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Abstract
In this paper, we unify the system of functional equations defining a
multi-quadratic–cubic mapping to a single equation. Applying a fixed point theorem,
we study the generalized Hyers–Ulam stability of multi-quadratic–cubic mappings. As
a result, we investigate the hyperstability of multi-quadratic–cubic mappings in some
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1 Introduction
Let V be a commutative group, W be a linear space, and n ≥ 2 be an integer. Recall from
[14] that a mapping f : V n −→ W is called multi-additive if it is additive (satisfies Cauchy’s
functional equation A(x + y) = A(x) + A(y)) in each variable (see also [16]). Some facts
on such mappings can be found in [24] and many other sources. Moreover, f is said to
be multi-quadratic if it is quadratic in each variable [15] (satisfies quadratic functional
equation Q(x + y) + Q(x – y) = 2Q(x) + 2Q(y) in each variable). In [32], Zhao et al. proved
that the mapping f : V n −→ W is multi-quadratic if and only if the following relation holds:

∑

s∈{–1,1}n

f (x1 + sx2) = 2n
∑

j1,j2,...,jn∈{1,2}
f (x1j1 , x2j2 , . . . , xnjn ), (1.1)

where xj = (x1j, x2j, . . . , xnj) ∈ V n with j ∈ {1, 2}. Various versions of multi-quadratic map-
pings which were recently studied can be found in [9] and [30].

The first author and Shojaee introduced the multi-cubic mappings for the first time in
[10]. In fact, a mapping f : V n −→ W is called multi-cubic if it is cubic in each variable,
i.e., satisfies the equation

C(2x + y) + C(2x – y) = 2C(x + y) + 2C(x – y) + 12C(x) (1.2)

in each variable. Indeed, the cubic functional equation (1.2) was introduced and studied by
Jun and Kim in [22]. In [10], the authors unified the system of functional equations defining
a multi-cubic mapping to a single equation, namely, a multi-cubic functional equation.
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The motivation for many researchers to study the stability of functional equations is
due to the query framed by Ulam [31] in 1940 as the stability of group homomorphisms:
“when is it true that the solution of an equation differing slightly from a given one, must
of necessity be close to the solution of the given equation?” The first partial answer, in the
case of Cauchy’s equation in Banach spaces, to Ulam’s question was given by Hyers [21]
stability involving a positive constant). Later, the result of Hyers was significantly gen-
eralized by Aoki [1], Th. M. Rassias [29] (stability incorporated with sum of powers of
norms), Găvruţa [20] (stability controlled by a general control function) and [27] (stabil-
ity including mixed product-sum of powers of norms). A functional equation � is said to
be hyperstable if any function f satisfying the equation � approximately (in some senses)
must be actually solutions to it. It seems that the first hyperstability result was published
in [11] and concerned the ring homomorphisms. However, The term hyperstability has
been used for the first time in [25]. In [14] and [15], Ciepliński studied the generalized
Hyers–Ulam stability of multi-additive and multi-quadratic mappings in Banach spaces,
respectively (see also [17] and [32]). In [10], it is shown that every multi-cubic functional
equation is stable and moreover such functional equations under some conditions can be
hyperstable (for the miscellaneous versions of multi-cubic mappings and their stabilities,
we refer to [19] and [26]). Other forms of cubic functional equations and their stabilities
can be found in [4–7, 18, 23, 28].

Motivated by [10] and [32], in this paper, we define multi-quadratic–cubic mappings
and present a characterization of such mappings. In other words, we reduce the system
of n equations defining the multi-quadratic–cubic mappings to obtain a single functional
equation. We also prove the generalized Hyers–Ulam stability and hyperstability for multi-
quadratic–cubic functional equations by using the fixed point method which was used for
the first time by Brzdȩk in [12]; for more applications of this approach for the stability of
multi-Cauchy–Jensen, multi-additive-quadratic, multi-cubic and multi-quartic mappings
in Banach spaces see [2, 3, 10] and [8] respectively.

