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Abstract
We study orientable hypersurfaces in a Sasakian manifold. The structure vector field ξ
of a Sasakian manifold determines a vector field v on a hypersurface that is the
component of the Reeb vector field ξ tangential to the hypersurface, and it also gives
rise to a smooth function σ on the hypersurface, namely the projection of ξ on the
unit normal vector field N. Moreover, we have a second vector field tangent to the
hypersurface, given by u = –ϕ(N). In this paper, we first find a necessary and sufficient
condition for a compact orientable hypersurface to be totally umbilical. Then, with
the assumption that the vector field u is an eigenvector of the Laplace operator, we
find a necessary condition for a compact orientable hypersurface to be isometric to a
sphere. It is shown that the converse of this result holds, provided that the Sasakian
manifold is the odd dimensional sphere S2n+1. Similar results are obtained for the
vector field v under the hypothesis that this is an eigenvector of the Laplace operator.
Also, we use a bound on the integral of the Ricci curvature Ric(u,u) of the compact
hypersurface to find a necessary condition for the hypersurface to be isometric to a
sphere. We show that this condition is also sufficient if the Sasakian manifold is S2n+1.
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1 Introduction
Sasakian manifolds are the odd dimensional counterpart to Kähler manifolds and, as
pointed out recently in [24], many famous results from Kähler geometry were extended
afterwards to Sasakian geometry (see, e.g., [12, 14, 19, 23, 26, 30, 41, 43]). Moreover, it is
well known that Sasakian manifolds exist in abundance; for example the unit sphere S2n+1,
the Euclidean space R2n+1, the unit tangent bundle T1S2n of the unit sphere S2n, the special
unitary group SU(2), the Heisenberg group H2n+1 and the special linear group SL(2, R) are
Sasakian manifolds (cf. [15]). Recently, Boyer and Tonnesen-Friedman [16] constructed
new explicit Sasakian metrics of constant scalar curvature on compact Sasakian manifolds
of dimension (2n + 3) which can be realized as certain 3-dimensional Lens space bundles
over compact constant scalar curvature Kähler manifolds of real dimension 2n. Moreover,
given a (2n + 1)-dimensional Riemannian manifold (M, g), there is an associated Rieman-
nian cone M × R+ with metric g = dt2 + t2g and a smooth 1-form θ on M is a contact
form if and only if the 2-form t2dθ + dt ∧ θ on the associated cone is symplectic. Also, the
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associated cone is a Kähler manifold with Kähler form t2dθ + dt ∧ θ if and only if (M, g) is
a Sasakian manifold. This relationship between Sasakian manifolds and Kähler manifolds
makes the geometry of Sasakian manifolds very interesting. In addition, it is well known
that Sasakian manifolds play an important role in theoretical physics [15, 29, 40].

One of the most important branches of differential geometry is the geometry of sub-
manifolds. In submanifold theory, it is more convenient to study submanifolds embedded
in space forms (such as real, complex, quaternionic or Sasakian space forms), due to the
fact that in all these ambient spaces, the fundamental equations take a simpler form (see,
e.g., the monographs [17, 18] and [2–5, 39, 42]).

However, unlike the case of hypersurfaces in complex space forms which have been in-
tensively studied (see, e.g., [1, 8, 21, 22, 31, 33, 34, 38, 44]) and despite the fact that Sasakian
spaces are linked in a natural way to Kähler spaces, the geometry of hypersurfaces in
Sasakian manifolds was not investigated with the same fervency, except some studies on
hypersurfaces of Sasakian space forms (see [25]). In this setting, a remarkable result was
obtained by Watanabe (cf. [45]), who used the famous Obata equation [35, 36] in proving
that any complete and connected totally umbilical hypersurface of a (2n + 1)-dimensional
Sasakian manifold of constant mean curvature H is isometric to the sphere S2n(1 + H2).
Note that Watanabe’s study was further generalized in [44, 46].

If M is an orientable hypersurface of a Sasakian manifold M(ϕ, ξ ,η, g) of dimension
(2n + 1), with unit normal vector field N and shape operator A, then one can consider
two key vector fields on M, denoted by v and u, where v is the tangential component of
the Reeb vector field ξ to M and ϕ(N) = –u. Recall now that the classical investigations of
real hypersurfaces in complex space forms, as well as of hypersurfaces of Sasakian space
forms were convenient due to a handy form of Gauss fundamental equation for the curva-
ture tensor field and also due to a manageable form of Codazzi fundamental equation, but
this tool is missing in the setting of hypersurfaces in general Sasakian manifolds. However,
as proved in [6], this deficiency is compensated with the help of Reeb vector field ξ of the
Sasakian manifold and by the volume of the hypersurface. In Sect. 2, we state some ba-
sic formulae for later use, concerning orientable hypersurfaces M of Sasakian manifolds
M(ϕ, ξ ,η, g) of dimension (2n + 1). As totally umbilical hypersurfaces are important ones
among hypersurfaces of Sasakian manifolds, in Sect. 3 we find the necessary and sufficient
conditions for a compact orientable hypersurface to be a totally umbilical hypersurface (cf.
Theorem 3.1). It is well known that the class of constant mean curvature hypersurfaces is
a subject worthy of investigation in submanifold geometry (see, e.g., the recent articles
[7, 9, 11, 20, 27, 28, 37]). These hypersurfaces, mostly known as CMC-hypersurfaces, have
been investigated in various ambient spaces, including the unit sphere. As the odd dimen-
sional sphere S2n+1 is a remarkable example of Sasakian manifold, we use the tools devel-
oped in this paper to find necessary and sufficient conditions for a compact hypersurface
of S2n+1 to be a CMC-hypersurface (cf. Theorem 3.2). Moreover, we also find a necessary
and sufficient condition for a compact hypersurface of S2n+1 to be a small sphere (cf. The-
orem 3.3).

In Sect. 4, we observe that, for a totally geodesic hypersurface M of a (2n + 1)-
dimensional Sasakian manifold M(ϕ, ξ ,η, g), vector fields u, v are eigenvectors of Laplace
operator acting on smooth vector fields with eigenvalues 1 and 2n – 1, respectively. This
raises a natural question as to whether compact hypersurfaces for which these vector fields
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are eigenvectors with positive eigenvalues necessarily imply that hypersurfaces are totally
geodesic? We answer this question in this section (cf. Theorem 4.1 and Theorem 4.3).

