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1 Introduction
Sparse domination is a relatively new tool to prove weighted estimates for singular inte-
grals. The sparse method has been developed over the past five years by many researchers
in harmonic analysis, with significant works by Lerner [1], Lacey [2], Conde-Alonso [3],
and the references therein.

A collection S is an η-sparse family of cubes in R
d if for every Q ∈ S there exists EQ ⊂ Q

such that |EQ| ≥ η|Q| (here 0 < η < 1), and EQ ∩ EQ′ = ∅ when Q �= Q′. For an η-sparse
collection of cubes S , we use the notation

〈f 〉p,Q := |Q|– 1
p ‖f χQ‖Lp .

This averaging form is then easily controlled, facilitating the proof of weighted Ap-type
estimates.

Lerner [1] proved a pointwise sparse domination for ω Calderón–Zygmund operators.
The key role in his proof is played by the grand maximal operator

MT (f )(x) := sup
Q�x

esssup
ξ∈Q

∣
∣T

(

f Rd\3Q
)

(ξ )
∣
∣.

Later, Li [4] established sparse domination theorem for multilinear singular integral opera-
tors with the kernel satisfying the Lr-Hörmander condition. Cao and Yabuta [5] developed
sparse dominations for the multilinear Littlewood–Paley operators with the same kernel
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condition. Wen, Wu, and Xue [6] gave a sparse domination for the iterated commutators of
multilinear pseudo-differential operators. Recently Lerner and Ombrosi [7] improved the
results in [1] by weakening the assumption on T and by replacing MT (f )(x) with a more
flexible operator. Motivated by the above works, the purpose of this paper is to establish a
sparse domination for the iterated commutators of multi(sub)linear operator with weaker
hypotheses than [4, 5].

Motivated by Lerner and Ombrosi [7], we assume that T is an operator satisfying the
following Wq property instead of assuming T is bounded from Lq × · · · × Lq → Lq/m,∞:
there is a nonincreasing function ψT ,q such that, for any fj ∈ Lq(Q) with j = 1, . . . , m and
any cube Q,

∣
∣
∣
∣
∣

{

x ∈ Q :
∣
∣T(�f χQ)(x)

∣
∣ > ψT ,q(λ)

m
∏

j=1

〈fj〉q,Q

}∣
∣
∣
∣
∣
≤ λ|Q| (0 < λ < 1). (1.1)

It is easy to see that Lq × · · · × Lq → Lq/m,∞ implies that T satisfies the Wq property with
ψT ,q = ‖T‖Lq×···×Lq→Lq/m,∞λ–m/q.

Let α > 0, we define

M	
T ,α(�f )(x) := sup

Q�x
esssup
ξ ,ξ ′∈Q

∣
∣T(�f χ

Rd\αQ)(ξ ) – T(�f χ
Rd\αQ)

(

ξ ′)∣∣.

Given an operator T , α > 0, the iterated commutators of T are defined by

T

�b (�f )(x) =

[

b1,
[

b2, . . . [b
, T]
 · · · ]2

]

1(�f )(x), (1.2)

where �b = �b(
) = (b1, . . . , b
) (1 ≤ 
 ≤ m). Throughout this paper, τm = {1, . . . , m}. The sym-
bol |τ | denotes the number of the elements in τ . τ ′ = τm\τ is the complementary set.

Our main results of this paper are as follows.

Theorem 1.1 Assume that the multi(sub)linear integral T satisfies the Wq condition and
M	

T ,α is bounded from Lr × · · · × Lr → Lr/m,∞ for some α ≥ 3. Let 1 ≤ q, r < ∞, and s =
max{q, r}. Then, for any compactly supported functions fi ∈ Ls(Rd), i = 1, . . . , m, there exist
3d sparse families Sj such that, for a.e. x ∈R

d ,

∣
∣T


�b (�f )(x)
∣
∣

≤ C
3d

∑

j=1

∑

τ⊂τ


∑

Q∈Sj

∏

i∈τ

〈fi〉s,Q
∣
∣bi(x) – bi,Q

∣
∣ ×

∏

k∈τ
\τ

〈

(bk – bk,Q)fk
〉

s,Q ×
∏

t∈τm\τ

〈ft〉s,QχQ,

where C = cd,s,α(ψT ,q(1/12 · (2α)d) + ‖M	
T ,α‖Lr×···×Lr→Lr/m,∞ ).