2 Characterization of multi-quadratic–cubic mappings
Throughout this paper, N, Z and Q are the set of all positive integers, integers and rational
numbers, respectively, N0 := N ∪ {0}, R+ := [0,∞). For any l ∈ N0, n ∈ N, t = (t1, . . . , tn) ∈
{–1, 1}n and x = (x1, . . . , xn) ∈ V n we write lx := (lx1, . . . , lxn) and tx := (t1x1, . . . , tnxn), where
lx stands, as usual, for the scalar product of l on x in the linear space V .

Let V and W be linear spaces, n ∈N and k ∈ {0, . . . , n}. A mapping f : V n −→ W is called
k-quadratic and n – k-cubic (briefly, multi-quadratic–cubic) if f is quadratic in each of
some k variables and is cubic in each of the other variables (see Eq. (1.2)). In this note, we
suppose for simplicity that f is quadratic in each of the first k variables, but one can obtain
analogous results without this assumption. Let us note that, for k = n (k = 0), the above
definition leads to the so-called multi-quadratic (multi-cubic) mappings.

In this section, we assume that V and W are vector spaces over Q. Moreover, we
identify x = (x1, . . . , xn) ∈ V n with (xk , xn–k) ∈ V k × V n–k , where xk := (x1, . . . , xk) and
xn–k := (xk+1, . . . , xn), and we adopt the convention that (xn, x0) := xn := (x0, xn). Put xk

i =
(xi1, . . . , xik) ∈ V k and xn–k

i = (xi,k+1 · · · , xin) ∈ V n–k where i ∈ {1, 2}. We shall denote xn
i

by xi if there is no risk of ambiguity. In addition, we put M = {Nn = (Nk+1, . . . , Nn)|Nj ∈
{x1j ± x2j, x1j}}, where j ∈ {k + 1, . . . , n}. Consider

Mn–k
T :=

{
Nn = (Nk+1, . . . , Nn) ∈M|Card{Nj : Nj = x1j} = T

}
.



Bodaghi and Fošner Journal of Inequalities and Applications         (2021) 2021:49 Page 3 of 12

From now on, we use the following notations:

f
(
Mn–k

T
)

:=
∑

Nn∈Mn–k
T

f (Nn),

f
(
xk

i ,Mn–k
T

)
:=

∑

Nn∈Mn–k
T

f
(
xk

i ,Nn
) (

i ∈ {1, 2}).

In the next result, we reduce the system of n equations defining the k-quadratic and
n – k-cubic mapping to obtain a single functional equation.

Proposition 2.1 Let n ∈ N and k ∈ {0, . . . , n}. If the mapping f : V n −→ W is k-quadratic
and n – k-cubic mapping, then f satisfies the equation

∑

s∈{–1,1}k

∑

t∈{–1,1}n–k

f
(
xk

1 + sxk
2, 2xn–k

1 + txn–k
2

)

= 2k
n–k∑

m=0

2n–k–m12m
∑

i∈{1,2}
f
(
xk

i ,Mn–k
m

)
(2.1)

for all xk
i = (xi1, . . . , xik) ∈ V k and xn–k

i = (xi,k+1, . . . , xin) ∈ V n–k where i ∈ {1, 2}.

Proof Since for k ∈ {0, n} our assertion follows from [10, Proposition 2.2] and [32, The-
orem 3], we can assume that k ∈ {1, . . . , n – 1}. For any xn–k ∈ V n–k , define the mapping
gxn–k : V k −→ W by gxn–k (xk) := f (xk , xn–k) for xk ∈ V k . By assumption, gxn–k is k-quadratic,
and hence Theorem 3 from [32] implies that

∑

s∈{–1,1}k

gxn–k
(
xk

1 + sxk
2
)

= 2k
∑

j1,j2,...,jk∈{1,2}
gxn–k (xj11, xj22, . . . , xjk k),

(
xk

1, xk
2 ∈ V k).