Finally, in Sect. 5, we use a lower bound on the integral of Ricci curvature Ric(u, u) to
find a condition under which a compact hypersurface is isometric to a sphere (cf. The-
orem 5.2) and prove that this condition is also sufficient for hypersurfaces of the sphere
S2n+1 (cf. Theorem 5.3). We also use the restriction of the Ricci curvature Ric(N , N) of the
ambient Sasakian manifold to the compact orientable hypersurface M, which has an in-
fimum c (owing to compactness of M) and prove that, with suitable restrictions on c and
the sectional curvature of plane section spanned by u, v, there can be given a necessary
condition for the hypersurface to be isometric to a sphere (cf. Theorem 5.4). We use this
result to find the necessary and sufficient conditions for a compact hypersurface M of the
sphere S2n+1 to be isometric to a small sphere (cf. Corollary 5.5).

2 Preliminaries
If M(ϕ, ξ ,η, g) is a Sasakian manifold of dimension (2n + 1) and ∇ denotes the Levi-Civita
connection of the metric g , then it is well known that ϕ is a tensor of type (1, 1) on M, ξ is
a vector field on M, called the Reeb vector field, the structure vector field or the charac-
teristic vector field, η is a 1-form on M, g is a Riemannian metric on M, and the following
relations are satisfied for all X, Y ∈X(M) [13, 15]:

ϕ2(X) = –X + η(X)ξ , ϕ(ξ ) = 0, η ◦ ϕ = 0, g(X, ξ ) = η(X), (1)

g
(
ϕ(X),ϕ(Y )

)
= g(X, Y ) – η(X)η(Y ), (2)

(∇ϕ)(X, Y ) = g(X, Y )ξ – η(Y )X, ∇Xξ = –ϕX, (3)

whereX(M) denotes the Lie algebra of smooth vector fields on M and the covariant deriva-
tive ∇ϕ of ϕ is given by

(∇ϕ)(X, Y ) = ∇Xϕ(Y ) – ϕ(∇XY ).

As per usual, we denote in the following by R, Ric and Q, the curvature tensor, the Ricci
tensor and the Ricci operator of M(ϕ, ξ ,η, g). Then it is well known that [13]

R(X, Y )ξ = η(Y )X – η(X)Y , Q(ξ ) = 2nξ , X, Y ∈X(M), (4)

where the Ricci operator Q is a symmetric operator defined with the help of the Ricci
tensor Ric by

Ric(X, Y ) = g
(
Q(X), Y

)
.

Moreover, it is well known that, for all X, Y orthogonal to ξ , we have

Ric
(
ϕ(X),ϕ(Y )

)
= Ric(X, Y ), X, Y ∈X(M).

If M is an orientable hypersurface of the Sasakian manifold M(ϕ, ξ ,η, g), let us denote
by N the unit normal vector field, and by A the shape operator. Then the Gauss and Wein-
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garten basic formulae are written as (cf. [10, 17])

∇U V = ∇U V + g(AU , V )N , ∇U N = –AU , U , V ∈ X(M), (5)

where g denotes the induced metric on M, as well as the metric on M, ∇ is the Levi-Civita
connection of M and X(M) is the Lie algebra of the smooth vector fields on hypersur-
face M.

Now, due to the skew-symmetry of ϕ, we find that ϕ(N) is orthogonal to N and we ob-
tain a smooth vector field u ∈ X(M) given by ϕ(N) = –u. Let α be the smooth 1-form on
hypersurface M dual to the vector field u. Hence α(U) = g(u, U), U ∈X(M). Also, we con-
sider an operator F : X(M) →X(M) defined by F(U) = [ϕ(U)]T the tangential component
of ϕ(U) to the hypersurface M. Therefore, we have

ϕ(U) = F(U) + α(U)N , U ∈X(M), (6)

and it follows immediately that F is also a skew-symmetric operator.
Next, we define a smooth function σ on M by σ = g(ξ , N). Then, on the hypersurface,

we have

ξ = v + σN , (7)

where v ∈X(M) is the tangential component of the Reeb vector field ξ . Let us denote by β

the smooth 1-form on M dual to the vector field v, that is, β(U) = g(v, U). Then, making
use of ϕ(N) = –u and Eqs. (1), (2), (6), and (7), it follows that

‖u‖2 = ‖v‖2 = 1 – σ 2, (8)

F(u) = –σv, F(v) = σu, (9)

F2(U) = –U + α(U)u + β(U)v, (10)

and

g
(
F(U), F(V )

)
= g(U , V ) – α(U)α(V ) – β(U)β(V ), U , V ∈ X(M). (11)

Also, making use of Eqs. (3), (4), (7), and ϕ(N) = –u, we derive

∇U u = σU + F(AU), ∇U v = –F(U) + σAU , ∇σ = –Av – u, (12)

(∇F)(U , V ) = g(U , V )v – β(V )U + α(V )AU – g(AU , V )u, (13)

where ∇σ stands for the gradient of σ and

(∇F)(U , V ) = ∇U F(V ) – F(∇UV ),

for U , V ∈X(M).
As F is skew-symmetric and A is symmetric, we deduce easily that

tr(F ◦ A) = 0,
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and using first two equations in (12), we derive

div u = 2nσ , div v = 2nHσ , (14)

where H denotes the mean curvature of M defined by 2nH = trA. Thus, in the case that
M is compact, Eq. (14) implies

∫

M
σ = 0,

∫

M
σH = 0. (15)

Using now Eq. (5), we deduce

R(U , V )N = –(∇A)(U , V ) + (∇A)(V , U), U , V ∈X(M). (16)

On the other hand, the curvature tensor R of M is given as

R(U , V )W =
[
R(U , V )W

]T + g(AV , W )AU – g(AU , W )AV , (17)

where [R(U , V )W ]T is the tangential component of R(U , V )W to the hypersurface. If we
choose a local orthonormal frame {e1, . . . , e2n} on M and use Eq. (17), we derive that the
Ricci tensor Ric of M has the next expression

Ric(U , V ) = 2nHg(AU , V ) – g(AU , AV ) +
2n∑

i=1

R(ei, U ; V , ei).

Note that

2n∑

i=1

R(ei, U ; V , ei) = Ric(U , V ) – R(N , U ; V , N),

and therefore we deduce

Ric(U , V ) = 2nHg(AU , V ) – g(AU , AV ) + Ric(U , V ) – R(N , U ; V , N). (18)

Also, note that, on an orientable hypersurface M of a Sasakian manifold M(ϕ, ξ ,η, g) of
dimension (2n + 1), one can consider two globally defined orthogonal vector fields u, v
and they span plane sections of the tangent bundle of M. Recall now that the sectional
curvature K(u, v) is defined as

K(u, v) =
R(u, v; v, u)
‖u‖2‖v‖2 .

