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1 Introduction
Let {Xn, n ≥ 1} be a sequence of random variables and let {ank , 1 ≤ k ≤ n, n ≥ 1} be an array
of constant. Since many linear statistics such as least-squares estimators, nonparametric
regression function estimators and jackknife estimators are of the form of weighted sums
∑n

k=1 ankXk , it is important to study the limiting behavior of the weighted sums.
The complete convergence was introduced by Hsu and Robbins [10] as follows. A se-

quence {Xn, n ≥ 1} of random variables converges completely to the constant θ if
∑∞

n=1 P(|Xn – θ | > ε) < ∞ for all ε > 0. Note that the complete convergence implies al-
most sure convergence in view of the Borel–Cantelli lemma. The complete convergence
is also used to characterize the rate of convergence.

In this paper, we will focus on the array weights {ank , 1 ≤ k ≤ n, n ≥ 1} of real numbers
satisfying

n∑

k=1

|ank|α = O(n) (1.1)

for some α > 0.
In fact, under condition (1.1), many authors have studied the strong laws of large

numbers for weighted sums of independent and identically distributed random vari-
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ables. For example, Chow [8] proved the Kolmogorov strong law of large numbers for
weighted sums, and Cuzick [9] generalized Chow’s [8] result. Bai and Cheng [2] proved
the Marcinkiewicz–Zygmund strong law of large numbers for weighted sums, and Chen
and Gan [5] generalized the result of Bai and Cheng [2].

A convergence rate in the law of large numbers for weighted sums is also studied by
many authors. Chen [4] established the following complete convergence:

∞∑

n=1

nr–2P

(

max
1≤m≤n

∣
∣
∣
∣
∣

m∑

k=1

ankXk

∣
∣
∣
∣
∣

> εn1/p

)

< ∞, ∀ε > 0, (1.2)

for weighted sums of identically distributed negatively associated random variables sat-
isfying (1.1), where r > 1, 1 ≤ p < 2, 1/α + 1/β = 1/p, and α < rp. Note that if ank = 1 for
1 ≤ k ≤ n and n ≥ 1, then (1.2) reduces to the well-known Baum and Katz [3] strong law.
Liang [12] established (1.2) for identically distributed negatively associated random vari-
ables with the weights of special type satisfying (1.1) (see also Remark 1.4 below). Chen
and Sung [6], Sung [13], and Wu et al. [17] obtained (1.2) for ρ∗-mixing random variables,
Wang and Wang [16] and Wu et al. [19] established (1.2) for extended negatively depen-
dent random variables, Wu et al. [18] established (1.2) for m-asymptotic negatively asso-
ciated random variables, and Lang et al. [11] obtained (1.2) for widely orthant-dependent
(WOD) random variables.

Recently, Chen and Sung [6] obtained a complete convergence result for weighted sums
of ρ∗-mixing random variables.

Theorem A (Chen and Sung [6]) Let r ≥ 1, 1 ≤ p < 2, α > 0, β > 0 with 1/α + 1/β = 1/p.
Let {ank , 1 ≤ k ≤ n, n ≥ 1} be an array of constants satisfying (1.1) and let {X, Xn, n ≥ 1} be
a sequence of identically distributed ρ∗-mixing random variables. If EX = 0 and

⎧
⎪⎪⎨

⎪⎪⎩

E|X|(r–1)β < ∞ if α < rp,

E|X|(r–1)β log(1 + |X|) < ∞ if α = rp,

E|X|rp < ∞ if α > rp,

(1.3)

then (1.2) holds. Conversely, if (1.2) holds for any array {ank , 1 ≤ k ≤ n, n ≥ 1} satisfying
(1.1) for some α > p, then EX = 0, E|X|rp < ∞ and E|X|(r–1)β < ∞.

The case α > rp with r > 1 in Theorem A is due to Sung [13]. When α = rp, the moment
condition E|X|(r–1)β log(1 + |X|) < ∞ is a sufficient condition for (1.2). However, it is not
known whether it is also a necessary condition for (1.2).

In this paper, we extend Theorem A to WOD random variables. The concept of WOD
was introduced by Wang et al. [14] as follows.

Definition 1.1 Random variables X1, X2, . . . are said to be widely upper orthant depen-
dent (WUOD) if for each n ≥ 1, there exists a positive number gU (n) such that for all real
numbers xi, 1 ≤ i ≤ n,

P(X1 > x1, . . . , Xn > xn) ≤ gU (n)
n∏

i=1

P(Xi > xi),
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they are said to be widely lower orthant dependent (WLOD) if for each n ≥ 1, there exists
a positive number gL(n) such that, for all real numbers xi, 1 ≤ i ≤ n,

P(X1 ≤ x1, . . . , Xn ≤ xn) ≤ gL(n)
n∏

i=1

P(Xi ≤ xi),

and they are said to be WOD if they are both WUOD and WLOD.