It now follows from the above equality that

∑

s∈{–1,1}k

f
(
xk

1 + sxk
2, xn–k) = 2k

∑

j1,j2,...,jk∈{1,2}
f
(
xj11, xj22, . . . , xjk k , xn–k) (2.2)

for all xk
1, xk

2 ∈ V k and xn–k ∈ V n–k . Similar to the above, for any xk ∈ V k , consider the
mapping hxk : V n–k −→ W defined through hxk (xn–k) := f (xk , xn–k), xn–k ∈ V n–k which is
n – k-cubic and so we conclude from Proposition 2.2 of [10] that

∑

t∈{–1,1}n–k

hxk
(
2xn–k

1 + txn–k
2

)
=

n–k∑

m=0

2n–k–m12mhxk
(
Mn–k

k
)

(2.3)

for all xn–k
1 , xn–k

2 ∈ V n–k . By the definition of hxk , Eq. (2.3) is equivalent to

∑

t∈{–1,1}n–k

f
(
xk , 2xn–k

1 + txn–k
2

)
=

n–k∑

m=0

2n–k–m12mf
(
xk ,Mn–k

k
)

(2.4)
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for all xn–k
1 , xn–k

2 ∈ V n–k and xk ∈ V k . Plugging equality (2.2) into (2.4), we get

∑

s∈{–1,1}k

∑

t∈{–1,1}n–k

f
(
xk

1 + sxk
2, 2xn–k

1 + txn–k
2

)

=
∑

s∈{–1,1}k

n–k∑

m=0

2n–k–m12mf
(
xk

1 + sxk
2,Mn–k

m
)

= 2k
n–k∑

m=0

2n–k–m12m
∑

j1,j2,...,jk∈{1,2}
f
(
xj11, xj22, . . . , xjk k ,Mn–k

m
)

= 2k
n–k∑

m=0

2n–k–m12m
∑

i∈{1,2}
f
(
xk

i ,Mn–k
m

)

for all xk
i = (xi1, . . . , xik) ∈ V k and xn–k

i = (xik+1, . . . , xin) ∈ V n–k , which proves that f satisfies
Eq. (2.1). �

By a mathematical computation, one can check that the mapping f : Rn −→ R defined
through f (z1, . . . , zn) =

∏k
j=1

∏n
i=k+1 z2

j z3
i satisfies (2.1) and so this equation is said to be

multi-quadratic–cubic functional equation.
In the sequel,

( n
k
)

is the binomial coefficient defined for all n, k ∈ N0 with n ≥ k by
n!/(k!(n – k)!).

Let r ∈ N. We say the mapping f : V n −→ W satisfies the r-power condition in the jth
variable if

f (z1, . . . , zj–1, 2zj, zj+1, . . . , zn) = 2rf (z1, . . . , zj–1, zj, zj+1, . . . , zn),
(
(z1, . . . , zn) ∈ V n).

Remark 2.2 It is easily verified that, if f is a multi-cubic mapping, then it satisfies 3-power
condition in all variables. But the converse is not true. Here, by means of an example we
show that 3-power condition in all variables for a mapping f does not imply that it is multi-
cubic. Let (A,‖·‖) be a Banach algebra. Fix the vector a0 inA (not necessarily unit). Define
the mapping h : An −→ A by h(a1, . . . , an) =

∏n
j=1 ‖aj‖3a0 for (a1, . . . , an) ∈ An. It is easy to

check that the mapping h satisfies 3-power condition in all variables but h is not multi-
cubic even for n = 1, that is, h does not satisfy Eq. (1.2).

Let 0 ≤ p ≤ k and 0 ≤ q ≤ n – k. Put

K(p,q)

=
{

(p,q)x :=
(

k–times︷ ︸︸ ︷
0, . . . , 0, xi1 , 0, . . . , 0, xip , 0, . . . , 0,

n–k–times︷ ︸︸ ︷
0, . . . , 0, xj1 , 0, . . . , 0, xjq , 0, . . . , 0

) ∈ V n},

where 1 ≤ i1 < · · · < ip ≤ k and 1 ≤ j1 < · · · < jq ≤ n – k.
We wish to show that, if the mapping f : V n −→ W satisfies Eq. (2.1), then it is multi-

quadratic–cubic. In order to do this, we present the next lemma.

