

T3 X)) X0,

Integrating the above estimates, we can get a %—sparse family F C D(Qp) such that for

a.e.x € Qo

SB+oA Z Z l_[(ﬁ>s,Q* bi(x) = big,| H((b/’ ~bir i),k (35)

QeF t1Cty i€t jetr’

T;(f xqz)

The remaining procedure which transfers local setting Qy to global setting R? can be re-
ferred to Sect. 4.2 in [5]. We omit the details to avoid redundancy. The proof of Theo-
rem 1.1 is finished now. d

Proof of Theorem 1.3 Let £ = m. The proof of other cases is similar. Assume suppf; C Qo,

i=1,...,m,and denote

Arb.f) =Y [Ttfser 1bi@) = birg| [ 15 - Bizo)f), o xo

QeF iet jet’

Page 6 of 11
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It is straightforward to see that we can replace bRQ with bo+ in Ar, (I;,f). Then, by (3.5),
we can get a %—sparse family 7 C D(Qp) such that, for almost every x € Qo,

S Z A]-',r(l_;’]_é)'

TCTm

T3] = | T5(F xp)

First we observe that |b;(x) — b;o+| S |billmo + |bi(x) — bigl. From [11, Lemma 5.1], we
can construct a sparse family F C D(Qy) such that, for every Qe F C F,

1
|bi(%) = big| Sea Y (ﬁ / |b; — bipl dx) xe@) Scallbillavo Y xo).
PeF,PcQ i PeF,PcQo

For any a > s, Lemma 2.1 gives that

(& - bi,Q*)ﬁ)s,Q* S il syo () a,qr-

Now we can write

-A]:,r(b:f)
m m
S [ [vaer 1Billsmoxa + cam D [ [Flac- Ibillavo Y xp@®)xo-
QeF i=1 QeF i=1 PeF,PCQq

Hence, it is straightforward to have that

Az: (b)) <cam ) [ [Wbillsvoxo +cam D [TIbillsvo D xe@)xa

Mqf (x) QerF i=1 QeF i=1 PeFPcQo
m
<cam [ [Ibillsno Y xp(®).
i=1 PeF,PCQq

[12, Lemma 2.1] gives that

Az (b.f £ o XP(X) A
{erozg}—' (..f) >A} < {erQ:ZPEF’PCQi’ d > i H
M,(f) M,f Cam | Liy 10ill Baocr
A
< ce T TBBMOCT ||
This finishes the proof of Theorem 1.3. d

Proof of Theorem 1.4 Let £ = m. From Theorem 1.1, it only needs to control As . (l;,f). By
duality, there exists a nonnegative function g € L (w) satisfying ||g|| 1/ (w = 1. Then we can

write
As(b,f)gwdx
]RVI

- [Ttse /Q [T16:4® - biolgw) dx [ (6 - b0)f).

QeS iet iet jet’
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SO T 105l @i = bio) |y o 18Wzaoe o [ T1Bls30 fac

QeS iet jet’

ST billsvofiae D WL inf My (1gl7) @) w(Q),
i=1

QeS

where s < a. The second inequality follows from Lemma 2.1, and we have used Lemma 2.2
in the last inequality. By [13], we know M,,(|g]?)(x)"4 is L”/(wj) bounded when 1 < g < p'.
We can continue writing above display as

As: (Z),f) gw dx
RVI

Wiy H||b v 3 / Ma(F)M(1g17) @) 0w dx

QeSS

wlf Hllb Ismo / M () )M, (1g17) () w dx

Wi, 1_[||b levio [ Ma (F)(x) ”U’w)”M (|g|q)(x)l/q“w

i=1

wllf 1"[||b||BMo||M AV o 12

i=1

where 1 < g < p'. This finishes the proof of Theorem 1.4. g

Proof of Theorem 1.5. The basic idea of our proof is borrowed from Sect. 4.3 in [14] or
[15]. From Theorem 1.1, it is enough to control AS,I(Z),]?). Let £ = m.