In Definition 1.1, gU (n), gL(n), n ≥ 1, are called dominating coefficients. If for all n ≥ 1,
gU (n) = gL(n) = M for some positive constant M, then {Xn, n ≥ 1} are said to be extended
negatively dependent (END). In particular, if M = 1, then {Xn, n ≥ 1} are said to be nega-
tively orthant dependent (NOD) or negatively dependent. Since the class of WOD random
variables contains END random variables and NOD random variables as special cases, it
is interesting to study the limiting behavior of WOD random variables.

We now state the main results. Some preliminary lemmas will be presented in Sect. 2.
The proofs of the main results will be detailed in Sect. 3.

The first theorem extends the sufficiency of Theorem A with r > 1 to WOD random
variables.

Theorem 1.1 Let r > 1, 1 ≤ p < 2, α > 0, β > 0 with 1/α + 1/β = 1/p, and let {ank , 1 ≤
k ≤ n, n ≥ 1} be an array of constants satisfying (1.1). Let {X, Xn, n ≥ 1} be a sequence of
identically distributed WOD random variables with dominating coefficients gL(n), gU (n)
for n ≥ 1. Suppose that there exist a nondecreasing positive function g(x) on [0,∞) and a
constant τ ≥ 0 such that max{gL(n), gU (n)} ≤ g(n) = O(nτ ). If (1.3) holds, then

∞∑

n=1

nr–2P

(

max
1≤m≤n

∣
∣
∣
∣
∣

m∑

k=1

ank(Xk – EXk)

∣
∣
∣
∣
∣

> εn1/p

)

< ∞, ∀ε > 0. (1.4)

Remark 1.1 When α > rp, Zhang et al. [20] proved a weaker complete convergence result
than (1.4) under a stronger condition than (1.1). Hence Theorem 1.1 improves the result
of Zhang et al. [20].

Remark 1.2 When p = 1 and α > rp, Lang et al. [11] proved Theorem 1.1 for the
weights with max1≤k≤n |ank| = O(1) under stronger conditions on g(x). Note that, if
max1≤k≤n |ank| = O(1), then (1.1) holds for any α > 0. Hence Theorem 1.1 generalizes and
improves the result of Lang et al. [11].

When r = 1, we have the following theorem.

Theorem 1.2 Let {ank , 1 ≤ k ≤ n, n ≥ 1} be an array of constants satisfying (1.1) for some
α > 1. Let {X, Xn, n ≥ 1} be a sequence of identically distributed WOD random variables
with dominating coefficients gL(n), gU (n) for n ≥ 1. Suppose that there exist a nondecreas-
ing positive function g(x) on [0,∞) and a positive constant τ < min{1,α – 1} such that
max{gL(n), gU (n)} ≤ g(n) for n ≥ 1 and g(x)/xτ ↓. If E|X|g(|X|) < ∞, then

∞∑

n=1

1
n

P

(

max
1≤m≤n

∣
∣
∣
∣
∣

m∑

k=1

ank(Xk – EXk)

∣
∣
∣
∣
∣

> εn

)

< ∞, ∀ε > 0. (1.5)
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Remark 1.3 If ank = 1 for 1 ≤ k ≤ n and n ≥ 1, or max1≤k≤n |ank| = O(1) for n ≥ 1, then
(1.1) holds for any α > 0. These two cases are treated by Chen and Sung [7] and Lang et
al. [11], respectively. Therefore, Theorem 1.2 generalizes the results of Chen and Sung [7]
and Lang et al. [11].

The following corollary is a strong law of large numbers for weighted sums of WOD
random variables.

Corollary 1.1 Let s > –1 and let l(x) > 0 be a slowly varying function. Let {X, Xn, n ≥ 1}
and g(x) be as in Theorem 1.2. If E|X|g(|X|) < ∞, then

∑n
k=1 ksl(k)(Xk – EXk)

n1+sl(n)
→ 0 a.s.

Corollary 1.2 Let r ≥ 1 and s > –1/r, and let {ank = cnkks/ns, 1 ≤ k ≤ n, n ≥ 1} be an ar-
ray of constants, where |cnk| ≤ B < ∞ for all 1 ≤ k ≤ n and n ≥ 1. Let {X, Xn, n ≥ 1} be
a sequence of identically distributed WOD random variables with dominating coefficients
gL(n), gU (n) for n ≥ 1. Suppose that there exists a nondecreasing positive function g(x) on
[0,∞) such that max{gL(n), gU (n)} ≤ g(n). When r > 1, assume that g(n) = O(nτ ) for some
τ ≥ 0 and E|X|r < ∞. When r = 1, assume that g(x)/xτ ↓ for some 0 < τ < min{1, |1 + 1/s|}
(set min{1, |1 + 1/s|} = 1 when s = 0) and E|X|g(|X|) < ∞. Then

∞∑

n=1

nr–2P

(

max
1≤m≤n

∣
∣
∣
∣
∣

m∑

k=1

ank(Xk – EXk)

∣
∣
∣
∣
∣

> εn

)

< ∞, ∀ε > 0. (1.6)

Remark 1.4 Liang [12] proved Corollary 1.2 when r > 1 and {X, Xn, n ≥ 1} is a sequence of
identically distributed negatively associated random variables. Note that the proof of Liang
[12] cannot be applied to the case r = 1 (the series on line 3 in page 322 of Liang [12] does
not converge). Since negatively associated random variables imply WOD, Corollary 1.2
complements and extends Liang’s [12] result.