Remark 1.1 Our Theorem 1.1 is the commutators result of [7]. Compared with the hy-
potheses in [4, 5], the M	

T ,α makes our proof concise and clear. Further, the Wq condition
of T is weaker than the assumption Lq × · · · × Lq → Lq/m,∞ of T in [4, 5].
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Let 1 ≤ p1, . . . , pm ≤ ∞, �w = (w1, . . . , wm), and each wi is a nonnegative function on R
d .

�w is said to satisfy the following A�p/r condition if

[�w]A�p/r := sup
Q

(
1

|Q|
∫

Q
v�w dx

) m
∏

k=1

(
1

|Q|
∫

Q
w

– r
pi–r

k (x) dx
) p(pi–r)

pir
,

where v�w =
∏m

k=1 wp/pk
k . When r = 1, A�p/r is the A�p weight class defined by Lerner et al. [8].

With the pointwise sparse domination result, we can obtain the following quantitative
weighted estimates and endpoint estimates from Sect. 3 in [5] immediately.

Corollary 1.2 Assume that the multi(sub)linear integral T satisfies the Wq condition and
M	

T ,α is bounded from Lr × · · · × Lr → Lr/m,∞ for some α ≥ 3. Let 1 ≤ q, r < ∞, and s =
max{q, r}, 1

p = 1
p1

+ · · · + 1
pm

with 1 ≤ s < pi < ∞. Set σi = w1–(pi/s)′
i , i = 1, . . . , m. Let T


�b (�f ) be
defined as (1.2).

(1) For �w ∈ A�p/s, there exists a constant C = Cm,�p,d,s such that

∥
∥T


�b (�f )
∥
∥

Lp(v�w)

≤ C[�w]
max1≤i≤m{1, 1

p ( pi
s )′}

A�p/s

(
∑

τ⊂τ


[v�w]|τ |
A∞

∏

j∈τ
\τ
[σj]A∞

) 

∏

i=1

‖bi‖BMO

m
∏

j=1

‖fj‖Lpj (wj).

(2) If �w ∈ A�1, then for any λ > 0 and 
s,
 = ts(1 + log+ t)s
 it holds that

v�w
({

x :
∣
∣T


�b (�f )
∣
∣ > λm}) ≤ C�b,s,


m
∏

i=1

(∫

Rd

s,


( |fi(x)|
λ

)

wi dx
)1/m

.

We also obtain the local decay estimate, the Coifman–Fefferman inequality with w ∈ A∞
weight, and the Fefferman–Stein inequality with arbitrary weights regarding the iterated
commutators. To the best knowledge of the author, these results are new for the iterated
commutators of multi(sub)linear operator.

Theorem 1.3 Assume that the multi(sub)linear integral T satisfies the Wq condition and
M	

T ,α is bounded from Lr ×· · ·×Lr → Lr/m,∞ for some α ≥ 3. Let 1 ≤ q, r < ∞, s = max{q, r},
and a > s, then for any functions supp fi ⊂ Q, i = 1, . . . , m, there exist constants αd,m and cd,m

such that

∣
∣
∣
∣

{

x ∈ Q :
|T


�b (�f )|
Ma(�f )

> λ

}∣
∣
∣
∣
≤ αd,me

–2cd,m
λ∏

i∈τ

‖bi‖BMOcT |Q|, λ > 0.