Next, we recall that if f is a smooth function on a Riemannian manifold (M, g), then the
Hessian operator Af is a symmetric operator defined by

Af U = ∇U∇f , U ∈X(M),
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and the Laplace operator 	 acting on smooth functions of M is defined as

	f = div(∇f ).

Moreover, we have 	f = trAf . We also denote by the same symbol, 	, the Laplace operator
acting on smooth vector fields on M defined by

	X =
n∑

i=1

(∇ei∇ei X – ∇∇ei ei X), X ∈X(M),

where {e1, . . . , en} is a local orthonormal frame on M, n = dim M. A vector field X is said to
be an eigenvector of 	 with eigenvalue λ if 	X = –λX. If λ = 0, X is said to be harmonic
vector field.

3 Totally umbilic hypersurfaces
As we have noticed in the introduction, the most relevant results on hypersurfaces of a
Sasakian manifold concern totally umbilical hypersurfaces. Therefore, it becomes an in-
teresting question to seek conditions which are necessary and sufficient for a hypersurface
of a Sasakian manifold to be totally umbilical. In the first result of this section we answer
this question for a compact hypersurface of a Sasakian manifold and observe that sectional
curvatures of the plane sections spanned by {u, v} and the volume of the hypersurface play
an important role. We also find a necessary condition for a compact hypersurface of a
Sasakian manifold to be a CMC-hypersurface.

Theorem 3.1 A compact and connected orientable hypersurface M of a (2n + 1)-
dimensional Sasakian manifold M(ϕ, ξ ,η, g) with sectional curvature K (u, v) > 0 and mean
curvature H constant along the integral curves of v is a totally umbilical hypersurface with
constant mean curvature if and only if its volume V(M) satisfies

V(M) ≤ 1
n – 1

∫

M

(
1
2

Ric(v, v) –
(
n(2n – 1)H2 + 1

)
σ 2

)
. (19)

Proof Suppose M is a compact hypersurface with K(u, v) > 0 and the mean curvature H is
constant along the integral curves of v and the volume of M satisfies (19). Then choosing
a local orthonormal frame {e1, . . . , e2n} on the hypersurface, and using Eq. (16), we have for
any vector field U tangent to M

2nU(H) =
2n∑

i=1

g
(
(∇A)(U , ei), ei

)

=
2n∑

i=1

g
(
(∇A)(ei, U) + R(ei, U)N , ei

)

= Ric(U , N) + g

(

U ,
2n∑

i=1

(∇A)(ei, ei)

)

. (20)

Now, using Eq. (14), we have

div(Hv) = v(H) + 2nσH2,
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which in view of Eq. (20) implies

2n div(Hv) = Ric(v, N) + g

(

v,
2n∑

i=1

(∇A)(ei, ei)

)

+ (2n)2σH2.

Also, using the above equation in

div(σHv) = Hv(σ ) + σ div(Hv),

we conclude

2n div(σHv) = 2nHg(–Av, v) + σRic(v, N)

+ σ g

(

v,
2n∑

i=1

(∇A)(ei, ei)

)

+ (2n)2σ 2H2,

where we have used ∇σ = –Av – u. Thus, we have

σ g

(

v,
2n∑

i=1

(∇A)(ei, ei)

)

= 2nHg(Av, v) – σRic(v, N)

– 4n2σ 2H2 + 2n div(σHv). (21)

Next, we compute div(Av) with the aid of second equation in (12) and get

div(Av) =
2n∑

i=1

g
(
–F(ei) + σAei, Aei

)
+ g

(

v,
2n∑

i=1

(∇A)(ei, ei)

)

= σ‖A‖2 + g

(

v,
2n∑

i=1

(∇A)(ei, ei)

)

,

where we have used trA ◦ F = 0. Thus, we derive

div(σAv) = g(∇σ , Av) + σ 2‖A‖2 + σ g

(

v,
2n∑

i=1

(∇A)(ei, ei)

)

,

and using ∇σ = –Av – u we conclude

div(σAv) = –‖Av‖2 – g(Av, u) + σ 2‖A‖2 + σ g

(

v,
2n∑

i=1

(∇A)(ei, ei)

)

. (22)

Inserting Eq. (21) in the above equation, we get

div(σAv) – 2n div(σHv) = –‖Av‖2 – g(Av, u) + σ 2‖A‖2 + 2nHg(Av, v)

–σRic(v, N) – 4n2σ 2H2. (23)

Now, using Eq. (18), we have

Ric(v, v) = 2nHg(Av, v) – ‖Av‖2 + Ric(v, v) – R(N , v; v, N).
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Note that v = ξ – σN , and using Eq. (4), we get

Ric(v, v) = 2n – 4nσ 2 + σ 2Ric(N , N)

and

R(N , v; v, N) = 1 – σ 2.

Thus, we conclude

Ric(v, v) = 2nHg(Av, v) – ‖Av‖2 + σ 2Ric(N , N)

+ (2n – 1) – (4n – 1)σ 2. (24)

Also, using

Ric(v, N) = 2nσ – σRic(N , N)

in Eq. (23) and subtracting Eq. (24) from it, we get

div(σAv) – 2n div(σHv) = –g(Av, u) + σ 2‖A‖2 – 4n2σ 2H2

+ Ric(v, v) – (2n – 1) + (2n – 1)σ 2.

Integrating the above equation, we get

∫

M

(
σ 2‖A‖2 – 4n2σ 2H2 + Ric(v, v) – (2n – 1) + (2n – 1)σ 2 – g(Av, u)

)
= 0.

Note that using (14) and ∇σ = –Av – u, we have

div(σu) = g(–Av – u, u) + σ (2nσ )

= –g(Av, u) –
(
1 – σ 2) + 2nσ 2,

that is,

–g(Av, u) = div(σu) + 1 – (2n + 1)σ 2. (25)

Inserting this value in the above integral, we conclude

∫

M

(
σ 2‖A‖2 – 4n2σ 2H2 + Ric(v, v) – 2(n – 1) – 2σ 2) = 0,

that is,
∫

M
σ 2(‖A‖2 – 2nH2) = 2(n – 1)V(M)

+
∫

M

((
2n(2n – 1)H2 + 2

)
σ 2 – Ric(v, v)

)
.
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The above equation implies

∫

M
σ 2(‖A‖2 – 2nH2) = 2(n – 1)V(M)

–2
∫

M

(
1
2

Ric(v, v) –
(
n(2n – 1)H2 + 1

)
σ 2

)
.