Lemma 2.3 If the mapping f : V n −→ W satisfies Eq. (2.1) and the 3-power condition in
the last n – k variables, then f (x) = 0 for any x ∈ V n with at least one component which is
equal to zero.
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Proof We argue by induction on p + q that, for each (p,q)x ∈K(p,q), f ((p,q)x) = 0 for 0 ≤ p ≤ k
and 0 ≤ q ≤ n – k. For p + q = 0, by putting (xk

1, xn–k
1 ) = (xk

2, xn–k
2 ) = (0, . . . , 0) in (2.1), we have

2nf (0, . . . , 0) = 2k
n–k∑

m=0

(
n – k

m

)
2n–k–m12m2k2n–k–mf (0, . . . , 0)

= 22n
n–k∑

m=0

(
n – k

m

)
3mf (0, . . . , 0)

= 22n(3 + 1)n–kf (0, . . . , 0)

= 24n–2kf (0, . . . , 0). (2.5)

It follows from (2.5) that f (0, . . . , 0) = 0. Assume that, for each (p,q)x ∈ K(p,q), f ((p,q)x) = 0
with p + q = s – 1. We show that, if (p,q)x ∈K(p,q), then f ((p,q)x) = 0 for p + q = s. By a suitable
replacement in (2.1) and using the assumption, we get

2n23qf ((p,q)x) = 2k
n–k–q∑

m=0

(
n – k – q

m

)
2n–k–m12m2k–p2n–k–mf ((p,q)x)

= 22n–p
n–k–q∑

m=0

(
n – k – q

m

)
3mf ((p,q)x)

= 22n–p(3 + 1)n–k–qf ((p,q)x) = 24n–2k–p–2qf ((p,q)x).

Hence, f ((p,q)x) = 0. This shows that f (x) = 0 for any x ∈ V n with at least one component
which is equal to zero. �

In the following result, we show that, if a mapping f satisfies the functional equation
(2.1), then it can be multi-quadratic–cubic under some mild conditions.

Proposition 2.4 If the mapping f : V n −→ W satisfies Eq. (2.1) and the 3-power condition
in the last n – k variables, then it is multi-quadratic–cubic.

Proof Putting xn–k
2 = (0, . . . , 0) in the left side of (2.1) and applying the hypothesis, we ob-

tain

2n–k × 23(n–k)
∑

s∈{–1,1}k

f
(
xk

1 + sxk
2, xn–k

1
)

= 24(n–k)
∑

s∈{–1,1}k

f
(
xk

1 + sxk
2, xn–k

1
)

(2.6)

for all xk
1, xk

2 ∈ V k and xn–k
1 ∈ V n–k . On the other hand, the right side of (2.1) will be

2k
n–k∑

m=0

(
n – k

m

)
2n–k–m12m2n–k–m

∑

j1,j2,...,jk∈{1,2}
f
(
xj11, xj22, . . . , xjk k , xn–k

1
)

= 2k
n–k∑

m=0

(
n – k

m

)
4n–k–m12m

∑

j1,j2,...,jk∈{1,2}
f
(
xj11, xj22, . . . , xjk k , xn–k

1
)

= 24n–3k
∑

j1,j2,...,jk∈{1,2}
f
(
xj11, xj22, . . . , xjk k , xn–k

1
)

(2.7)
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for all xk
1, xk

2 ∈ V k and xn–k
1 ∈ V n–k . Comparing Eqs. (2.6) and (2.7), we find

∑

s∈{–1,1}k

f
(
xk

1 + sxk
2, xn–k

1
)

= 2k
∑

j1,j2,...,jk∈{1,2}
f
(
xj11, xj22, . . . , xjk k , xn–k

1
)