Theorem 1.4 Assume that the multi(sub)linear integral T satisfies the Wq condition and
M	

T ,α is bounded from Lr ×· · ·×Lr → Lr/m,∞ for some α ≥ 3. Let 1 ≤ q, r < ∞, s = max{q, r},
and a > s, then for any 1 ≤ p < ∞ and any weight w ∈ A∞,

∥
∥T


b (�f )
∥
∥

Lp(w) ≤ cd,m
∑

τ⊂τ


[w]|τ |
A∞

∏

i∈τ


‖bi‖BMO
∥
∥Ma(�f )

∥
∥

Lp(w).
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Theorem 1.5 Assume that the multi(sub)linear integral T satisfies the Wq condition
and M	

T ,α is bounded from Lr × · · · × Lr → Lr/m,∞ for some α ≥ 3. Let 1 ≤ q, r < ∞,
the exponents 1

p = 1
p1

+ · · · + 1
pm

with p > s and 1 < p1, . . . , pm < ∞, then for all weights

�w = (w1, . . . , wm), ν�w =
∏m

i=1 wp/pi
i ,

∥
∥T


b (�f )
∥
∥

Lp(ν�w) �
m

∏

i=1

‖fi‖Lpi (Mwi). (1.3)

The article is organized as follows. Section 2 contains some definitions and main lem-
mas. The proof of theorems is given in Sect. 3. We present some variations of Theorem 1.1
in Sect. 4.

2 Definitions and main lemmas
We begin by introducing some definitions and notations.

Lemma 2.1 (Generalized Hölder inequality, [9]) Let 
0,
1, , . . . ,
k be Young functions. If


–1
1 (t)
–1

2 (t) · · ·
–1
k (t) ≤ κ
–1

0 (t),

then the following inequality holds:

‖f1f2 · · · fk‖
0,Q ≤ κ‖f1‖
1,Q‖f2‖
2,Q · · · ‖fk‖
k ,Q

for all functions f1, . . . , fm and all cubes Q.

In particular, if
∑k

i=1
1
si

= 1
s with each si ≥ 1, then it holds that

1
Q

∫

Q
|f1f2 · · · fkg| ≤ Cs‖f1‖exp Ls1 ,Q‖f2‖exp Ls2 ,Q · · · ‖fk‖exp Lsk ,Q‖g‖

L(log L)
1
s ,Q

.

We introduce the weighted maximal operator and the multi(sub)linear maximal operator
which will be used in the proof of our theorem. Let w be a weight and a ≥ 1,

Mwf (x) = sup
Q�x

1
w(Q)

∫

Q
|f |w dy, Ma(�f ) = sup

Q�x

m
∏

i=1

(
1

|Q|
∫

Q
|fi|adyi

) 1
a

.

Lemma 2.2 ([5]) Let s > 1, t > 0, and w ∈ A∞, then there holds that

‖fw‖L(log L)t ,Q � [w]t
A∞ inf

x∈Q
Mw

(|f |s)1/s〈w〉Q.

Definition 2.1 The sidelength of Q is denoted by 
(Q). Given a cube Q0 ⊂ R
d , let D(Q0)

denote the generation of Q0, that is, the cubes obtained by repeated subdivision of Q0.
Given dyadic grids D, for any j ∈ Z, the set Dj = {Q ∈D,
(Q) = 2j} forms a partition of Rd .
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3 Proof of theorems
Now we devote to proving Theorem 1.1 with the case 
 = m. The other cases are similar
so we omit their proof here. The basic idea of our proof is borrowed from Sect. 3 in [5],
but the definition of Wq and M	

T ,α makes our proof more convenient than [5].

Proof of Theorem 1.1 Fix a cube Q0 ∈R
d and let Q∗

0 = αQ0. Set

M̃T (�f ) = max
(∣
∣T(�f )

∣
∣,M	

T ,α(�f )
)

.

We define the set E as follows:

E =

{

x ∈ Q0 : max

(Ms(�f χQ∗
0
)(x)

c
,

M̃T (�f )
A

)

>
m

∏

j=1

〈fj〉s,Q∗
0

}

.