If the inequality (19) holds, then in view of Schwartz’s inequality

‖A‖2 ≥ 2nH2,

and the above equation gives

σ 2(‖A‖2 – 2nH2) = 0. (26)

Supposing σ = 0, then from Eqs. (8) and (9) it follows that {u, v} is an orthonormal set and
F(u) = 0, F(v) = 0. Thus, using Eq. (12), we have

∇uv = 0, ∇vv = 0

and

R(u, v)v = –∇[u,v]v = –F
(
[u, v]

)
.

Therefore, the sectional curvature K(u, v) is

K(u, v) = –g
(
F
(
[u, v]

)
, u

)
= 0,

which is contrary to the assumption that K(u, v) > 0. Hence, σ 
= 0 and consequently, on
connected M, Eq. (26) implies the equality ‖A‖2 = 2nH2. We know that this equality in
Schwartz’s inequality holds if and only if

A = HI, (27)

where I denotes the identity operator. Now, we proceed to show that H is a constant. Note
that, due to (27), Eqs. (12) take the form

∇U u = σU + HF(U), ∇U v = –F(U) + σHU , ∇σ = –Hv – u.

Using the above equations, we compute the Hessian operator Aσ and find

Aσ U = –U(H)v –
(
1 + H2)σU .

As the Hessian operator Aσ is symmetric, we conclude that

U(H)g(v, V ) = V (H)g(v, U), U , V ∈ X(M).
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Taking V = v and using the fact that H is constant along the integral curves of v, we con-
clude that ‖v‖2U(H) = 0. Note that ‖v‖2 = 0 implies σ = ±1 and it gives a contradiction to
Eq. (15). Hence, U(H) = 0 for all U ∈ X(M). Therefore, H is a constant and we conclude
that M is a totally umbilical hypersurface with constant mean curvature.

Conversely, suppose M is a totally umbilical hypersurface with constant mean curva-
ture. Then M is isometric to S2n(1 + H2) (cf. [34]). Moreover, it follows that the sectional
curvature K(u, v) > 0 and the Ricci curvature

Ric(v, v) = (2n – 1)
(
1 + H2)‖v‖2 = (2n – 1)

(
1 + H2)(1 – σ 2). (28)

Note that Eqs. (25) and (27) give
∫

M
σ 2 =

1
2n + 1

V(M),
∫

M

(
1 – σ 2) =

2n
2n + 1

V(M). (29)

Now, integrating Eq. (28) and using the last equation, we get

1
2

∫

M
Ric(v, v) =

n(2n – 1)
2n + 1

(
1 + H2)V(M). (30)

Also, using Eq. (29), we have
∫

M

(
n(2n – 1)H2 + 1

)
σ 2 =

1
2n + 1

(
n(2n – 1)H2 + 1

)
V(M)

and subtracting the above equation from Eq. (30), we conclude

∫

M

(
1
2

Ric(v, v) –
(
n(2n – 1)H2 + 1

)
σ 2

)
= (n – 1)V(M).

Hence, we get the equality

V(M) =
1

n – 1

∫

M

(
1
2

Ric(v, v) –
(
n(2n – 1)H2 + 1

)
σ 2

)

required in the statement. Thus, all the requirements are met. �

Recall that a hypersurface of a Riemannian manifold having constant mean curvature is
called a CMC-hypersurface. Moreover, CMC-hypersurfaces in unit spheres are of particu-
lar interest not only in geometry but also in theoretical physics. Since the odd dimensional
unit sphere S2n+1 is a Sasakian manifold, it is an interesting question to find necessary con-
ditions for a compact hypersurface of a Sasakian manifold to be a CMC-hypersurface. We
answer this question in the following.

Theorem 3.2 Let M be a compact and connected orientable hypersurface of a (2n + 1)-
dimensional Sasakian manifold M(ϕ, ξ ,η, g) with mean curvature H . If Av = μv for a con-
stant μ and H ≥ μ holds, then M is a CMC-hypersurface.

Proof Suppose Av = μv for a constant μ. Then Eq. (12) implies

∇σ = –μv – u,
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and consequently v(σ ) = –μ‖v‖2. Now, using Eq. (14), we infer

div(σv) = –μ‖v‖2 + 2nHσ 2 = –μ
(
1 – σ 2) + 2nHσ 2.

Integrating the above equation, we have

μV(M) =
∫

M
(2nH + μ)σ 2. (31)

Now, integrating Eq. (25) and using Av = μv, we obtain

∫

M
σ 2 =

1
2n + 1

V(M). (32)

Combining Eqs. (31) and (32), we conclude

2n
∫

M
(H – μ)σ 2 = 0.

Since H ≥ μ, the integrand in the above integral is non-negative and we get

(H – μ)σ 2 = 0. (33)

If σ 2 = 0, then Eqs. (8) and (12) imply ‖u‖2 = 1 and μv = –u. Taking the inner product
in the last equation with u, we get a contradiction, namely ‖u‖2 = 0. Hence, σ 2 
= 0 and
Eq. (33) on connected M implies H = μ, that is, H is a constant. �

Finally, for compact hypersurfaces of the unit sphere S2n+1, we have the following char-
acterization of small spheres in S2n+1.

Theorem 3.3 A compact and connected hypersurface M of the unit sphere S2n+1 with mean
curvature H and Av = μv for a constant μ ≤ H , is isometric to the sphere S2n(1 + μ2) if and
only if its volume satisfies

V(M) ≤ 2n + 1
2n(2n – 1)(1 + H2)

∫

M
Ric(v, v).

Proof Recall that compact hypersurfaces of the unit sphere S2n+1 are orientable. Suppose
M is a compact hypersurface of S2n+1 that satisfies the conditions in the statement of the-
orem. Then by Theorem 3.2, M is a CMC-hypersurface, that is, H is a constant and H = μ.
Now, using integral equation involving V(M) just before Eq. (26), we have

∫

M
σ 2(‖A‖2 – 2nH2) = 2(n – 1)V(M)

+ 2
[
n(2n – 1)H2 + 1

] ∫

M
σ 2 –

∫

M
Ric(v, v).

Using Eq. (32) in the above equation, we get

∫

M
σ 2(‖A‖2 – 2nH2) =

2n(2n – 1)
2n + 1

(
1 + H2)V(M) –

∫

M
Ric(v, v).
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Using the upper bound on V(M), we conclude

∫

M
σ 2(‖A‖2 – 2nH2) ≤ 0,

and as the integrand is non-negative, the above inequality gives

σ 2(‖A‖2 – 2nH2) = 0.

