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Abstract
In this paper, we consider and investigate a convex minimization problem of the sum
of two convex functions in a Hilbert space. The forward-backward splitting algorithm
is one of the popular optimization methods for approximating a minimizer of the
function; however, the stepsize of this algorithm depends on the Lipschitz constant of
the gradient of the function, which is not an easy work to find in general practice. By
using a new modification of the linesearches of Cruz and Nghia [Optim. Methods
Softw. 31:1209–1238, 2016] and Kankam et al. [Math. Methods Appl. Sci.
42:1352–1362, 2019] and an inertial technique, we introduce an accelerated
viscosity-type algorithm without any Lipschitz continuity assumption on the gradient.
A strong convergence result of the proposed algorithm is established under some
control conditions. As applications, we apply our algorithm to solving image and
signal recovery problems. Numerical experiments show that our method has a higher
efficiency than the well-known methods in the literature.
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1 Introduction
The convex minimization problem is one of the important problems in mathematical opti-
mization. It has been widely studied because its applications are desirable and can be used
in many branches of science and in various real-world applications such as in image and
signal processing, data classification and regression problems, etc., see [3, 5, 8, 10, 12, 13]
and the references therein. Various optimization methods for solving the convex mini-
mization problem have been introduced and developed by many researchers, see [1, 3–
5, 7–9, 11, 14, 16–19, 23, 26, 28] for instance. In this work, we are interested in studying
an unconstrained convex minimization problem of the sum of the following form:

minimize
x∈X

h1(x) + h2(x), (1)
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where X is a Hilbert space, h1 : X → R is a convex and differentiable function, and h2 :
X →R∪ {∞} is a proper, lower semi-continuous, and convex function.

It is known that if a minimizer p∗ of h1 + h2 exists, then p∗ is a fixed point of the forward-
backward operator

FBα := proxαh2
︸ ︷︷ ︸

backward step

(Id – α∇h1)
︸ ︷︷ ︸

forward step

,

where α > 0, proxh2 is the proximity operator of h2, and ∇h1 stands for the gradient of h1,
that is, p∗ = FBα(p∗). If ∇h1 is Lipschitz continuous with a coefficient L > 0 and α ∈ (0, 2/L),
then the forward-backward operator FBα is nonexpansive. In this case, we can employ
fixed point approximation methods for the class of nonexpansive operators to solve (1).
One of the popular methods is known as the forward-backward splitting (FBS) algorithm
[8, 18].

Method FBS Let x1 ∈X . For k ≥ 1, let

xk+1 = proxαk h2

(

xk – αk∇h1(xk)
)

,

where 0 < αk < 2/L.

This method includes the proximal point algorithm [19, 26], the gradient method [4, 11],
and the CQ algorithm [6] as special cases. It can be seen from Method FBS that we need
to assume the Lipschitz continuity condition on the gradient of h1, and the stepsize αk

depends on the Lipschitz constant L. However, finding such a Lipschitz constant is not an
easy task in general practice. This leads to the natural question:

Question: How can we construct an algorithm whose stepsize does not depend on any
Lipschitz constant of the gradient for solving Problem (1)?

In the sequel, we set the standing hypotheses on Problem (1) as follows:
(AI) h1 : X →R is a convex and differentiable function and the gradient ∇h1 is

uniformly continuous on X ;
(AII) h2 : X →R∪ {∞} is a proper, lower semi-continuous, and convex function.

We see that the second part of (AI) is a weaker condition than the Lipschitz continuity
condition on ∇h1.

In 2016, Cruz and Nghia [9] suggested one of the ways to select the stepsize αk which is
independent of the Lipschitz constant L by using the following linesearch process.

Linesearch A: Fix x ∈X , σ > 0, δ > 0, and θ ∈ (0, 1)
Input α = σ .

While α‖∇h1(FBα(x)) – ∇h1(x)‖ > δ‖FBα(x) – x‖, do
α = θα.

End
Output α.

It was proved that Linesearch A is well defined, this means that it stops after finitely
many steps, see [9, Lemma 3.1] and [32, Theorem 3.4(a)]. Linesearch A is a special case of
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the linesearch proposed in [32] for inclusion problems. Cruz and Nghia [9] employed the
forward-backward splitting method where the stepsize αk is generated by Linesearch A.