By the weak endpoint estimates of Ms(�f ) and (1.1), we can choose c = cd,s,α and A =
2ψT ,q(1/12 · (2α)d) + ‖M	

T ,α‖Lr→Lr,∞ such that |E| ≤ 1
2d+2 |Q0|. Then, applying the local

Calderón–Zygmund decomposition to χE on Q0 at λ = 1
2d+1 , we can get a family of pair-

wisely disjoint cubes {Pl} ⊂D(Q0) such that

1
2d+1|Pl| < |E ∩ Pl| ≤ 1

2
|Pl|,

∣
∣
∣
∣
E \

⋃

l

Pl

∣
∣
∣
∣

= 0.

It is easy to have that
∑

l |Pl| ≤ 1
2 |Q0| and Pl

⋂
Ec �= ∅.

∣
∣T�b(�f χQ∗

0
)(x)

∣
∣χQ0 (x)

≤ ∣
∣T�b(�f χQ∗

0
)(x)

∣
∣χQ0\∪lPl +

∑

l

∣
∣T�b(�f χQ∗

0\P∗
l
)(x)

∣
∣χPl +

∑

l

∣
∣T�b(�f χP∗

l
)(x)

∣
∣χPl

:= I + II + III. (3.1)

From [10, Remark 5.1], there exist 3d dyadic lattices Dj such that for every cube Q ⊂ R
d

we can find a cube RQ ∈ Dj satisfying 3Q ⊂ RQ and |RQ| ≤ 9n|Q|. Note that
∏m

i=1(bi(x) –
bi(yi)) =

∑

τ⊂τm

∏

i∈τ (bi(x) – bi,RQ0
)
∏

j∈τ ′ (bj,RQ0
– bj(yj)). Then we can write

T�b(�f )(x) =
∑

τ⊂τm

∏

i∈τ

(

bi(x) – bi,RQ0

)

T
(

∏

i∈τ

fi(yi)
∏

j∈τ ′

(

bj,RQ0
– bj(yj)

)

fj(yj)
)

(x).

Since |E \ ⋃

l Pl| = 0, it follows that

I � A
∑

τ⊂τm

∏

i∈τ

〈fi〉s,Q∗
0

∣
∣bi(x) – bi,RQ0

∣
∣
∏

j∈τ ′

〈

(bj – bj,RQ0
)fj

〉

s,Q∗
0
χQ0 . (3.2)

Now we calculate II in (3.1). For x ∈ Pl and x′ ∈ Pl\E,

∑

l

∣
∣T�b(�f χQ∗

0\P∗
l
)(x)

∣
∣χPl

≤
∑

l

∑

τ⊂τm

∏

i∈τ

∣
∣bi(x) – bi,RQ0

∣
∣

∣
∣
∣
∣
T

(
∏

i∈τ

fiχQ∗
0\P∗

l

∏

j∈τ ′
(bj,RQ0

– bj)fjχQ∗
0\P∗

l

)

(x)
∣
∣
∣
∣
.
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Denoting �gχQ∗
0\P∗

l
(x) =

∏

i∈τ fiχQ∗
0\P∗

l

∏

j∈τ ′ (bj,RQ0
– bj)fjχQ∗

0\P∗
l
(x), we can write

∣
∣T�gχQ∗

0\P∗
l
(x)

∣
∣ ≤ inf

Pl
M	

T ,α(�gχQ∗
0\P∗

l
)(x) +

∣
∣T(�gχQ∗

0\P∗
l
)
(

x′)∣∣

� A
∏

i∈τ

〈fi〉s,Q∗
0

∏

j∈τ ′

〈

(bj – bj,RQ0
)fj

〉

s,Q∗
0

+
∣
∣T(�gχQ∗

0
)
(

x′)∣∣ +
∣
∣T(�gχP∗

l
)
(

x′)∣∣

� 2A
∏

i∈τ

〈fi〉s,Q∗
0

∏

j∈τ ′

〈

(bj – bj,RQ0
)fj

〉

s,Q∗
0

+
∣
∣T(�gχP∗

l
)
(

x′)∣∣. (3.3)