(2.8)

for all xk
1, xk

2 ∈ V k and xn–k
1 ∈ V n–k . In the light of [32, Theorem 3], we see that f is quadratic

in each of the k first variables. Furthermore, by putting xk
2 = (0, . . . , 0) in (2.1) and using

Lemma 2.3, we have

2k
∑

t∈{–1,1}n–k

f
(
xk

1, 2xn–k
1 + txn–k

2
)

= 2k
n–k∑

m=0

2n–k–m12mf
(
xk

1,Mn–k
m

)
(2.9)

for all xk
1 ∈ V k and xn–k

1 , xn–k
2 ∈ V n–k , and thus [10, Proposition 2.3] now completes the

proof. �

3 Stability of (2.1)
In this section, we prove the generalized Hyers–Ulam stability of Eq. (2.1) by a fixed point
result (Theorem 3.1) in Banach spaces. Throughout, for two sets X and Y , the set of all
mappings from X to Y is denoted by Y X . Here, we introduce the oncoming three hypothe-
ses:

(A1) Y is a Banach space, S is a nonempty set, j ∈ N, g1, . . . , gj : S −→ S and
L1, . . . , Lj : S −→ R+,

(A2) T : YS −→ YS is an operator satisfying the inequality

∥∥T λ(x) – T μ(x)
∥∥ ≤

j∑

i=1

Li(x)
∥∥λ

(
gi(x)

)
– μ

(
gi(x)

)∥∥, λ,μ ∈ YS , x ∈ S ,

(A3) � : RS
+ −→R

S
+ is an operator defined through

�δ(x) :=
j∑

i=1

Li(x)δ
(
gi(x)

)
δ ∈ R

S
+ , x ∈ S .

To achieve our aim in this section, we present the next theorem which is a fundamental
result in fixed point theory [13, Theorem 1].

Theorem 3.1 Let hypotheses (A1)–(A3) hold and the function θ : S −→ R+ and the map-
ping φ : S −→ Y fulfill the following two conditions:

∥∥T φ(x) – φ(x)
∥∥ ≤ θ (x), θ∗(x) :=

∞∑

l=0

�lθ (x) < ∞ (x ∈ S).

Then there exists a unique fixed point ψ of T such that

∥∥φ(x) – ψ(x)
∥∥ ≤ θ∗(x) (x ∈ S).

Moreover, ψ(x) = liml→∞ T lφ(x) for all x ∈ S .
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Here and subsequently, for the mapping f : V n −→ W , we consider the difference oper-
ator DC

Qf : V n × V n −→ W by

DC
Qf (x1, x2) :=

∑

s∈{–1,1}k

∑

t∈{–1,1}n–k

f
(
xk

1 + sxk
2, 2xn–k

1 + txn–k
2

)

– 2k
n–k∑

m=0

2n–k–m12m
∑

i∈{1,2}
f
(
xk

i ,Mn–k
m

)

for all xk
i = (xi1, . . . , xik) ∈ V k and xn–k

i = (xi,k+1, . . . , xin) ∈ V n–k , where i ∈ {1, 2}.
We recall the upcoming lemma from [3] will be useful in the proof of our stability result.

For simplicity, given an m ∈N, we write S := {0, 1}m, and Si stands for the set of all elements
of S having exactly i zeros, i.e.,

Si :=
{

(s1, . . . , sm) ∈ S : card{j : sj = 0} = i
}

, i ∈ {0, . . . , m}.

Lemma 3.2 Let m ∈N, l ∈N0 and ψ : S −→ R. Then

m∑

v=0

m∑

w=0

∑

s∈Sw

∑

t∈Sv

(
2l – 1

)w
ψ(st) =

m∑

i=0

∑

p∈Si

(
2l+1 – 1

)i
ψ(p).

From now on, S stands for {0, 1}k and Si ⊆ S for i ∈ {0, . . . , k}. We have the following
stability result for the functional equation (2.1).