Method 1 Let x1 ∈X , σ > 0, δ ∈ (0, 1/2), and θ ∈ (0, 1). For k ≥ 1, let

xk+1 = proxαk h2

(

xk – αk∇h1(xk)
)

,

where αk := Linesearch A(xk ,σ , θ , δ).

In optimization theory, to speed up the convergence of iterative procedures, many math-
ematicians often use the inertial-type extrapolation [15, 22, 24] by supplementing the tech-
nical term βk(xk – xk–1). We call the parameter βk an inertial parameter, which controls
the momentum xk – xk–1. Based on Method 1, Cruz and Nghia [9] also proposed an accel-
erated algorithm with an inertial technical term as follows.

Method 2 Let x0 = x1 ∈X , α0 = σ > 0, δ ∈ (0, 1/2), θ ∈ (0, 1), and t1 = 1. For k ≥ 1, let

tk+1 =
1 +

√

1 + 4t2
k

2
, βk =

tk – 1
tk+1

,

yk = xk + βk(xk – xk–1),

xk+1 = proxαk h2

(

yk – αk∇h1(yk)
)

,

where αk := Linesearch A(yk ,αk–1, θ , δ).

The technique of selecting βk in Method 2 was first defined in the fast iterative
shrinkage-thresholding algorithm (FISTA) by Beck and Teboulle [3].

In 2019, Kankam et al. [16] introduced a modification of Linesearch A as follows.

Linesearch B: Fix x ∈X , σ > 0, δ > 0, and θ ∈ (0, 1)
Input α = σ .

While α max{‖∇h1(FB2
α(x)) – ∇h1(FBα(x))‖,‖∇h1(FBα(x)) – ∇h1(x)‖}

> δ(‖FB2
α(x) – FBα(x)‖ + ‖FBα(x) – x‖), do

α = θα.
End

Output α,
where FB2

α(x) := FBα(FBα(x)).

Using Linesearch B, they proposed the following double forward-backward splitting al-
gorithm.

Method 3 Let x1 ∈X , σ > 0, δ ∈ (0, 1/8), and θ ∈ (0, 1). For k ≥ 1, let

yk = proxαk h2

(

xk – αk∇h1(xk)
)

,

xk+1 = proxαk h2

(

yk – αk∇h1(yk)
)

,

where αk := Linesearch B(xk ,σ , θ , δ).
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We note that Methods 1–3 with some mild conditions guarantee only weak convergence
results for Problem (1); however, strong convergence gives more desirable theoretical re-
sult. To get strong convergence, we focus on the forward-backward splitting algorithm
based on the viscosity approximation method [21, 34] as follows.

Method 4 Let x1 ∈X . For k ≥ 1, let

xk+1 = γkf (xk) + (1 – γk) proxαk h2

(

xk – αk∇h1(xk)
)

,

where f : X →X is a contraction, γk ∈ (0, 1) and αk > 0.

In this work, inspired and motivated by the results of Cruz and Nghia [9] and Kankam et
al. [16] and the above-mentioned research, we aim to improve Linesearches A and B and
introduce a new accelerated algorithm using our proposed linesearch for strong conver-
gence on a convex minimization problem of the sum of two convex functions in a Hilbert
space. This paper is organized as follows. The notation, basic definitions, and some useful
lemmas for proving our main result are given in Sect. 2. Our main result is in Sect. 3. In this
section, we introduce a new modification of Linesearches A and B and present a double
forward-backward algorithm based on the viscosity approximation method by using an
inertial technique for solving Problem (1) with Assumptions (AI) and (AII). Subsequently,
we prove a strong convergence theorem of the proposed method under some suitable con-
trol conditions. In Sect. 4, we apply the convex minimization problem to image and signal
recovery problems. We analyze and illustrate the convergence behavior of our method,
and also compare its efficiency with Methods 1–4.

2 Basic definitions and lemmas
The mathematical symbols adopted throughout this article are as follows. R, R+, and R++

are the set of real numbers, the set of nonnegative real numbers, and the set of positive
real numbers, respectively, and N stands for the set of positive integers. We suppose that
X is a real Hilbert space with an inner product 〈·, ·〉 and the induced norm ‖ · ‖. Let Id

denote the identity operator on X . Weak and strong convergence of a sequence {xk} ⊂X
to p ∈X are denoted by xk ⇀ p and xk → p, respectively.