By |Pl \ E| ≥ |Pl|
2 and |{x ∈ Pl : |T(�f χP∗

l
)(x′)| > A

∏m
j=1〈fj〉s,P∗

l
}| ≤ |Pl |

2d+2 , we can get that

inf
Pl\E

∣
∣T(�gχP∗

l
)
∣
∣ ≤ A

m
∏

j=1

〈gj〉s,P∗
l
≤ cA

m
∏

j=1

〈gj〉s,Q∗
0
.

This allows us to continue (3.3) with

∣
∣T�gχQ∗

0\P∗
l
(x)

∣
∣ � (2 + c)A

∏

i∈τ

〈fi〉s,Q∗
0

∏

j∈τ ′

〈

(bj – bj,RQ0
)fj

〉

s,Q∗
0
.

Therefore

II � (2 + c)A
∑

τ⊂τm

∏

i∈τ

〈fi〉s,Q∗
0

∣
∣bi(x) – bi,RQ0

∣
∣
∏

j∈τ ′

〈

(bj – bj,RQ0
)fj

〉

s,Q∗
0
χQ0 . (3.4)

III in (3.1) is the term we need. Combining (3.2) with (3.4), it follows that

∣
∣T�b(�f χQ∗

0
)
∣
∣χQ0 (x) � (3 + c)A

∑

τ⊂τm

∏

i∈τ

〈fi〉s,Q∗
0

∣
∣bi(x) – bi,RQ0

∣
∣
∏

j∈τ ′

〈

(bj – bj,RQ0
)fj

〉

s,Q∗
0
χQ0

+
∑

l

∣
∣T�b(�f χP∗

l
)(x)

∣
∣χPl .

Integrating the above estimates, we can get a 1
2 -sparse family F ⊂ D(Q0) such that for

a.e. x ∈ Q0

∣
∣T�b(�f χQ∗

0
)
∣
∣ �(3 + c)A

∑

Q∈F

∑

τ⊂τm

∏

i∈τ

〈fi〉s,Q∗
∣
∣bi(x) – bi,RQ

∣
∣
∏

j∈τ ′

〈

(bj – bj,RQ )fj
〉

s,Q∗χQ. (3.5)

The remaining procedure which transfers local setting Q0 to global setting R
d can be re-

ferred to Sect. 4.2 in [5]. We omit the details to avoid redundancy. The proof of Theo-
rem 1.1 is finished now. �

Proof of Theorem 1.3 Let 
 = m. The proof of other cases is similar. Assume supp fi ⊂ Q0,
i = 1, . . . , m, and denote

AF ,τ (�b, �f ) :=
∑

Q∈F

∏

i∈τ

〈fi〉s,Q∗
∣
∣bi(x) – bi,RQ

∣
∣
∏

j∈τ ′

〈

(bj – bj,RQ )fj
〉

s,Q∗χQ.
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It is straightforward to see that we can replace bRQ with bQ∗ in AF ,τ (�b, �f ). Then, by (3.5),
we can get a 1

2 -sparse family F ⊂D(Q0) such that, for almost every x ∈ Q0,

∣
∣T�b(�f )

∣
∣ =

∣
∣T�b(�f χQ∗

0
)
∣
∣ �

∑

τ⊂τm

AF ,τ (�b, �f ).

First we observe that |bi(x) – bi,Q∗ | � ‖bi‖BMO + |bi(x) – bi,Q|. From [11, Lemma 5.1], we
can construct a sparse family F̃ ⊂D(Q0) such that, for every Q ∈F ⊂ F̃ ,

∣
∣bi(x) – bi,Q

∣
∣ � cd

∑

P∈F̃ ,P⊆Q

(
1
|P|

∫

P
|bi – bi,P|dx

)

χP(x) � cd‖bi‖BMO
∑

P∈F̃ ,P⊆Q0

χP(x).