Throughout this paper, C always stands for a positive constant which may differ from
one place to another. For events A and B, we denote I(A, B) = I(A ∩ B), where I(A) is the
indicator function of the event A.

2 Preliminary lemmas
In this section, we present some lemmas which will be used in the proofs of main results.
The following two lemmas are well known (see, for example, Wang et al. [15], Chen and
Sung [7] or Lang et al. [11]). The first one is a Marcinkiewicz–Zygmund-Rosenthal type
moment inequality for sums of WOD random variables.

Lemma 2.1 Let {Xn, n ≥ 1} be a sequence of mean zero WOD random variables with dom-
inating coefficients gL(n), gU (n) for n ≥ 1, and E|Xn|q < ∞ for some q > 1.

(i) If 1 < q ≤ 2, there exists a positive constant Cq depending only on q such that, for all
n ≥ 1,

E

∣
∣
∣
∣
∣

n∑

k=1

Xk

∣
∣
∣
∣
∣

q

≤ Cq

{ n∑

k=1

E|Xk|q +
(
gL(n) + gU (n)

) n∑

k=1

E|Xk|q
}

.
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(ii) If q > 2, there exists a positive constant Cq depending only on q such that, for all n ≥ 1,

E

∣
∣
∣
∣
∣

n∑

k=1

Xk

∣
∣
∣
∣
∣

q

≤ Cq

{ n∑

k=1

E|Xk|q +
(
gL(n) + gU (n)

)
( n∑

k=1

E|Xk|2
)q/2}

.

The following lemma is a Rosenthal type moment inequality for the maximum of partial
sums of WOD random variables.

Lemma 2.2 Let {Xn, n ≥ 1} be a sequence of mean zero WOD random variables with
dominating coefficients gL(n), gU (n) for n ≥ 1, and E|Xn|q < ∞ for some q > 2. Fur-
ther assume that there exists a nondecreasing positive function g(x) on [0,∞) such that
max{gL(n), gU (n)} ≤ g(n) for n ≥ 1. Then there exists a positive constant Cq depending only
on q such that, for all n ≥ 1,

E max
1≤m≤n

∣
∣
∣
∣
∣

m∑

k=1

Xk

∣
∣
∣
∣
∣

q

≤ Cq(log n)q

{ n∑

k=1

E|Xk|q + g(n)

( n∑

k=1

EX2
k

)q/2}

.

The following lemma can be found in Chen and Sung [6].

Lemma 2.3 Let r ≥ 1, 0 < p < 2, α > 0, β > 0 with 1/α + 1/β = 1/p, and let X be a random
variable. Let {ank , 1 ≤ k ≤ n, n ≥ 1} be an array of constants satisfying (1.1). Then

∞∑

n=1

nr–2
n∑

k=1

P
(|ankX| > n1/p) ≤

⎧
⎪⎪⎨

⎪⎪⎩

CE|X|(r–1)β if α < rp,

CE|X|(r–1)β log(1 + |X|) if α = rp,

CE|X|rp if α > rp.

The following lemma is similar to Lemma 2.3.

Lemma 2.4 Let r ≥ 1, 0 < p < 2, α > 0, β > 0 with 1/α + 1/β = 1/p, and let X be a random
variable. Let {ank , 1 ≤ k ≤ n, n ≥ 1} be an array of constants satisfying (1.1). If u > p and
q > max{α, (r – 1)β}, then

∞∑

n=1

nr–2–q/p+q/u(log n)q
n∑

k=1

P
(|ankX| > n1/u)

≤

⎧
⎪⎪⎨

⎪⎪⎩

CE|X|(r–1)β if α < rp,

CE|X|(r–1)β log(1 + |X|) if α = rp,

CE|X|rp if α > rp.