Let E be a nonempty closed convex subset of X . An operator A : E → X is said to be
Lipschitz continuous if there exists L > 0 such that

‖Ax – Ay‖ ≤ L‖x – y‖, ∀x, y ∈ E.

If A is Lipschitz continuous with a coefficient L ∈ (0, 1), then A is called a contraction. The
metric projection from X onto E, denoted by PE , is defined for each x ∈ X , PEx is the
unique element in E such that ‖x – PEx‖ = infy∈E ‖x – y‖. It is known that

p∗ = PEx ⇐⇒ 〈

x – p∗, y – p∗〉 ≤ 0, ∀y ∈ E.

The following definition extends the concept of the metric projection.

Definition 2.1 ([2, 20]) Let h : X → R ∪ {∞} be a proper, lower semi-continuous, and
convex function. The proximity (or proximal) operator of h, denoted by proxh, is defined
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for each x ∈X , proxh x is the unique solution of the minimization problem

minimize
y∈X

h(y) +
1
2
‖x – y‖2.

In particular, if h := iE is an indicator function on E (defined by iE(x) = 0 if x ∈ E; other-
wise iE(x) = ∞), then proxh = PE .

Let h : X → R ∪ {∞} be a proper, lower semi-continuous, and convex function. The
subdifferential ∂h of h is defined by

∂h(x) :=
{

p ∈X : h(x) + 〈p, y – x〉 ≤ h(y),∀y ∈X
}

, ∀x ∈X .

Here, we give some relationships between the proximity operator and the subdifferential
operator as follows. For α > 0 and x ∈X , then

proxαh = (Id + α∂h)–1 : X → dom h, (2)

x – proxαh(x)
α

∈ ∂h
(

proxαh(x)
)

. (3)

We end this section by giving useful lemmas for proving our main result.

Lemma 2.2 ([25]) Let h : X → R ∪ {∞} be a proper, lower semi-continuous, and convex
function. Let {xk} and {yk} be two sequences in X such that yk ∈ ∂h(xk) for all k ∈ N. If
xk ⇀ x and yk → y, then y ∈ ∂h(x).

Lemma 2.3 ([29]) Let x, y ∈X and ξ ∈ [0, 1]. Then the following properties hold on X :
(i) ‖ξx + (1 – ξ )y‖2 = ξ‖x‖2 + (1 – ξ )‖y‖2 – ξ (1 – ξ )‖x – y‖2;

(ii) ‖x ± y‖2 = ‖x‖2 ± 2〈x, y〉 + ‖y‖2;
(iii) ‖x + y‖2 ≤ ‖x‖2 + 2〈y, x + y〉.

Lemma 2.4 ([27]) Let {ak} ⊂R+, {bk} ⊂R, and {ξk} ⊂ (0, 1) be such that
∑∞

k=1 ξk = ∞ and

ak+1 ≤ (1 – ξk)ak + ξkbk , ∀k ∈N.

If lim supi→∞ bki ≤ 0 for every subsequence {aki} of {ak} satisfying lim infi→∞(aki+1 –aki ) ≥ 0,
then limk→∞ ak = 0.

3 Method and convergence result
In this section, by modifying Linesearches A and B, we introduce a new linesearch and
present an inertial double forward-backward splitting algorithm based on the viscosity
approximation method for solving the convex minimization problem of the sum of two
convex functions without any Lipschitz continuity assumption on the gradient. A strong
convergence result of our proposed algorithm is analyzed and established.

We now focus on Problem (1) with Assumptions (AI) and (AII). For simplicity, let h :=
h1 +h2 and denote FBα := proxαh2 (Id –α∇h1) for α > 0. The set of minimizer of h is denoted
by �. Also, assume that � �= ∅. We begin by designing the following linesearch.
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Linesearch C: Fix x ∈X , σ > 0, δ > 0, and θ ∈ (0, 1)
Input α = σ .

While α
2 {‖∇h1(FB2

α(x)) – ∇h1(FBα(x))‖ + ‖∇h1(FBα(x)) – ∇h1(x)‖}
> δ(‖FB2

α(x) – FBα(x)‖ + ‖FBα(x) – x‖), do
α = θα.

End
Output α.