Theorem 3.3 Let V be a linear space and W be a Banach space. Suppose that φ : V n ×
V n −→R+ is a mapping satisfying the equality

lim
l→∞

(
1

23n–k

)l k∑

i=0

∑

p∈Si

(
2l – 1

)i
φ
(
2l(pxk

1, xn–k
1

)
, 2l(pxk

2, xn–k
2

))
= 0 (3.1)

for all x1, x2 ∈ V n and

	(x) =:
1

24n–2k

n∑

l=0

(
1

23n–k

)l k∑

i=0

∑

p∈Si

(
2l – 1

)i
φ
(
2l(pxk , xn–k),

(
2lpxk , 0

))
< ∞ (3.2)

for all x = (xk , xn–k) ∈ V n. Assume also f : V n −→ W is a mapping satisfying the inequality

∥∥DC
Qf (x1, x2)

∥∥ ≤ φ(x1, x2) (3.3)

for all x1, x2 ∈ V n. Then there exists a solution F : V n −→ W of (2.1) such that

∥∥f (x) – F (x)
∥∥ ≤ 	(x) (3.4)

for all x = (xk , xn–k) ∈ V n. If F satisfies the 3-power condition in the last n – k variables,
then it is a unique multi-quadratic–cubic mapping.
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Proof Putting xk
1 = xk

2 = xk and xn–k
1 = xn–k , xn–k

2 = 0 in (3.3), we have

∥∥∥∥∥2n–k
∑

s∈S

f
(
2sxk , 2xn–k) – 2k

n–k∑

m=0

(
n – k

m

)
2n–k–m12m2k2n–k–mf (x)

∥∥∥∥∥

≤ φ
(
x,

(
xk , 0

))
, (3.5)

where x = (xk , xn–k) ∈ V n. A computation shows that (3.5) can be rewritten as follows:

∥∥∥∥2n–k
∑

s∈S

f
(
2sxk , 2xn–k) – 24n–2kf (x)

∥∥∥∥ ≤ φ
(
x,

(
xk , 0

))
.

The above inequality implies that

∥∥∥∥f (x) –
1

23n–k

∑

s∈S

f
(
2sxk , 2xn–k)

∥∥∥∥ ≤ 1
24n–2k φ

(
x,

(
xk , 0

))
(3.6)

for all x = (xk , xn–k) ∈ V n. Set ξ (x) := 1
24n–2k φ(x, (xk , 0)) and T ξ (x) := 1

23n–k
∑

s∈S ξ (2sxk ,
2xn–k) where ξ ∈ W V n and x ∈ V n. Then Eq. (3.6) can be modified as

∥∥f (x) – T f (x)
∥∥ ≤ ξ (x)

(
x ∈ V n). (3.7)

Define �η(x) := 1
23n–k

∑
s∈S η(2sxk , 2xn–k) for all η ∈ R

V n
+ , x = (xk , xn–k) ∈ V n. We now see

that � has the form described in (A3). Furthermore, for each λ,μ ∈ W V n and x ∈ V n, we
get

∥∥T λ(x) – T μ(x)
∥∥ =

∥∥∥∥
1

23n–k

[∑

s∈S

(
λ
(
2sxk , 2xn–k) – μ

(
2sxk , 2xn–k))

]∥∥∥∥

≤ 1
23n–k

∑

s∈S

∥∥λ
(
2sxk , 2xn–k) – μ

(
2sxk , 2xn–k)∥∥.