(2.1)

Proof The proof is similar to that of Lemma 2.3 (Lemma 2.2 in Chen and Sung [6]).
Case 1: α ≤ rp. We observe by the Markov inequality that, for any s > 0,

P
(|ankX| > n1/u)

= P
(|ankX| > n1/u, |X| > n1/β)

+ P
(|ankX| > n1/u, |X| ≤ n1/β)

≤ n–α/u|ank|αE|X|αI
(|X| > n1/β)

+ n–s/u|ank|sE|X|sI(|X| ≤ n1/β)
. (2.2)
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It is easy to show that

∞∑

n=1

nr–2–q/p+q/u(log n)q · n–α/u

( n∑

k=1

|ank|α
)

E|X|αI
(|X| > n1/β)

≤ C
∞∑

n=1

nr–1–q/p+q/u–α/u(log n)qE|X|αI
(|X| > n1/β)

≤ C
∞∑

n=1

nr–1–α/pE|X|αI
(|X| > n1/β)

≤
⎧
⎨

⎩

CE|X|(r–1)β if α < rp,

CE|X|(r–1)β log(1 + |X|) if α = rp.
(2.3)

Taking an s such that max{α, (r – 1)β} < s < q, we have

∞∑

n=1

nr–2–q/p+q/u(log n)q · n–s/u

( n∑

k=1

|ank|s
)

E|X|sI(|X| ≤ n1/β)

≤ C
∞∑

n=1

nr–2–q/p+q/u–s/u+s/α(log n)qE|X|sI(|X| ≤ n1/β)

≤ C
∞∑

n=1

nr–2–s/p+s/αE|X|sI(|X| ≤ n1/β)

= C
∞∑

n=1

nr–2–s/βE|X|sI(|X| ≤ n1/β)

≤ CE|X|(r–1)β , (2.4)

since s > (r – 1)β . Then (2.1) holds by (2.2)–(2.4).
Case 2: α > rp. The proof is similar to that of Case 1. However, we use a different trun-

cation for X. We observe by the Markov inequality that, for any t > 0,

P
(|ankX| > n1/u)

= P
(|ankX| > n1/u, |X| > n1/p) + P

(|ankX| > n1/u, |X| ≤ n1/p)

≤ n–t/u|ank|tE|X|tI(|X| > n1/p) + n–α/u|ank|αE|X|αI
(|X| ≤ n1/p). (2.5)

Taking 0 < t < rp, we have

∞∑

n=1

nr–2–q/p+q/u(log n)q · n–t/u

( n∑

k=1

|ank|t
)

E|X|tI(|X| > n1/p)

≤ C
∞∑

n=1

nr–1–q/p+q/u–t/u(log n)qE|X|tI(|X| > n1/p)

≤ C
∞∑

n=1

nr–1–t/pE|X|tI(|X| > n1/p)

≤ CE|X|rp. (2.6)
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It is easy to show that

∞∑

n=1

nr–2–q/p+q/u(log n)q · n–α/u

( n∑

k=1

|ank|α
)

E|X|αI
(|X| ≤ n1/p)

≤ C
∞∑

n=1

nr–1–q/p+q/u–α/u(log n)qE|X|αI
(|X| ≤ n1/p)

≤ C
∞∑

n=1

nr–1–α/pE|X|αI
(|X| ≤ n1/p)

≤ CE|X|rp, (2.7)

since α > rp. Then (2.1) holds by (2.5)–(2.7). �

The following lemma can be found in Chen and Sung [6].

Lemma 2.5 Let r ≥ 1, 0 < p < 2, α > 0, β > 0 with 1/α + 1/β = 1/p, and let X be a random
variable. Let {ank , 1 ≤ k ≤ n, n ≥ 1} be an array of constants satisfying (1.1). Then, for any
s > max{α, (r – 1)β},

∞∑

n=1

nr–2–s/p
n∑

k=1

E|ankX|sI(|ankX| ≤ n1/p)

≤

⎧
⎪⎪⎨

⎪⎪⎩

CE|X|(r–1)β if α < rp,

CE|X|(r–1)β log(1 + |X|) if α = rp,

CE|X|rp if α > rp.

The following lemma is similar to Lemma 2.5. However, the truncations for X are dif-
ferent, and the term (log n)s is added in Lemma 2.6.

Lemma 2.6 Let r ≥ 1, 0 < p < 2, α > 0, β > 0 with 1/α + 1/β = 1/p, and let X be a random
variable. Let {ank , 1 ≤ k ≤ n, n ≥ 1} be an array of constants satisfying (1.1). Then, for any
u > p and s > max{α, (r – 1)β},

∞∑

n=1

nr–2–s/p(log n)s
n∑

k=1

E|ankX|sI(|ankX| ≤ n1/u)

≤

⎧
⎪⎪⎨

⎪⎪⎩

CE|X|(r–1)β if α < rp,

CE|X|(r–1)β log(1 + |X|) if α = rp,

CE|X|rp if α > rp.

Proof Since u > p, we have, for any 0 < s′ < s,

∞∑

n=1

nr–2–s/p(log n)s
n∑

k=1

E|ankX|sI(|ankX| ≤ n1/u)

≤
∞∑

n=1

nr–2–s/p+(s–s′)/u(log n)s
n∑

k=1

E|ankX|s′ I(|ankX| ≤ n1/u)
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≤ C
∞∑

n=1

nr–2–s′/p
n∑

k=1

E|ankX|s′ I(|ankX| ≤ n1/u)

≤ C
∞∑

n=1

nr–2–s′/p
n∑

k=1

E|ankX|s′ I(|ankX| ≤ n1/p).