In other words, if α := Linesearch C(x,σ , θ , δ), then α = σθm, where m is the smallest
nonnegative integer such that

α

2
{∥

∥∇h1
(

FB2
α(x)

)

– ∇h1
(

FBα(x)
)∥

∥ +
∥

∥∇h1
(

FBα(x)
)

– ∇h1(x)
∥

∥

}

≤ δ
(∥

∥FB2
α(x) – FBα(x)

∥

∥ +
∥

∥FBα(x) – x
∥

∥

)

.

It can be seen that the terminating condition of the while loop in Linesearch C is somewhat
weaker than that in Linesearch B. So, it follows from the well-definedness of Linesearch B
that our linesearch also stops after finitely many steps, see [16, Lemma 3.2].

Using Linesearch C, we introduce a new viscosity forward-backward splitting algorithm
with the inertial technical term as follows.

Method 5: An accelerated viscosity forward-backward algorithm with Linesearch C
Initialization: Pick x0 = x1 ∈X , σ > 0, δ ∈ (0, 1/8), and θ ∈ (0, 1).
Take {γk}, {τk} ⊂R++, and let {μk} ⊂R+ be a bounded sequence.
Let f : X →X be a contraction with a coefficient η ∈ (0, 1).
Iterative steps: For k ≥ 1, calculate xk+1 as follows:
Step 1. Compute the inertial step:

βk =

⎧

⎨

⎩

min{μk , τk
‖xk –xk–1‖ } if xk �= xk–1,

μk otherwise,
(4)

wk = xk + βk(xk – xk–1). (5)

Step 2. Compute the forward-backward step:

zk = FBαk (wk) = proxαk h2

(

wk – αk∇h1(wk)
)

, (6)

yk = FBαk (zk) = proxαk h2

(

zk – αk∇h1(zk)
)

, (7)

where αk := Linesearch C(wk ,σ , θ , δ).
Step 3. Compute the viscosity step:

xk+1 = γkf (xk) + (1 – γk)yk . (8)

Set k := k + 1 and return to Step 1.
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To show a strong convergence result of Method 5, the following tool is needed.

Lemma 3.1 Let {xk} be a sequence generated by Method 5 and p ∈ X . Then the following
inequality holds:

‖wk – p‖2 – ‖yk – p‖2 ≥ 2αk
[

h(yk) + h(zk) – 2h(p)
]

+ (1 – 8δ)
(‖wk – zk‖2 + ‖zk – yk‖2), ∀k ∈N.

Proof From (3), (6), and (7), we get

wk – zk

αk
– ∇h1(wk) ∈ ∂h2(zk) and

zk – yk

αk
– ∇h1(zk) ∈ ∂h2(yk).

Let p ∈X . By the definition of subdifferential of h2, the above expressions give

h2(p) – h2(zk) ≥
〈

wk – zk

αk
– ∇h1(wk), p – zk

〉

=
1
αk

〈wk – zk , p – zk〉 +
〈∇h1(wk), zk – p

〉

(9)

and

h2(p) – h2(yk) ≥
〈

zk – yk

αk
– ∇h1(zk), p – yk

〉

=
1
αk

〈zk – yk , p – yk〉 +
〈∇h1(zk), yk – p

〉

. (10)

By (AI), we obtain the fact

h1(x) – h1(y) ≥ 〈∇h1(y), x – y
〉

, ∀x, y ∈X . (11)

From (11), we get

h1(p) – h1(wk) ≥ 〈∇h1(wk), p – wk
〉

(12)

and

h1(p) – h1(zk) ≥ 〈∇h1(zk), p – zk
〉

. (13)

Combining (9), (10), (12), and (13), we have

2h(p) – h(zk) – h2(yk) – h1(wk)

≥ 〈∇h1(wk), zk – p
〉

+
〈∇h1(zk), yk – p

〉

+
〈∇h1(wk), p – wk

〉

+
〈∇h1(zk), p – zk

〉

+
1
αk

[〈wk – zk , p – zk〉 + 〈zk – yk , p – yk〉
]

=
〈∇h1(wk), zk – wk

〉

+
〈∇h1(zk), yk – zk

〉
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+
1
αk

[〈wk – zk , p – zk〉 + 〈zk – yk , p – yk〉
]

=
〈∇h1(wk) – ∇h1(zk), zk – wk

〉

+
〈∇h1(zk), zk – wk

〉

+
〈∇h1(yk), yk – zk

〉

+
〈∇h1(zk) – ∇h1(yk), yk – zk

〉

+
1
αk

[〈wk – zk , p – zk〉 + 〈zk – yk , p – yk〉
]

≥ 〈∇h1(zk), zk – wk
〉

+
〈∇h1(yk), yk – zk

〉

–
∥

∥∇h1(wk) – ∇h1(zk)
∥

∥‖zk – wk‖
–

∥

∥∇h1(zk) – ∇h1(yk)
∥

∥‖yk – zk‖

+
1
αk

[〈wk – zk , p – zk〉 + 〈zk – yk , p – yk〉
]

.