However, because σ 2 
= 0, as noticed in the proof of Theorem 3.2, we get ‖A‖2 = 2nH2

and consequently A = HI . Hence, M is totally umbilical hypersurface of constant mean
curvature H = μ and thus, M is isometric to the sphere S2n(1 + μ2).

Conversely, if we suppose the hypersurface M is isometric to S2n(1 + μ2), then M is a
totally umbilic hypersurface with A = μI and the mean curvature H = μ. Then we have

Ric(v, v) = (2n – 1)
(
1 + H2)‖v‖2 = (2n – 1)

(
1 + H2)(1 – σ 2).

Integrating the above equation and using Eq. (32), we get

∫

M
Ric(v, v) =

2n(2n – 1)
2n + 1

(
1 + H2)V(M),

that is,

V(M) =
2n + 1

2n(2n – 1)(1 + H2)

∫

M
Ric(v, v)

and the proof is now complete. �

4 Vector fields u and v as eigenvectors of Laplace operator
Let M be a totally geodesic hypersurface of a (2n + 1)-dimensional Sasakian manifold
M(ϕ, ξ ,η, g). Then Eq. (12) takes the form

∇U u = σU , ∇U v = –F(U), ∇σ = –u, U ∈X(M), (34)

and using these equations and Eq. (13), we get

	u = –u, 	v = –(2n – 1)v. (35)

Thus, we see that both vector fields u, v are eigenvectors of the Laplace operator on the
totally geodesic hypersurface M. However, we see that if M is totally umbilic hypersurface
with constant mean curvature H , then we get

	u = –
(
1 + (2n – 1)H2)u + 2(n – 1)Hv, 	v = –

(
2n – 1 + H2)v – 2nHu,

that is, u, v are not eigenvectors of the Laplace operator on non-totally geodesic totally um-
bilical hypersurface M. This raises a question: Do vectors u, v as eigenvectors of Laplace
operator on compact hypersurfaces of a Sasakian manifold can be used to characterize
totally geodesic hypersurfaces? In this section, we answer this question.
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Theorem 4.1 Let M be a compact and connected orientable hypersurface of a (2n + 1)-
dimensional Sasakian manifold M(ϕ, ξ ,η, g) with 	u = –λu for a positive constant λ. Then
M is totally geodesic if and only if its volume satisfies

V(M) ≤ 1
λ

∫

M

(
(2n + λ)σ 2 – ‖Au‖2 – ‖Av‖2).

Proof Let M be a compact and connected orientable hypersurface of a (2n + 1)-
dimensional Sasakian manifold M(ϕ, ξ ,η, g) and 	u = –λu for a positive constant λ. Then
taking a local orthonormal frame {e1, . . . , e2n} on M and using Eq. (12), we compute

	u =
2n∑

i=1

[
ei(σ )ei + (∇F)(ei, Aei) + F

(
(∇A)(ei, ei)

)]
.

Using Eq. (13) and 	u = –λu in the above equation, we have

–λu = ∇σ + 2nHv – Av + A2u – ‖A‖2u + F

( 2n∑

i=1

(∇A)(ei, ei)

)

.

Now, substituting –Av = ∇σ + u in the above equation and taking the inner product with
u, we conclude

(
–λ – 1 + ‖A‖2)‖u‖2 = 2u(σ ) + ‖Au‖2 + σ g

(

v,
2n∑

i=1

(∇A)(ei, ei)

)

, (36)

where we have used F(u) = –σv (cf. Eq. (9)). Now, using Eq. (22), we have

σ g

(

v,
2n∑

i=1

(∇A)(ei, ei)

)

= ‖Av‖2 + g(Av, u) – σ 2‖A‖2 + div(σAv),

and substituting this value in Eq. (36) yields

(
–λ – 1 + ‖A‖2)‖u‖2 = 2u(σ ) + ‖Au‖2 + ‖Av‖2

+ g(Av, u) – σ 2‖A‖2 + div(σAv).

Using ‖u‖2 = 1 –σ 2 and u(σ ) = div(σu) – 2nσ 2 in the above equation and then integrating,
we get

∫

M
‖A‖2 =

∫

M

(‖Au‖2 + ‖Av‖2 + g(Av, u) + (1 + λ)
(
1 – σ 2) – 4nσ 2).

Now, using Eq. (25) in the above equation, we get

∫

M
‖A‖2 = λ

(
V(M) –

1
λ

∫

M

(
(2n + λ)σ 2 – ‖Au‖2 – ‖Av‖2)

)
.

Using the volume estimate in the statement, we get A = 0, that is, M is totally geodesic.
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Conversely, suppose M is a totally geodesic hypersurface of the Sasakian manifold
M(ϕ, ξ ,η, g). Then by Eq. (35), we see that 	u = –λu, where λ = 1. Moreover, integrat-
ing Eq. (25), in view of A = 0, gives

V(M) =
1
λ

∫

M
(2n + λ)σ 2,

where λ = 1, which is the equality case of the requirement in the statement. �

Note that by Eq. (34) for a compact totally geodesic hypersurfaces of a (2n + 1)-
dimensional Sasakian manifold M(ϕ, ξ ,η, g), we have

∇U∇σ = –σU , U ∈X(M). (37)

If σ is a constant, Eq. (14) implies σ = 0. Then the equation ‖u‖2 = 1 – σ 2 = 1 implies
u is a unit vector field. However, for constant σ , Eq. (34) implies u = 0 and we get a con-
tradiction. Hence, Eq. (37) is Obata’s differential equation (cf. [25, 31]) and, therefore, M
is isometric to the unit sphere S2n. Recall that an odd dimensional unit sphere S2n+1 as a
real hypersurface of the complex space Cn+1 has the standard Sasakian structure (ϕ, ξ ,η, g)
[32]. As a particular case of the above theorem, we have the following consequence.

Corollary 4.2 Let M be a compact and connected hypersurface of the unit sphere S2n+1

with 	u = –λu for a positive constant λ. Then M is isometric to the unit sphere S2n if and
only if the volume of M satisfies

V(M) ≤ 1
λ

∫

M

(
(2n + λ)σ 2 – ‖Au‖2 – ‖Av‖2).

Theorem 4.3 Let M be a compact and connected orientable hypersurface of a (2n + 1)-
dimensional Sasakian manifold M(ϕ, ξ ,η, g) such that the sectional curvature K(u, v) > 0
and 	v = –λv for a positive constant λ. Then M is totally geodesic if and only if its volume
satisfies

(λ + 2 – 2n)
λ + 2

V(M) ≤
∫

M
σ 2.