For any a > s, Lemma 2.1 gives that

〈

(bj – bj,Q∗ )fj
〉

s,Q∗ � ‖bj‖BMO〈fj〉a,Q∗ .

Now we can write

AF ,τ (�b, �f )

�
∑

Q∈F

m
∏

i=1

〈fi〉a,Q∗‖bi‖BMOχQ + cd,m
∑

Q∈F

m
∏

i=1

〈fi〉a,Q∗‖bi‖BMO
∑

P∈F̃ ,P⊆Q0

χP(x)χQ.

Hence, it is straightforward to have that

AF ,τ (�b, �f )(x)
Ma�f (x)

≤ cd,m
∑

Q∈F

m
∏

i=1

‖bi‖BMOχQ + cd,m
∑

Q∈F

m
∏

i=1

‖bi‖BMO
∑

P∈F̃ ,P⊆Q0

χP(x)χQ

≤ cd,m

m
∏

i=1

‖bi‖BMO
∑

P∈F̃ ,P⊆Q0

χP(x).

[12, Lemma 2.1] gives that

∣
∣
∣
∣

{

x ∈ Q0 :
AF ,τ (�b, �f )

Ma(�f )
> λ

}∣
∣
∣
∣
≤

∣
∣
∣
∣

{

x ∈ Q0 :
∑

P∈F̃ ,P⊆Q0
χP(x)

Ma�f
>

λ

cd,m
∏m

i=1 ‖bi‖BMOcT

}∣
∣
∣
∣

≤ ce
–αd,m

λ
∏m

i=1 ‖bi‖BMOcT |Q0|.

This finishes the proof of Theorem 1.3. �

Proof of Theorem 1.4 Let 
 = m. From Theorem 1.1, it only needs to control AS ,τ (�b, �f ). By
duality, there exists a nonnegative function g ∈ Lp′ (w) satisfying ‖g‖Lp′ (w) = 1. Then we can
write

∫

Rn
AS ,τ (�b, �f )gw dx

=
∑

Q∈S

∏

i∈τ

〈fi〉s,Q

∫

Q

∏

i∈τ

∣
∣bi(x) – bi,Q

∣
∣g(x)w(x) dx

∏

j∈τ ′

〈

(bj – bj,Q)fj
〉

s,Q
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�
∑

Q∈S

∏

i∈τ

〈fi〉s,Q|Q|∥∥(bi – bi,Q)
∥
∥

exp L,Q‖gw‖L(log L)|τ | ,Q
∏

j∈τ ′
‖bj‖BMO〈fj〉a,Q

�
m

∏

i=1

‖bi‖BMO〈fi〉a,Q
∑

Q∈S
[w]|τ |

A∞ inf
x∈Q

Mw
(|g|q)(x)1/qw(Q),

where s < a. The second inequality follows from Lemma 2.1, and we have used Lemma 2.2
in the last inequality. By [13], we know Mw(|g|q)(x)1/q is Lp′ (wj) bounded when 1 < q < p′.
We can continue writing above display as

∫

Rn
AS ,τ (�b, �f )gw dx

� [w]|τ |
A∞

m
∏

i=1

‖bi‖BMO
∑

Q∈S

∫

Q
Ma(�f )(x)Mw

(|g|q)(x)1/qw dx

� [w]|τ |
A∞

m
∏

i=1

‖bi‖BMO

∫

Rd
Ma(�f )(x)Mw

(|g|q)(x)1/qw dx

� [w]|τ |
A∞

m
∏

i=1

‖bi‖BMO
∥
∥Ma(�f )(x)

∥
∥

Lp(w)

∥
∥Mw

(|g|q)(x)1/q∥∥
Lp′ (w)

� [w]|τ |
A∞

m
∏

i=1

‖bi‖BMO
∥
∥Ma(�f )(x)

∥
∥

Lp(w)‖g‖Lp′ (w),

where 1 < q < p′. This finishes the proof of Theorem 1.4. �

Proof of Theorem 1.5. The basic idea of our proof is borrowed from Sect. 4.3 in [14] or
[15]. From Theorem 1.1, it is enough to control AS ,τ (�b, �f ). Let 
 = m.