Again, applying (11), the above inequality becomes

2h(p) – h(zk) – h2(yk) – h1(wk)

≥ h1(yk) – h1(wk) –
∥

∥∇h1(wk) – ∇h1(zk)
∥

∥‖zk – wk‖
–

∥

∥∇h1(zk) – ∇h1(yk)
∥

∥‖yk – zk‖

+
1
αk

[〈wk – zk , p – zk〉 + 〈zk – yk , p – yk〉
]

≥ h1(yk) – h1(wk) –
∥

∥∇h1(wk) – ∇h1(zk)
∥

∥

(‖yk – zk‖ + ‖zk – wk‖
)

–
∥

∥∇h1(zk) – ∇h1(yk)
∥

∥

(‖yk – zk‖ + ‖zk – wk‖
)

+
1
αk

[〈wk – zk , p – zk〉 + 〈zk – yk , p – yk〉
]

= h1(yk) – h1(wk) +
1
αk

[〈wk – zk , p – zk〉 + 〈zk – yk , p – yk〉
]

–
(∥

∥∇h1(wk) – ∇h1(zk)
∥

∥ +
∥

∥∇h1(zk) – ∇h1(yk)
∥

∥

)(‖yk – zk‖ + ‖zk – wk‖
)

. (14)

Since αk := Linesearch C(wk ,σ , θ , δ), then

αk

2
{∥

∥∇h1(yk) – ∇h1(zk)
∥

∥ +
∥

∥∇h1(zk) – ∇h1(wk)
∥

∥

}

≤ δ
(‖yk – zk‖ + ‖zk – wk‖

)

. (15)

From (14) and (15), we have

1
αk

[〈wk – zk , zk – p〉 + 〈zk – yk , yk – p〉]

≥ h(yk) + h(zk) – 2h(p)

–
(∥

∥∇h1(wk) – ∇h1(zk)
∥

∥ +
∥

∥∇h1(zk) – ∇h1(yk)
∥

∥

)(‖yk – zk‖ + ‖zk – wk‖
)

≥ h(yk) + h(zk) – 2h(p) –
2δ

αk

(‖yk – zk‖ + ‖zk – wk‖
)2

≥ h(yk) + h(zk) – 2h(p) –
4δ

αk

(‖yk – zk‖2 + ‖zk – wk‖2). (16)
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By Lemma 2.3(ii), we get

〈wk – zk , zk – p〉 =
1
2
(‖wk – p‖2 – ‖wk – zk‖2 – ‖zk – p‖2), (17)

and

〈zk – yk , yk – p〉 =
1
2
(‖zk – p‖2 – ‖zk – yk‖2 – ‖yk – p‖2). (18)

Hence, we can conclude from (16)–(18) that

‖wk – p‖2 – ‖yk – p‖2 ≥ 2αk
[

h(yk) + h(zk) – 2h(p)
]

+ (1 – 8δ)
(‖wk – zk‖2 + ‖zk – yk‖2), ∀k ∈N. �

Now we are in a position to prove our main theorem.

Theorem 3.2 Let {xk} ⊂X be a sequence generated by Method 5. Then:
(i) For p ∈ �, we have

‖xk+1 – p‖ ≤ max

{

‖xk – p‖,
βk
γk

‖xk – xk–1‖ + ‖f (p) – p‖
1 – η

}

, ∀k ∈N.

(ii) If the sequences {αk}, {γk}, and {τk} satisfy the following conditions:
(Ci) αk ≥ α for some a ∈R++;

(Cii) γk ∈ (0, 1) such that limk→∞ γk = 0 and
∑∞

k=1 γk = ∞;
(Ciii) limk→∞ τk/γk = 0,
then {xk} converges strongly to a point p∗ ∈ �, where p∗ = P�f (p∗).