Proof Using Eq. (1), we have

∇U∇U v – ∇∇U U v = –(∇F)(U , U) + U(σ )AU + σ (∇A)(U , U),

and thus, choosing a local orthonormal frame {e1, . . . , e2n} on M and using Eq. (12), we
compute

	v = –
(
(2n – 1)v + Au – 2nHu

)
+ A∇σ + σ

n∑

i=1

(∇A)(ei, ei).
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Using 	v = –λv in the above equation and taking the inner product with v, we conclude

(2n – 1 – λ)‖v‖2 = –g(Av, u) + g(∇σ , Av)

+ σ g

(

v,
n∑

i=1

(∇A)(ei, ei)

)

. (38)

Now, using Eq. (22), we have

σ g

(

v,
2n∑

i=1

(∇A)(ei, ei)

)

= ‖Av‖2 + g(Av, u) – σ 2‖A‖2 + div(σAv),

and using ∇σ = –Av – u, that is,

–g(∇σ , Av) = ‖Av‖2 + g(Av, u),

the above equation becomes

σ g

(

v,
2n∑

i=1

(∇A)(ei, ei)

)

= –g(∇σ , Av) – σ 2‖A‖2 + div(σAv).

Substituting the above relation in Eq. (38), we get

(2n – 1 – λ)‖v‖2 = –g(Av, u) – σ 2‖A‖2 + div(σAv).

Now, integrating the above equation while using ‖v‖2 = 1 – σ 2 and Eq. (25), we conclude

∫

M
σ 2‖A‖2 =

∫

M

(
λ + 2 – 2n – (λ + 2)σ 2),

that is,

∫

M
σ 2‖A‖2 = (λ + 2)

(
λ + 2 – 2n

λ + 2
V(M) –

∫

M
σ 2

)
.

As the volume satisfies the condition given in the statement, and since σ 2‖A‖2 ≥ 0, the
above equation implies

σ 2‖A‖2 = 0. (39)

If σ 2 = 0, then the set {u, v} is an orthonormal set and we have seen in the proof of The-
orem 3.1 that in this case the sectional curvature K(u, v) = 0 and this is contrary to our
assumption that K(u, v) > 0. Hence, Eq. (39) on connected M gives A = 0.

Conversely, suppose M is a compact connected orientable totally geodesic hypersurface
of the Sasakian manifold M(ϕ, ξ ,η, g). Then by Eq. (35), we have 	v = –λv, where λ =
2n – 1. Moreover, using Eqs. (34) and (9), we have

∇uu = σu, ∇uv = σv, ∇vv = –σu, ∇vu = σv, ∇σ = –u,
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and we get [u, v] = 0, and also

R(u, v)v =
(
–u(σ )u – σ 2u

)
–

(
v(σ )v – σ 2u

)
= ‖u‖2u.

Thus, K(u, v) = 1 > 0. Finally, for a totally geodesic hypersurface, (25) gives

∫

M
σ 2 =

1
2n + 1

V(M),

that is,

λ + 2 – 2n
λ + 2

V(M) =
∫

M
σ 2.

Hence, all conditions are met. �

Corollary 4.4 Let M be a compact and connected hypersurface of the unit sphere S2n+1

with sectional curvature K (u, v) > 0 and 	v = –λv for a positive constant λ. Then M is
isometric to the unit sphere S2n if and only if the volume of M satisfies

(λ + 2 – 2n)
λ + 2

V(M) ≤
∫

M
σ 2.

5 Bounds on Ricci curvature of hypersurfaces
In this section, we use a bound on integrals of Ricci curvatures Ric(u, u) to find condi-
tions under which a compact and connected oriented hypersurface a (2n + 1)-dimensional
Sasakian manifold M(ϕ, ξ ,η, g) is isometric to a sphere. More interesting is the case of such
hypersurfaces in the sphere S2n+1, where the converse too holds. For a hypersurface M, we
define a skew-symmetric operator � = F ◦ A + A ◦ F . Then, for a local orthonormal frame
{e1, . . . , e2n} on M, we have

‖�‖2 =
2n∑

i=1

g
(
�(ei),�(ei)

)
, tr(F ◦ A)2 =

2n∑

i=1

g
(
(F ◦ A)2(ei), ei

)
.

Lemma 5.1 Let M be a compact orientable hypersurface of a (2n + 1)-dimensional
Sasakian manifold M(ϕ, ξ ,η, g). Then the operator � = F ◦ A + A ◦ F satisfies

1
2
‖�‖2 = ‖A‖2 – ‖Au‖2 – ‖Av‖2 – tr(F ◦ A)2.

Proof Choosing a local orthonormal frame {e1, . . . , e2n} on M, we notice that

‖�‖2 = ‖F ◦ A‖2 + ‖A ◦ F‖2 + 2
2n∑

i=1

g
(
AF(ei), F(Aei)

)
,

and therefore

‖�‖2 = ‖F ◦ A‖2 + ‖A ◦ F‖2 – 2tr(F ◦ A)2. (40)
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Observe that, using Eq. (11), we have

‖F ◦ A‖2 = ‖A‖2 – ‖Au‖2 – ‖Av‖2. (41)

Note that on an open subset S of M, where vector fields u and v are non-zero, if we choose a
unit vector field e orthogonal to both u and v, then Eq. (10) implies that F2(e) = –e and that
we have g(F(e), u) = σ g(e, v) = 0, where we used Eq. (9). Similarly, g(F(e), v) = 0. Thus, F(e)
is a unit vector field orthogonal to both u and v. Note that the set S is non-empty, because
otherwise we get σ = ±1, which gives a contradiction to Eq. (15). Choosing u = u

‖u‖ and
v = v

‖v‖ on S, we get a local orthonormal frame {e1, . . . , en–1, F(e1), . . . , F(en–1), u, v} and we
compute ‖A ◦ F‖2, using this frame. We get

‖A ◦ F‖2 =
n–1∑

i=1

g
(
AF(ei), AF(ei)

)
+

n–1∑

i=1

g
(
AF2(ei), AF2(ei)

)

+ g
(
AF(u), AF(u)

)
+ g

(
AF(v), AF(v)

)
.

Using Eqs. (8) and (9), we have F(u) = –σv, F(v) = σu, ‖u‖ = ‖v‖ =
√

1 – σ 2. Thus, we
conclude

‖A ◦ F‖2 =
n–1∑

i=1

g(Aei, Aei) +
n–1∑

i=1

g
(
AF(ei), AF(ei)

)

+ σ 2(g(Au, Au) + g(Av, Av)
)
.