The above relation shows that the hypothesis (A2) holds. By induction on l, one can check
for any l ∈N0 and x ∈ V n that

�lξ (x) :=
(

1
23n–k

)l k∑

i=0

(
2l – 1

)i ∑

p∈Si

ξ
(
2l(pxk , xn–k)). (3.8)

Fix an x ∈ V n. Here, we adopt the convention that 00 = 1. Hence, (3.8) is trivially true for
l = 0. Next, assume that (3.8) holds for a l ∈ N0. Then, by using Lemma 3.2 for m = n and
ψ(s) := ξ (2l+1(sxk , xn–k)) (s ∈ S), we get

�l+1ξ (x) = �
(
�lξ

)
(x)

=
1

23n–k

k∑

v=0

∑

t∈Sv

(
�lξ

)(
2txk , 2xn–k)

=
(

1
23n–k

)l+1 k∑

v=0

∑

t∈Sv

k∑

w=0

(
2l – 1

)w ∑

s∈Sw

ξ
(
2l+1(stxk , xn–k))
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=
(

1
23n–k

)l+1 k∑

v=0

k∑

w=0

∑

s∈Sw

∑

t∈Sv

(
2l – 1

)w
ξ
(
2l+1(stxk , xn–k))

=
(

1
23n–k

)l+1 k∑

i=0

∑

p∈Si

(
2l+1 – 1

)i
ξ
(
2l+1(pxk , xn–k)).

Therefore, (3.8) holds for any l ∈ N0 and x ∈ V n. Now, (3.2) and (3.8) necessitate that all
assumptions of Theorem 3.1 are satisfied. Hence, there exists a mapping F : V n −→ W
such that

F (x) = lim
l→∞

(
T lf

)
(x) =

1
23n–k

∑

s∈S

F
(
2
(
sxk , xn–k)) (

x ∈ V n),

and also (3.4) holds. We shall to show that

∥∥DC
Q
(
T lf

)
(x1, x2)

∥∥ ≤
(

1
23n–k

)l k∑

i=0

∑

p∈Si

(
2l – 1

)i
φ
(
2l(pxk

1, xn–k
1

)
, 2l(pxk

2, xn–k
2

))
(3.9)

for all x1 = (xk
1, xn–k

1 ), x2 = (xk
2, xn–k

2 ) ∈ V n and l ∈ N0. We argue by induction on l. It is easy
to see that inequality (3.9) is valid for l = 0 by (3.3). Assume that (3.9) is true for an l ∈N0.
For each x1 = (xk

1, xn–k
1 ), x2 = (xk

2, xn–k
2 ) ∈ V n, we have

∥∥DC
Q
(
T l+1f

)
(x1, x2)

∥∥

=
1

23n–k

∥∥∥∥
∑

s∈S

DC
Q
(
T lf

)(
2sxk

1, 2xn–k
1 , 2sxk

2, 2xn–k
2

)∥∥∥∥

≤
(

1
23n–k

)l+1 ∑

s∈S

k∑

i=0

∑

t∈Si

(
2l – 1

)i
φ
(
2l+1(stxk

1, xn–k
1

)
, 2l+1(stxk

2, xn–k
2

))

=
(

1
23n–k

)l+1 k∑

i=0

∑

p∈Si

(
2l+1 – 1

)i
φ
(
2l+1(pxk

1, xn–k
1

)
, 2l+1(pxk

2, xn–k
2

))

for all x1, x2 ∈ V n. We note that the last equality follows from Lemma 3.2 with m := k and
ψ(s) := φ(2l+1(sxk

1, xn–k
1 ), 2l+1(sxk

2, xn–k
2 )) (s ∈ S). Letting l → ∞ in (3.9) and applying (3.1),

we arrive at DC
QF (x1, x2) = 0 for all x1, x2 ∈ V n. This means that the mapping F satisfies

(2.1). Finally, assume that F : V n −→ W is another mapping satisfying Eq. (2.1) and in-
equality (3.4), and fix x ∈ V n, j ∈ N. Then, by Lemma 2.3 and (3.2), we have

∥∥F (x) – F(x)
∥∥

=
∥∥∥∥

(
1

23n–k

)j

F
(
2jx

)
–

(
1

23n–k

)j

F
(
2jx

)∥∥∥∥

≤
(

1
23n–k

)j(∥∥F
(
2jx

)
– f

(
2jx

)∥∥ +
∥∥F

(
2jx

)
– f

(
2jx

)∥∥)



Bodaghi and Fošner Journal of Inequalities and Applications         (2021) 2021:49 Page 10 of 12

≤ 2
24n–2k

(
1

23n–k

)j

	
(
2jx

)

≤ 1
24n–2k–1

(
1

23n–k

)j ∞∑

l=j

(
1

23n–k

)l k∑

i=0

∑

p∈Si

(
2l – 1

)i
φ
(
2l(pxk , xn–k),

(
2lpxk , 0

))
.