Proof Let p ∈ �. Applying Lemma 3.1, we have

‖wk – p‖2 – ‖yk – p‖2 ≥ 2αk
[

h(yk) – h(p) + h(zk) – h(p)
]

+ (1 – 8δ)
(‖wk – zk‖2 + ‖zk – yk‖2)

≥ (1 – 8δ)
(‖wk – zk‖2 + ‖zk – yk‖2) (19)

≥ 0. (20)

From (19) and (5) and by Lemma 2.3(ii), we get

‖yk – p‖2 ≤ ‖wk – p‖2 – (1 – 8δ)
(‖wk – zk‖2 + ‖zk – yk‖2)

= ‖xk – p‖2 + β2
k ‖xk – xk–1‖2 + 2βk〈xk – p, xk – xk–1〉

– (1 – 8δ)
(‖wk – zk‖2 + ‖zk – yk‖2).

≤ ‖xk – p‖2 + β2
k ‖xk – xk–1‖2 + 2βk‖xk – p‖‖xk – xk–1‖

– (1 – 8δ)
(‖wk – zk‖2 + ‖zk – yk‖2). (21)

From (20) and (5), we get

‖yk – p‖ ≤ ‖wk – p‖ ≤ ‖xk – p‖ + βk‖xk – xk–1‖. (22)
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By (8) and (22), we have

‖xk+1 – p‖ ≤ γk
∥

∥f (xk) – f (p)
∥

∥ + γk
∥

∥f (p) – p
∥

∥ + (1 – γk)‖yk – p‖
≤ γkη‖xk – p‖ + γk

∥

∥f (p) – p
∥

∥ + (1 – γk)‖yk – p‖
≤ (

1 – γk(1 – η)
)‖xk – p‖ + γk

∥

∥f (p) – p
∥

∥

+ (1 – γk)βk‖xk – xk–1‖

≤ (

1 – γk(1 – η)
)‖xk – p‖ + γk

(

βk

γk
‖xk – xk–1‖ +

∥

∥f (p) – p
∥

∥

)

≤ max

{

‖xk – p‖,
βk
γk

‖xk – xk–1‖ + ‖f (p) – p‖
1 – η

}

.

Therefore, we obtain (i). By (4) and using (Ciii), we have βk
γk

‖xk – xk–1‖ → 0 as k → ∞, and
so there exists M > 0 such that βk

γk
‖xk – xk–1‖ ≤ M for all k ∈N. Thus,

‖xk+1 – p‖ ≤ max

{

‖xk – p‖,
M + ‖f (p) – p‖

1 – η

}

.

By mathematical induction, we deduce that

‖xk – p‖ ≤ max

{

‖x1 – p‖,
M + ‖f (p∗) – p‖

1 – η

}

, ∀k ∈ N.

Hence, {xk} is bounded. One can see that the operator P�f is a contraction. By the Banach
contraction principle, there is a unique point p∗ ∈ � such that p∗ = P�f (p∗). It follows from
the characterization of P� that

〈

f
(

p∗) – p∗, p – p∗〉 ≤ 0, ∀p ∈ �. (23)

Using Lemma 2.3(i), (iii) and (21), we have

∥

∥xk+1 – p∗∥
∥

2 ≤∥

∥(1 – γk)
(

yk – p∗) + γk
(

f (xk) – f
(

p∗))∥
∥

2

+ 2γk
〈

f
(

p∗) – p∗, xk+1 – p∗〉

≤ (1 – γk)
∥

∥yk – p∗∥
∥

2 + γk
∥

∥f (xk) – f
(

p∗)∥
∥

2

+ 2γk
〈

f
(

p∗) – p∗, xk+1 – p∗〉

≤ (1 – γk)
∥

∥xk – p∗∥
∥

2 + β2
k ‖xk – xk–1‖2

+ 2βk
∥

∥xk – p∗∥
∥‖xk – xk–1‖

+ γkη
∥

∥xk – p∗∥
∥

2 + 2γk
〈

f
(

p∗) – p∗, xk+1 – p∗〉

– (1 – γk)(1 – 8δ)
(‖wk – zk‖2 + ‖zk – yk‖2)

=
(

1 – γk(1 – η)
)∥

∥xk – p∗∥
∥

2 + γk(1 – η)bk

– (1 – γk)(1 – 8δ)
(‖wk – zk‖2 + ‖zk – yk‖2), (24)



Suantai et al. Journal of Inequalities and Applications         (2021) 2021:42 Page 11 of 19

where

bk :=
1

1 – η

(

2
〈

f
(

p∗) – p∗, xk+1 – p∗〉 +
β2

k
γk

‖xk – xk–1‖2 + 2
βk

γk
‖xk – p∗‖‖xk – xk–1‖

)

.