= ‖A‖2 – g(Au, Au) – g(Av, Av) + σ 2(g(Au, Au) + g(Av, Av)
)

= ‖A‖2 – ‖Au‖2 – ‖Av‖2.

Combining this equation and Eq. (41) with Eq. (40), we get the result. �

Theorem 5.2 Let M be a compact and connected orientable hypersurface of a (2n + 1)-
dimensional Sasakian manifold M(ϕ, ξ ,η, g) with mean curvature H constant along inte-
gral curves of v. If the Ricci curvature Ric(u, u) satisfies

∫

M
Ric(u, u) ≥

∫

M

(
2n

(
(2n – 1)σ 2 – H2) +

1
2
‖�‖2 + ‖Au‖2 + ‖Av‖2

)
,

then H is a constant and M is isometric to the sphere S2n(1 + H2).

Proof Using Eq. (12), we compute

R(U , V )u =
(
U(σ )V – V (σ )U

)
+ (∇F)(U , AV ) – (∇F)(U , AV )

+F(∇A)(U , V ) – (∇A)(V , U). (42)

Note that Eq. (13) implies

(∇F)(U , AV ) – (∇F)(U , AV ) = g(Av, U)V – g(Av, V )U

+ g(Au, V )AU – g(Au, U)AV ,
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and inserting this equation in (42), keeping in view ∇σ + Av = –u, we conclude

R(U , V )u = g(u, V )U – g(u, U)V + g(Au, V )AU – g(Au, U)AV

+ F(∇A)(U , V ) – (∇A)(V , U).

Taking the trace in the above equation, we arrive at

Ric(V , u) = (2n – 1)α(V ) + 2nHg(Au, V )

– g(Au, AV ) +
2n∑

i=1

g
(
(∇A)(V , ei), F(ei)

)

– g

(

V ,
2n∑

i=1

(∇A)
(
ei, F(ei)

)
)

, (43)

where we used skew-symmetry of the operator F and symmetry of the shape operator A.
Observe that tr(A ◦ F) = 0 and using Eq. (13), we have

2n∑

i=1

g
(
(∇A)(V , ei), F(ei)

)
=

2n∑

i=1

Vg
(
Aei, F(ei)

)
–

2n∑

i=1

g
(
Aei, (∇F)(V , ei)

)

= –
2n∑

i=1

g
(
Aei, g(V , ei)v – β(ei)V + α(ei)AV – g(AV , ei)u

)

= 0.

Thus, Eq. (43) implies

Ric(u, u) = (2n – 1)‖u‖2 + 2nHg(Au, u) – ‖Au‖2

–g

(

u,
2n∑

i=1

(∇A)
(
ei, F(ei)

)
)

. (44)

Now, using Eqs. (12) and (13), we compute

div
(
F(Au)

)
=

2n∑

i=1

g
(∇ei F(Au), ei

)
= –

2n∑

i=1

eig
(
u, AF(ei)

)

= –
2n∑

i=1

[
g
(
σ ei + F(Aei), AF(ei)

)
+ g(u, (∇A)

(
ei, F(ei) + A(∇F)(ei, ei)

)]

=
2n∑

i=1

g
(
(F ◦ A)2(ei), ei

)
– g

(

u,
2n∑

i=1

(∇A)
(
ei, F(ei)

)
)

–
2n∑

i=1

g
(
Au, (2n – 1)v + Au – 2nHu

)
.
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Thus, we have

–g

(

u,
2n∑

i=1

(∇A)
(
ei, F(ei)

)
)

= –tr(F ◦ A)2 + (2n – 1)g(Au, v) + ‖Au‖2

– 2nHg(Au, u) + div
(
F(Au)

)
.

Inserting the above expression in Eq. (44), we get

Ric(u, u) = (2n – 1)‖u‖2 – tr(F ◦ A)2 + (2n – 1)g(Au, v) + div
(
F(Au)

)
.

Integrating, we get
∫

M
Ric(u, u) =

∫

M

(
(2n – 1)‖u‖2 – tr(F ◦ A)2 + (2n – 1)g(Au, v)

)
.

Using ‖u‖2 = 1 – σ 2 and Eq. (25), we get
∫

M

(
Ric(u, u) + tr(F ◦ A)2 – 2n(2n – 1)σ 2) = 0.

Using Lemma 5.1, the above equation can be rearranged as

∫

M

(‖A‖2 – 2nH2) =
∫

M

(
2n

(
(2n – 1)σ 2 – H2) +

1
2
‖�‖2 + ‖Au‖2 + ‖Av‖2

)

–
∫

M
Ric(u, u).

But the above equation in view of given condition implies
∫

M

(‖A‖2 – 2nH2) ≤ 0.

However, owing to Schwartz’s inequality the integrand in the above inequality is non-
negative. Hence, we have ‖A‖2 = 2nH2 and this being the equality in Schwartz’s inequality,
we must have

A = HI. (45)

Now, we proceed to show that H is a constant. Observe that Eq. (12) in view of Eq. (45)
takes the following form

∇U u = σU + HF(U), ∇U v = –F(U) + σHU , ∇σ = –Hv – u.

Using the above equation, we compute the Hessian operator Aσ and find

Aσ (U) = –U(H)v –
(
1 + H2)σU , U ∈ X(M).

As Aσ is symmetric, we conclude from the above equation

U(H)β(V ) = V (H)β(U), U , V ∈X(M),
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that is, U(H)v = β(U)∇H . Taking U = v and using the fact that H is constant along the
integral curves of v, we get

‖v‖2∇H = 0.

If ‖v‖2 = 0, we get σ = ±1 and it follows immediately that (15) gives a contradiction. Thus,
the above equation gives ∇H = 0, that is, H is a constant. Hence, M is a totally umbili-
cal hypersurface of constant mean curvature H and, consequently, M is isometric to the
sphere S2n(1 + H2) (cf. [34]). �

In the following result, we prove that, for compact and connected hypersurfaces of the
sphere S2n+1, the converse of the above theorem also holds.

Theorem 5.3 Let M be a compact and connected hypersurface of the sphere S2n+1 with
mean curvature H constant along integral curves of v. Then the mean curvature H is a
constant and M is isometric to the sphere S2n(1 + H2) if and only if the Ricci curvature
Ric(u, u) satisfies

∫

M
Ric(u, u) ≥

∫

M

(
2n

(
(2n – 1)σ 2 – H2) +

1
2
‖�‖2 + ‖Au‖2 + ‖Av‖2

)
.