∥
∥AS ,τ (�b, �f )

∥
∥

p
Lp(ν�w) ≤

∑

Q∈S

∏

i∈τ

〈fi〉p
s,Q

∫

Q

∏

i∈τ

∣
∣bi(x) – bi,Q

∣
∣
p
νw(x) dx

∏

j∈τ ′

〈

(bj – bj,Q)fj
〉p
s,Q.

We denote vi(x) := Mwi(x), then it is easy to see that 〈wi〉Q ≤ vi(x) for any cube Q con-
taining x. We can choose constants a, b with s < a < p < b. [11, Lemma 5.1] gives us a sparse
family S̃ such that, for every Q ∈ S ⊂ S̃ , it holds that

∣
∣bi(x) – bi,Q

∣
∣ � ‖bi‖BMO

∑

P∈S̃ ,P⊆Q

χP(x).

By Lemma 2.1, it holds that

∥
∥AS (�b, �f )

∥
∥

p
Lp(ν�w)

�
∑

Q∈S

∏

i∈τ

〈fi〉p
s,Q‖bi‖p

BMO

∑

P∈S̃ ,P⊆Q

χP(x)
∏

j∈τ ′

〈

(bj – bj,Q)fj
〉p
s,Qν�w(P)

�
∑

Q∈S

∏

i∈τ

〈fi〉p
s,Q‖bi‖p

BMO

∑

P∈S̃ ,P⊆Q

∏

j∈τ ′
‖bj‖p

BMO〈fj〉p
a,Q〈ν�w〉P|P|
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�
∑

Q∈S

m
∏

i=1

〈

fiv
1
pi
i

〉p
p,Q

〈

v
– 1

pi
i

〉p
b,Q‖bi‖p

BMO

∑

P∈S̃ ,P⊆Q

〈ν�w〉P|P|

�
∑

Q∈S

m
∏

i=1

〈

fiv
1
pi
i

〉p
p,Q‖bi‖p

BMO

∑

P∈S̃ ,P⊆Q

〈wi〉
– p

pi
P 〈ν�w〉P|P|.

The sparseness property of collection S , S̃ allows us to continue with

∥
∥AS (�b, �f )

∥
∥

p
Lp(ν�w) �

∑

Q∈S

m
∏

i=1

〈

fiv
1
pi
i

〉p
p,Q‖bi‖p

BMO

∑

P∈S̃ ,P⊆Q

|EP|

�
∑

Q∈S

m
∏

i=1

(

inf
Q

Mp
(

fiv
1
pi
i

))p‖bi‖p
BMO|Q|

�
∫

Rd

m
∏

i=1

(

Mp
(

fiv
1
pi
i

))p dx
m

∏

i=1

‖bi‖p
BMO

�
m

∏

i=1

‖bi‖p
BMO‖fi‖p

Lpi (Mwi)
.

This finishes the proof of Theorem (1.3). �

4 Variations
Let us introduce some notions first. T is a Calderón–Zygmund operator defined as

T�f (x) =
∫

(Rd)m
K(x, �y)

m
∏

j=1

fj(yj) d�y, x /∈
m
⋂

j=1

supp fj. (4.1)

Definition 4.1 ([4]) Let 1 ≤ r < ∞, r′ = r
r–1 . The kernel K(x, �y) is called to satisfy the mul-

tilinear Lr-Hörmander condition if

Kr := sup
Q

sup
x,z∈ 1

2 Q

∞
∑

k=1

∣
∣2kQ

∣
∣

m
r

(∫

(2k Q)m\(2k–1Q)m

∣
∣K(x, �y) – K(z, �y)

∣
∣
r′ d�y

) 1
r′

< ∞.