Now we choose an s′ such that s > s′ > max{α, (r – 1)β}. Then the result follows directly
from Lemma 2.5. �

The following lemma can be found in Chen and Sung [6].

Lemma 2.7 Let 1 ≤ p < 2, α > 0, β > 0 with 1/α + 1/β = 1/p, and let X be a random vari-
able. Let {ank , 1 ≤ k ≤ n, n ≥ 1} be an array of constants satisfying (1.1). If E|X|p < ∞, then

n–1/p
n∑

k=1

E|ankX|I(|ankX| > n1/p) → 0

as n → ∞.

The following lemma is similar to Lemma 2.7.

Lemma 2.8 Let p ≥ 1 and let X be a random variable with E|X|q < ∞ for some q > p. Let
{ank , 1 ≤ k ≤ n, n ≥ 1} be an array of constants satisfying (1.1) for some α > p. Then, for any
u > p such that 1/u > 1/(q – 1) · max{1 – 1/p, q/α – 1/p},

n–1/p
n∑

k=1

E|ankX|I(|ankX| > n1/u) → 0

as n → ∞.

Proof From (1.1), we have

n∑

k=1

|ank|q ≤
⎧
⎨

⎩

Cn if q ≤ α,

Cnq/α if q > α.

It follows that

n–1/p
n∑

k=1

E|ankX|I(|ankX| > n1/u)

≤ n–1/p–(q–1)/u
n∑

k=1

E|ankX|qI
(|ankX| > n1/u)

≤ n–1/p–(q–1)/uE|X|q
n∑

k=1

|ank|q

≤
⎧
⎨

⎩

Cn1–1/p–(q–1)/u if q ≤ α,

Cnq/α–1/p–(q–1)/u if q > α

→ 0

as n → ∞, since 1/u > 1/(q – 1) · max{1 – 1/p, q/α – 1/p}. �
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3 Proofs of the main results
In this section, we present proofs of the main results.

Proof of Theorem 1.1 Without loss of generality, we may assume that Xn ≥ 0 for n ≥ 1 and
ank ≥ 0 for 1 ≤ k ≤ n and n ≥ 1.

Since r > 1 and α > p, we can choose a constant u such that 1/p > 1/u > 1/(rp–1) ·max{1–
1/p, rp/α – 1/p}. For 1 ≤ k ≤ n and n ≥ 1, we define

Xnk = ankXkI
(
ankXk ≤ n1/u) + n1/uI

(
ankXk > n1/u),

Ynk =
(
ankXk – n1/u)I

(
n1/u < ankXk ≤ n1/p) +

(
n1/p – n1/u)I

(
ankXk > n1/p),

Znk =
(
ankXk – n1/p)I

(
ankXk > n1/p).

Then Xnk +Ynk +Znk = ankXk for 1 ≤ k ≤ n and n ≥ 1, and {Xnk , 1 ≤ k ≤ n}, {Ynk , 1 ≤ k ≤ n},
{Znk , 1 ≤ k ≤ n} are sequences of WOD random variables. Note that

{

max
1≤m≤n

∣
∣
∣
∣
∣

m∑

k=1

ank(Xk – EXk)

∣
∣
∣
∣
∣

> εn1/p

}

⊂
n⋃

k=1

{|ankXk| > n1/p} ∪
{

max
1≤m≤n

∣
∣
∣
∣
∣

m∑

k=1

(Xnk + Ynk – ankEXk)

∣
∣
∣
∣
∣

> εn1/p

}

.

Then by Lemmas 2.3 and 2.7, to prove (1.4), it is enough to prove that

∞∑

n=1

nr–2P

(

max
1≤m≤n

∣
∣
∣
∣
∣

m∑

k=1

(Xnk – EXnk)

∣
∣
∣
∣
∣

> εn1/p

)

< ∞, ∀ε > 0, (3.1)

and

∞∑

n=1

nr–2P

(

max
1≤m≤n

∣
∣
∣
∣
∣

m∑

k=1

(Ynk – EYnk)

∣
∣
∣
∣
∣

> εn1/p

)

< ∞, ∀ε > 0. (3.2)

Set s ∈ (p, min{2,α}) if α ≤ rp and s ∈ (p, min{2, rp}) if α > rp (note that such an s cannot
be chosen when r = 1). Then p < s < min{2,α}, and E|X|s < ∞. Taking q > max{2,α, (r –
1)β , 2p(r – 1 + τ )/(s – p)}, we have by the Markov inequality and Lemma 2.2

P

(

max
1≤m≤n

∣
∣
∣
∣
∣

m∑

k=1

(Xnk – EXnk)

∣
∣
∣
∣
∣

> εn1/p

)

≤ Cn–q/p(log n)qg(n)