Proof If the Ricci curvature Ric(u, u) satisfies the given condition, then by the previous
theorem H is a constant and M is isometric to the sphere S2n(1 + H2).

Conversely, suppose that hypersurface M is isometric to the sphere S2n(1 + H2). Then M
is a totally umbilical hypersurface of S2n+1 with constant mean curvature H , that is, A = HI
holds. Then using Eq. (12) in the form ∇σ = –Hv – u and div(u) = 2nσ we derive

div(σu) = –‖u‖2 + 2nσ 2 = –1 + (2n + 1)σ 2.

Integrating the above equation, we get
∫

M
σ 2 =

1
2n + 1

V(M). (46)

The Ricci curvature is

Ric(u, u) = (2n – 1)
(
1 + H2)‖u‖2 = (2n – 1)

(
1 + H2)(1 – σ 2),

which in view of Eq. (46) gives

∫

M
Ric(u, u) =

2n(2n – 1)(1 + H2)
2n + 1

V(M). (47)

Also, � = F ◦ A + A ◦ F , gives �(U) = 2HF(U) and consequently, using Eq. (11), we have

‖�‖2 = 4H2(2n – ‖u‖2 – ‖v‖2) = 8H2(n – 1 + σ 2). (48)

Moreover, we have

‖Au‖2 + ‖Av‖2 = 2H2(1 – σ 2).
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Thus, using the above equation and Eq. (48), we have

∫

M

(
2n

(
(2n – 1)σ 2 – H2) +

1
2
‖�‖2 + ‖Au‖2 + ‖Av‖2

)
=

2n(2n – 1)(1 + H2)
2n + 1

V(M).

Using the above equation with Eq. (47), we conclude

∫

M
Ric(u, u) =

∫

M

(
2n

(
(2n – 1)σ 2 – H2) +

1
2
‖�‖2 + ‖Au‖2 + ‖Av‖2

)
.

Hence, all the requirements are met. �

In the next result, we consider a compact hypersurface M with c = infM Ric(N , N) on M,
c > 0 and prove the following.

Theorem 5.4 Let M be a compact and connected orientable hypersurface of a (2n + 1)-
dimensional Sasakian manifold M(ϕ, ξ ,η, g) with mean curvature H constant along inte-
gral curves of v. If the sectional curvature K (u, v) > 0 and c = infM Ric(N , N) > 0 satisfies

∫

M
‖∇σ‖2 ≤

∫

M

(
c + 2nH2)σ 2,

then H is a constant and M is isometric to the sphere S2n(1 + H2).

Proof As the mean curvature H is constant along the integral curves of v, using Eq. (16)
and an orthonormal frame {e1, . . . , e2n}, we have

0 = 2nv(H) =
2n∑

i=1

g
(
(∇A)(v, ei), ei

)
=

2n∑

i=1

g
(
(∇A)(ei, v) + R(ei, v)N , ei

)
,

that is,

2n∑

i=1

g
(
v, (∇A)(ei, ei)

)
= –Ric(v, N). (49)

Now, using Eq. (12), we compute

div Av = σ‖A‖2 +
2n∑

i=1

g
(
v, (∇A)(ei, ei)

)
,

where we have used trF ◦ A = 0. Using Eq. (49) in the above equation, we get

div Av = σ‖A‖2 – Ric(v, N).

Using the above equation and equations ∇σ = –Av – u and (14), we conclude

	σ = –σ‖A‖2 + Ric(v, N) – 2nσ .
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Note that

Ric(v, N) = Ric(ξ – σN , N) = 2nσ – σRic(N , N),

and consequently, the above equation gives

	σ = –σ‖A‖2 – σRic(N , N),

that is,

σ	σ = –σ 2‖A‖2 – σ 2Ric(N , N).

Integrating the above equation by parts, we conclude

∫

M
‖∇σ‖2 =

∫

M

(
σ 2‖A‖2 + σ 2Ric(N , N)

)
,

or
∫

M
σ 2(‖A‖2 – 2nH2) ≤

∫

M

(‖∇σ‖2 –
(
c + 2nH2)σ 2). (50)

If the given inequality in the statement holds, then owing to Schwartz’s inequality ‖A‖2 ≥
2nH2, and therefore the inequality (50) implies

σ 2(‖A‖2 – 2nH2) = 0.

If σ = 0, then as K(u, v) > 0, following the proof of Theorem 3.1, we get a contradiction.
Hence, on connected M, we have ‖A‖2 = 2nH2, which, being exactly the equality in the
Schwartz inequality, holds if and only if

A = HI.

Now, as v(H) = 0, again following the proof of Theorem 3.1, we get H is a constant. Thus,
M is a totally umbilical hypersurface of constant mean curvature H in the Sasakian man-
ifold and consequently, M is isometric to the sphere S2n(1 + H2). �

Observe that if M is a compact hypersurface of the odd dimensional unit sphere S2n+1,
then in this case, we have c = 2n and we can state the following result.

Corollary 5.5 Let M be a compact and connected hypersurface of the unit sphere S2n+1

with mean curvature H constant along integral curves of v and the sectional curvature
K(u, v) > 0. Then the following inequality holds:

∫

M
‖∇σ‖2 ≤ 2n

∫

M

(
1 + H2)σ 2

if and only if H is a constant and M is isometric to the sphere S2n(1 + H2).
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Proof If the given condition holds, then by the previous theorem it follows that M is iso-
metric to S2n(1 + H2). Conversely, suppose M is a compact and connected hypersurface
of the unit sphere S2n+1 that is isometric to S2n(1 + H2). Then M is a totally umbilical hy-
persurface with A = HI and using Eqs. (12) and (14), we have ∇σ = –Hv – u, where H is a
constant. Thus,

	σ = –2nH2σ – 2nσ = –2n
(
1 + H2)σ

and we get

∫

M
‖∇σ‖2 = 2n

∫

M

(
1 + H2)σ 2. �

Acknowledgements
This article is dedicated to the memory of Professor Aurel Bejancu (19.08.1946-03.04.2020).

Funding
The authors extend their appreciations to the Deanship of Scientific Research King Saud University for funding this work
through research group no (RG-1440-142).

Availability of data and materials
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

Author details
1Department of Mathematics, College of Science, King Saud University, P.O. Box-2455, 11451, Riyadh, Saudi Arabia.
2Institute of Physical and Mathematical Sciences and IT, Immanuel Kant Baltic Federal University, A. Nevsky str. 14, 236016
Kaliningrad, Russia. 3Department of Cybernetics, Economic Informatics, Finance and Accountancy, Petroleum-Gas
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