When r = 1, it should be understood as

K1 := sup
Q

sup
x,z∈ 1

2 Q

∞
∑

k=1

∣
∣2kQ

∣
∣

m
r esssup

�y∈(2kQ)m\(2k–1Q)m

∣
∣K(x, �y) – K(z, �y)

∣
∣ < ∞.

We first show that the multilinear Lr-Hörmander condition implies that M	
T ,α(�f ) is

bounded from Lr × · · · × Lr → Lr/m,∞ with 1 ≤ r < ∞.

Lemma 4.1 Suppose 1 ≤ r < ∞, α ≥ 3. T is an operator whose kernel satisfies the bilinear
Lr-Hörmander condition. Then M	

T ,α(�f ) is bounded from Lr × · · · × Lr → Lr/m,∞. More
specifically, for any x ∈ R

d , it holds that

M	
T ,α(�f )(x) ≤ KrMr(�f )(x), (4.2)

where Mr(�f )(x) = M(|�f |r) 1
r and M is the Hardy–Littlewood maximal function.
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Proof Let ξ , ξ ′ ∈ Q.

∣
∣T(�f χ

Rd\αQ)(ξ ) – T(�f χ
Rd\αQ)

(

ξ ′)∣∣

≤
∣
∣
∣
∣
∣

∫

(Rd)m\(αQ)m

(

K(ξ , �y) – K
(

ξ ′, �y))
m

∏

j=1

fj(yj) d�y
∣
∣
∣
∣
∣

≤
∞

∑

k=1

∣
∣2kQ

∣
∣

m
r

(∫

(2k Q)m\(2k–1Q)m

∣
∣K(ξ , �y) – K

(

ξ ′, �y)∣∣r′ d�y
) 1

r′
(

1
|2kQ|m

∫

(2k Q)m
|�f |r d�y

) 1
r

≤ KrMr(�f )(x).

SinceMr(�f )(x) is bounded from Lr ×· · ·×Lr → Lr/m,∞, we can get the weak type estimates
of M	

T ,α(�f ). �

Theorem 4.2 Let the multi(sub)linear integral T satisfy the Wq condition and the kernel
satisfy the multilinear Lr-Hörmander condition with 1 ≤ q, r < ∞, then all the estimates in
Sect. 1 hold for this operator T .

We give another variation of Theorem 1.1. In this case, we do not need to assume that
T is a multi(sub)linear operator. Given an operator T(�f ) and α > 0, we define

M	
T ,α(�f )(x) := sup

Q�x
esssup
ξ ,ξ ′∈Q

∣
∣
(

T�f – T(�f χαQ)
)

(ξ ) –
(

T�f – T(�f χαQ)
)(

ξ ′)∣∣.

Theorem 4.3 Let 1 ≤ q, r < ∞, α ≥ 3. There are nonincreasing functions ψ and φ such
that, for any cube Q,

∣
∣
∣
∣
∣

{

x ∈ Q :
∣
∣T(�f χQ)(x)

∣
∣ > ψ(λ)

m
∏

j=1

〈fj〉q,Q

}∣
∣
∣
∣
∣
≤ λ|Q| (0 < λ < 1);

∣
∣
∣
∣
∣

{

x ∈ Q :
∣
∣M	

T ,α
�f χQ)(x)

∣
∣ > φ(λ)

m
∏

j=1

〈fj〉r,Q

}∣
∣
∣
∣
∣
≤ λ|Q| (0 < λ < 1).

Then all the estimates in Sect. 1 hold for this operator T .

Remark 4.2 The assumption of M	
T ,α

�f satisfying the Wr condition allows us not to prove
Lemma 4.1. In addition, we should use T�b(�f χQ0 )(x) – T�b(�f χP∗

l
)(x) instead of T�b(�f χQ∗

0\P∗
l
)(x)

to avoid using the multi(sub)linear property.
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