( n∑

k=1

E(Xnk – EXnk)2

)q/2

+ Cn–q/p(log n)q
n∑

k=1

E|Xnk – EXnk|q

≤ Cn–q/p+τ (log n)q

( n∑

k=1

E(Xnk – EXnk)2

)q/2

+ Cn–q/p(log n)q
n∑

k=1

E|Xnk – EXnk|q. (3.3)
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Since q > 2p(r – 1 + τ )/(s – p), we have r – 2 + τ + q(1 – s/p)/2 < –1. It follows that

∞∑

n=1

nr–2 · n–q/p+τ (log n)q

( n∑

k=1

E(Xnk – EXnk)2

)q/2

≤
∞∑

n=1

nr–2 · n–q/p+τ (log n)q

( n∑

k=1

EX2
nk

)q/2

=
∞∑

n=1

nr–2 · n–q/p+τ (log n)q

×
( n∑

k=1

E
(
ankXkI

(
ankXk ≤ n1/u) + n1/uI

(
ankXk > n1/u))2

)q/2

≤
∞∑

n=1

nr–2 · n–q/p+τ (log n)q

×
( n∑

k=1

E
(
ankXkI

(
ankXk ≤ n1/p) + n1/pI

(
ankXk > n1/p))2

)q/2

≤
∞∑

n=1

nr–2 · n–q/p+τ (log n)q

×
(

n(2–s)/p
n∑

k=1

E(ankXk)sI
(
ankXk ≤ n1/p) + n2/pP

(
ankXk > n1/p)

)q/2

≤
∞∑

n=1

nr–2 · n–q/p+τ+q(2–s)/(2p)(log n)q

( n∑

k=1

E(ankXk)s

)q/2

≤ C
∞∑

n=1

nr–2+τ+q(1–s/p)/2(log n)q < ∞. (3.4)

By Lemmas 2.4 and 2.6, we have

∞∑

n=1

nr–2 · n–q/p(log n)q
n∑

k=1

E|Xnk – EXnk|q

≤ C
∞∑

n=1

nr–2 · n–q/p(log n)q
n∑

k=1

EXq
nk

= C
∞∑

n=1

nr–2 · n–q/p(log n)q
n∑

k=1

{
E(ankXk)qI

(
ankXk ≤ n1/u) + nq/uP

(
ankXk > n1/u)}

< ∞. (3.5)

Hence (3.1) holds by (3.3)–(3.5).
Now we prove (3.2). By Lemmas 2.7 and 2.8,

n–1/p
n∑

k=1

EYnk ≤ n–1/p
n∑

k=1

{
EankXkI

(
n1/u < ankXk ≤ n1/p) + n1/pP

(
ankXk > n1/p)}
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≤ n–1/p
n∑

k=1

{
EankXkI

(
n1/u < ankXk ≤ n1/p) + EankXkI

(
ankXk > n1/p)}

→ 0

as n → ∞. Hence there exists an integer N such that n–1/p ∑n
k=1 EYnk < ε/4 if n > N . It

follows that, for n > N ,

P

(

max
1≤m≤n

∣
∣
∣
∣
∣

m∑

k=1

(Ynk – EYnk)

∣
∣
∣
∣
∣

> εn1/p

)

≤ P

( n∑

k=1

(Ynk + EYnk) > εn1/p

)

≤ P

( n∑

k=1

Ynk >
3ε

4
n1/p

)

= P

( n∑

k=1

(Ynk – EYnk + EYnk) >
3ε

4
n1/p

)

≤ P

( n∑

k=1

(Ynk – EYnk) >
ε

2
n1/p

)

.

Then we have by the Markov inequality and Lemma 2.1, for n > N ,

P

(

max
1≤m≤n

∣
∣
∣
∣
∣

m∑

k=1

(Ynk – EYnk)

∣
∣
∣
∣
∣

> εn1/p

)

≤ P

(∣
∣
∣
∣
∣

n∑

k=1

(Ynk – EYnk)

∣
∣
∣
∣
∣

>
ε

2
n1/p

)

≤ Cn–q/pg(n)

( n∑

k=1

E(Ynk – EYnk)2

)q/2

+ Cn–q/p
n∑

k=1

E|Ynk – EYnk|q

≤ Cn–q/p+τ

( n∑

k=1

E(Ynk – EYnk)2

)q/2

+ Cn–q/p
n∑

k=1

E|Ynk – EYnk|q. (3.6)

As in the proof of (3.4), we obtain

∞∑

n=1

nr–2 · n–q/p+τ

( n∑

k=1

E(Ynk – EYnk)2

)q/2

≤
∞∑

n=1

nr–2 · n–q/p+τ

( n∑

k=1

EY 2
nk

)q/2

≤
∞∑

n=1

nr–2 · n–q/p+τ

( n∑

k=1

{
E(ankXk)2I

(
ankXk ≤ n1/p) + n2/pP

(
ankXk > n1/p)}

)q/2
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≤
∞∑

n=1

nr–2 · n–q/p+τ

(

n(2–s)/p
n∑

k=1

E(ankXk)s

)q/2

< ∞. (3.7)