A5 P = [T [ T biol e [Tl - iclfl

Q€S iet iet jet’

We denote v;(x) := Mw;(x), then it is easy to see that (w;)q < v;(x) for any cube Q con-
taining x. We can choose constants a, b with s <a < p < b. [11, Lemma 5.1] gives us a sparse
family S such that, for every Qe S C S, it holds that

|bi(%) — big| S Nbillsvo Y xp(@).
PeS,PCQ

By Lemma 2.1, it holds that

”AS(I;'J?) ||i!’(v‘;,)

SO TR b0 > xe@ [ (- bl ova®)

QeS iet PeS,PCQ jet’

SY T1%olbilne D TTIblmo Y o(vislPl

QeS iet PeS,pcQiet’

Page 8 of 11
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m 1 _1
SO LT Y Qv " holbillise D (vadelP)
QeS i=1 PeS,PCQ
mn 1 _r
SO LT Y Qlbilliae Y widp™ (vi)plPl-
QeS i=1 PeS,PgQ

The sparseness property of collection S, S allows us to continue with

"ol
[ As@A S DT olbillime D IER]

QeS i=1 PeS,PCQ

A
s

Lo\p
(ingp(ﬁvf')) 1601 Q

QeS i=1
m L m
S d H(Mp (fiv” ))p dxl_[ 15ill 5000
i=1 i=1

m
4 p
ST T80 il g
i=1

This finishes the proof of Theorem (1.3). O

4 Variations
Let us introduce some notions first. T is a Calderéon—Zygmund operator defined as

Tf(x) = /( o K@y [ [£0)dy,  x¢()supps. (4.1)
j=1 j=1

Definition 4.1 ([4]) Let1 <r<oo,r = ;5. The kernel K (x,) is called to satisfy the mul-
tilinear L"-Hormander condition if

4

G </ |K(x,y) - 1((2,37)|r/ d5/> < 0.
(2kQym\(2k-1Q)m

When r = 1, it should be understood as

K, :=sup sup Z|2kQ

Q x,zE%Q k=1

oo
Ky :=sup sup Z|2kQ 7 esssup |K(x,55) _1<(z,5,)| < 00.
Q xze3Q k-1 Fe@kQym\@k-1Q)m

We first show that the multilinear L"-Hormander condition implies that Mg",a (f) is
bounded from L" x --- x L' — L™ with 1 < r < 00.

Lemma 4.1 Suppose 1 <r < oo, a > 3. T is an operator whose kernel satisfies the bilinear
L"-Hérmander condition. Then /\/ltT’a(}?) is bounded from L" x --- x L" — L™ More
specifically, for any x € R?, it holds that

Mo (D) < KM, (&), (4.2)

where Mr(f )(x) = M([f|’)% and M is the Hardy-Littlewood maximal function.

Page 9 of 11
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Proof Let&,&' € Q.

T Xz, (®) = T(F Xtra) (8)]

S

K(S»q)_l< %_/,* j )('i_>
Lo oKD= K( ) Lo

1
¥

Io%) 1 1
m / v 1 -
<) |2¥ (/ K(E,9) -K(&,y ’d*) (—/ ’d*)
:| Q| (sz)M\(2k_1Q)m| &) -K(E.)| dy Q7 Jkn IfI" dy

k=1

< KM, (f)(x).

Since ./\/l,(f) (x) isbounded from L” x - - - x L” — L'/ we can get the weak type estimates

of Mi, (f). O

Theorem 4.2 Let the multi(sub)linear integral T satisfy the W, condition and the kernel
satisfy the multilinear L"-Hormander condition with 1 < q,r < 00, then all the estimates in
Sect. 1 hold for this operator T.

We give another variation of Theorem 1.1. In this case, we do not need to assume that

T is a multi(sub)linear operator. Given an operator T(f ) and « > 0, we define

M (H@) = sup e:§§%p|(Tf” ~ T(f %)) (€) — (Tf - T(F x20)) (§') |-

Theorem 4.3 Let 1 < gq,r < 00, « > 3. There are nonincreasing functions  and ¢ such
that, for any cube Q,

<AQl (0<A<1)

j=1

{x €qQ: |T(}?XQ)(9C)| > Y (R) H(ﬁ')q@}

<AlQl (O<Ai<1).

{x € Q: M Fro@) > ¢><x)]‘[<z;->r,q}

j=1

Then all the estimates in Sect. 1 hold for this operator T.

Remark 4.2 The assumption of MﬁTOf satisfying the W, condition allows us not to prove
Lemma 4.1. In addition, we should use T (f XQo) %) —Tj (f Xp;k)(x) instead of Tj (}7 XQi\P} )(x)
to avoid using the multi(sub)linear property.
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