Consequently, letting j → ∞ and using the fact that the series (3.2) is convergent for all
x ∈ V n, we obtain F (x) = F(x) for all x ∈ V n, and thus the proof is now finished. �

In the next corollary, we show that the functional equation (2.1) is stable when the norm
of DC

Qf (x1, x2) is controlled by a small positive real number δ, for all x1, x2 ∈ V n.

Corollary 3.4 Let δ > 0. Let also V be a vector space and W be a Banach space. If f :
V n −→ W is a mapping satisfying the inequality

∥∥DC
Qf (x1, x2)

∥∥ ≤ δ

for all x1, x2 ∈ V n, then there exists a solution F : V n −→ W of (2.1) such that

∥∥f (x) – F (x)
∥∥ ≤ δ

2n–k(23n–k – 1)

for all x ∈ V n. Moreover, if F satisfies the 3-power condition in the last n – k variables, then
it is a unique multi-quadratic–cubic mapping.

Proof Setting the constant function φ(x1, x2) = δ for all x1, x2 ∈ V n, and applying Theo-
rem 3.3, we have

	(x) =
1

24n–2k

∞∑

l=0

(
1

23n–k

)l k∑

i=0

∑

p∈Si

(
2l – 1

)i
φ
(
2l(pxk , xn–k),

(
2lpxk , 0

))

=
δ

24n–2k

∞∑

l=0

(
1

23n–k

)l k∑

i=0

(
k
i

)
(
2l – 1

)i × 1k–i

=
δ

24n–2k

∞∑

l=0

(
1

23n–k

)l

2kl

=
δ

24n–2k

∞∑

l=0

(
1

23n–k

)l

=
δ

2n–k(23n–k – 1)
. �

Under some conditions the functional equation (2.1) can be hyperstable as follows.

Corollary 3.5 Suppose that δij > 0 for i ∈ {1, 2} and j ∈ {1, . . . , n} fulfill
∑2

i=1
∑n

j=1 δij <
3n – k. Let V be a normed space and W be a Banach space. If f : V n −→ W is a map-
ping satisfying the inequality

∥∥DC
Qf (x1, x2)

∥∥ ≤
2∏

i=1

n∏

j=1

‖xij‖δij
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for all x1, x2 ∈ V n, then f satisfies Eq. (2.1). In particular, if f satisfies the 3-power condition
in the last n – k variables, then it is a multi-quadratic–cubic mapping.

Proof The result follows immediately from Proposition 2.4 and Theorem 3.3. �

Putting k = n in Theorem 3.3, we obtain [3, Corollary 2] on the stability of multi-
quadratic mappings. Furthermore, by considering k = 0 in Theorem 3.3, we obtain the
below result on the stability of multi-cubic mappings.

Corollary 3.6 Let δ > 0. Let also V be a vector space and W be a Banach space. Suppose
that f : V n −→ W is a mapping satisfying the inequality

∥∥∥∥∥
∑

t∈{–1,1}n

f (2x1 + tx2) –
n∑

k=0

2n–k12kf
(
Mn

k
)
∥∥∥∥∥ ≤ δ

for all x1, x2 ∈ V n. Then there exists a solution C : V n −→ W of (2.1) when k = 0 such that

∥∥f (x) – C(x)
∥∥ ≤ δ

2n(23n – 1)

for all x ∈ V n. In addition, if C satisfies the 3-power condition in each variable, then it is a
unique multi-cubic mapping.
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