By Lemmas 2.3 and 2.5, we have

∞∑

n=1

nr–2 · n–q/p
n∑

k=1

E|Ynk – EYnk|q

≤ C
∞∑

n=1

nr–2 · n–q/p
n∑

k=1

E|Ynk|q

≤ C
∞∑

n=1

nr–2 · n–q/p
n∑

k=1

{
E(ankXk)qI

(
ankXk ≤ n1/p) + nq/pP

(
ankXk > n1/p)}

< ∞. (3.8)

Hence (3.2) holds by (3.6)–(3.8). �

Proof of Theorem 1.2 Without loss of generality, we may assume that Xn ≥ 0 for n ≥ 1 and
ank ≥ 0 for 1 ≤ k ≤ n and n ≥ 1. For simplicity, we may assume that

∑n
k=1 aα

nk ≤ n for n ≥ 1.
Since EX < ∞, there exists a positive integer N such that EXI(X > N) < ε/4. For n ≥ 1, we
define

X ′
n = XnI(Xn ≤ N) + NI(Xn > N),

X ′′
n = Xn – X ′

n.

Then {X ′
n, n ≥ 1} is still a sequence of WOD random variables, and {ankX ′

k , 1 ≤ k ≤ n} is
also a sequence of WOD random variables. To prove (1.5), it is enough to show that

I1 :=
∞∑

n=1

1
n

P

(

max
1≤m≤n

∣
∣
∣
∣
∣

m∑

k=1

ank
(
X ′

k – EX ′
k
)
∣
∣
∣
∣
∣

> εn

)

< ∞, ∀ε > 0,

and

I2 :=
∞∑

n=1

1
n

P

(

max
1≤m≤n

∣
∣
∣
∣
∣

m∑

k=1

ank
(
X ′′

k – EX ′′
k
)
∣
∣
∣
∣
∣

> εn

)

< ∞, ∀ε > 0.

Taking q > max{2,α, τ /(1–1/ min{2,α})}, we have by the Markov inequality and Lemma 2.2

I1 ≤ C
∞∑

n=1

n–1–q(log n)q

{

g(n)

( n∑

k=1

a2
nkE

(
X ′

k – EX ′
k
)2

)q/2

+
n∑

k=1

E
∣
∣ank

(
X ′

k – EX ′
k
)∣
∣q

}

≤ C
∞∑

n=1

n–1–q(log n)q

{

g(n)

( n∑

k=1

a2
nk

)q/2

+
n∑

k=1

aq
nk

}

≤ C
∞∑

n=1

n–1–q(log n)q{g(n)nq/ min{2,α} + nq/α}
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≤ C
∞∑

n=1

n–1–q+q/ min{2,α}(log n)qg(n)

≤ C
∞∑

n=1

n–1–q+q/ min{2,α}+τ (log n)q

< ∞,

since q > τ /(1 – 1/ min{2,α}).
To prove I2 < ∞, we define, for 1 ≤ k ≤ n and n > N ,

Ynk = (Xk – N)I(N < Xk ≤ n) + (n – N)I(Xk > n).

Then we can rewrite X ′′
k as

X ′′
k = Ynk + (Xk – n)I(Xk > n) for 1 ≤ k ≤ n and n > N ,

and so X ′′
k = Ynk if Xk ≤ n.

Hence we have, for n > N ,

P

(

max
1≤m≤n

∣
∣
∣
∣
∣

m∑

k=1

ank
(
X ′′

k – EX ′′
k
)
∣
∣
∣
∣
∣

> εn

)

≤ P

( n∑

k=1

ank
(
X ′′

k + EX ′′
k
)

> εn

)

≤
n∑

k=1

P(Xk > n) + P

( n∑

k=1

ankYnk +
n∑

k=1

ankEX ′′
k > εn

)

=
n∑

k=1

P(Xk > n) + P

( n∑

k=1

ank(Ynk – EYnk) +
n∑

k=1

ank
(
EYnk + EX ′′

k
)

> εn

)

.

Noting that

n∑

k=1

ank
(
EYnk + EX ′′

k
) ≤ 2

n∑

k=1

ankEX ′′
k ≤ 2EXI(X > N)

n∑

k=1

ank < εn/2,

we have by the Markov inequality, for any q > 0,

I2 ≤
N∑

n=1

n–1P

(

max
1≤m≤n

∣
∣
∣
∣
∣

m∑

k=1

ank
(
X ′′

k – EX ′′
k
)
∣
∣
∣
∣
∣

> εn

)

+
∞∑

n=N+1

n–1

{ n∑

k=1

P(Xk > n) + P

( n∑

k=1

ank(Ynk – EYnk) > εn/2

)}

≤ C +
∞∑

n=1

P(X > n) +
∞∑

n=N+1

n–1P

( n∑

k=1

ank(Ynk – EYnk) > εn/2

)

≤ C + EX + C
∞∑

n=N+1

n–1–qE

∣
∣
∣
∣
∣

n∑

k=1

ank(Ynk – EYnk)

∣
∣
∣
∣
∣

q

. (3.9)

We now proceed with two cases 1 < α ≤ 2 and α > 2.
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Case 1: 1 < α ≤ 2. In this case, we take q = α. Since {ankYnk , 1 ≤ k ≤ n} is a sequence of
WOD random variables, we have by Lemma 2.1

∞∑

n=N+1

n–1–qE

∣
∣
∣
∣
∣

n∑

k=1

ank(Ynk – EYnk)

∣
∣
∣
∣
∣

q

≤
∞∑

n=N+1

n–1–αg(n)
n∑

k=1

aα
nkE|Ynk – EYnk|α

≤ C
∞∑

n=1

n–αg(n)
{

EXαI(X ≤ n) + nαP(X > n)
}

. (3.10)

Since g(x)/xτ ↓ and 0 < τ < α – 1, we have

∞∑

n=1

n–αg(n)EXαI(X ≤ n) =
∞∑

i=1

EXαI(i – 1 < X ≤ i)
∞∑

n=i

n–αg(n)

≤
∞∑

i=1

EXαI(i – 1 < X ≤ i)g(i)i–τ

∞∑

n=i

n–α+τ

≤ C
∞∑

i=1

EXαI(i – 1 < X ≤ i)g(i)i1–α

≤ C
∞∑

i=1

EX1+τ I(i – 1 < X ≤ i)g(i)i–τ

≤ C
∞∑

i=1

EXg(X)I(i – 1 < X ≤ i)

= CEXg(X) < ∞. (3.11)

Since 0 < g(x) ↑ and g(x)/xτ ↓, we also have the following relation (see page 7 in Chen and
Sung [7]):

∞∑

n=1

g(n)P(X > n) ≤ 2τ EXg(X). (3.12)

Hence I2 < ∞ by (3.9)–(3.12)
Case 2: α > 2. In this case, we take q = 2. The proof is similar to that of Case 1 and is

omitted. �

Proof of Corollary 1.1 Let ank = ksl(k)/(nsl(n)) for 1 ≤ k ≤ n and n ≥ 1. Since s > –1, we
can take α > 1 such that αs > –1. Then

n∑

k=1

|ank|α = n–sαl–α(n)
n∑

k=1

ksαlα(k) = O(n).

By Theorem 1.2, we obtain

∞∑

n=1

1
n

P

(

max
1≤m≤n

∣
∣
∣
∣
∣

m∑

k=1

ksl(k)(Xk – EXk)

∣
∣
∣
∣
∣

> εn1+sl(n)

)

< ∞, ∀ε > 0,
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which implies

∞∑

i=1

P

(

max
1≤m≤2i

∣
∣
∣
∣
∣

m∑

k=1

ksl(k)(Xk – EXk)

∣
∣
∣
∣
∣

> ε max
2i≤n<2i+1

n1+sl(n)

)

< ∞, ∀ε > 0.

By the Borel–Cantelli lemma,

max1≤m≤2i |∑m
k=1 ksl(k)(Xk – EXk)|

max2i≤n<2i+1 n1+sl(n)
→ 0 a.s. (3.13)

From the fact that max2i≤n<2i+1 l(n)/l(2i) → 1 as i → ∞ (see Bai and Su [1]), we also have
min2i≤n<2i+1 l(n)/l(2i) → 1 as i → ∞, since 1/l(x) is also a slowly varying function. We can
prove the result from (3.13) by a standard method. �

Proof of Corollary 1.2 We prove the result with two cases r > 1 and r = 1.
Case 1: r > 1. Since s > –1/r, we can choose α > r such that sα > –1. Then

n∑

k=1

|ank|α = n–sα
n∑

k=1

|cnk|αksα ≤ Bαn–sα
n∑

k=1

ksα = O(n).

Hence (1.6) holds by Theorem 1.1 with p = 1.
Case 2: r = 1. In this case, g(x)/xτ ↓ for some 0 < τ < min{1, |1 + 1/s|}.
If s > –1/2, then 0 < τ < 1. In this case, we take α = 2. Then

n∑

k=1

|ank|α = n–2s
n∑

k=1

c2
nkk2s = O(n).

Hence (1.6) holds by Theorem 1.2.
If –1 < s ≤ –1/2, then 0 < τ < –1 – 1/s. In this case, we take α such that 1 + τ < α < –1/s.

Then

n∑

k=1

|ank|α = n–αs
n∑

k=1

|cnk|αkαs = O(n).

Hence (1.6) also holds by Theorem 1.2. �
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