It follows that

(1 – γk)(1 – 8δ)
(‖wk – zk‖2 + ‖zk – yk‖2) ≤ ∥

∥xk – p∗∥
∥

2 –
∥

∥xk+1 – p∗∥
∥

2

+ γk(1 – η)M′, (25)

where M′ = sup{bk : k ∈ N}.
Let us show that {xk} converges to p∗. Set ak := ‖xk – p∗‖2 and ξk := γk(1 – η). From (24),

we have the following inequality:

ak+1 ≤ (1 – ξk)ak + ξkbk .

To apply Lemma 2.4, we have to show that lim supi→∞ bki ≤ 0 whenever a subsequence
{aki} of {ak} satisfies

lim inf
i→∞ (aki+1 – aki ) ≥ 0. (26)

To do this, suppose that {aki} ⊆ {ak} is a subsequence satisfying (26). Then, by (25) and
(Cii), we have

lim sup
i→∞

(1 – γki )(1 – 8δ)
(‖wki – zki‖2 + ‖zki – yki‖2)

≤ lim sup
i→∞

(aki – aki+1) + (1 – η)M′ lim
i→∞γki

= – lim inf
i→∞ (aki+1 – aki )

≤ 0,

which implies

lim
i→∞‖wki – zki‖ = lim

i→∞‖zki – yki‖ = 0. (27)

Using (Cii), (Ciii), and (27), we have

‖xki+1 – xki‖ ≤ γki

∥

∥f (xki ) – yki

∥

∥ + ‖yki – xki‖
≤ γki

∥

∥f (xki ) – yki

∥

∥ + ‖yki – wki‖ + ‖wki – xki‖
≤ γki

∥

∥f (xki ) – yki

∥

∥ + ‖yki – zki‖ + ‖zki – wki‖

+
βki

γki

‖xki – xki–1‖

→ 0 (28)
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as i → ∞. We next show that lim supi→∞ bki ≤ 0. Clearly, it suffices to show that

lim sup
i→∞

〈

f
(

p∗) – p∗, xki+1 – p∗〉 ≤ 0.

Let {xkij
} be a subsequence of {xki} such that

lim
j→∞

〈

f
(

p∗) – p∗, xkij
– p∗〉 = lim sup

i→∞

〈

f
(

p∗) – p∗, xki – p∗〉.

Since {xkij
} is bounded, there exists a subsequence {xkijp

} of {xkij
} such that xkijp

⇀ p̄ ∈X .
Without loss of generality, we may assume that xkij

⇀ p̄. Thus, we also have zkij
⇀ p̄. From

(AI), we have ‖∇h1(wkij
) –∇h1(zkij

)‖ → 0 as j → ∞. This together with (27) and (Ci) yields

lim
j→∞

∥

∥

∥

∥

wkij
– zkij

αkij

+ ∇h1(zkij
) – ∇h1(wkij

)
∥

∥

∥

∥
= 0. (29)

By (3), we get

wkij
– zkij

αkij

+ ∇h1(zkij
) – ∇h1(wkij

) ∈ ∂h2(zkij
) + ∇h1(zkij

) = ∂h(zkij
). (30)

Now, by (29), (30), and zkij
⇀ p̄, it follows from Lemma 2.2 that 0 ∈ ∂h(p̄). Hence, p̄ ∈ �.

From (28) and (23), we have

lim sup
i→∞

〈

f
(

p∗) – p∗, xki+1 – p∗〉 ≤ lim sup
i→∞

〈

f
(

p∗) – p∗, xki+1 – xki

〉

+ lim sup
i→∞

〈

f
(

p∗) – p∗, xki – p∗〉

= lim
j→∞

〈

f
(

p∗) – p∗, xkij
– p∗〉

=
〈

f
(

p∗) – p∗, p̄ – p∗〉

≤ 0.

By Lemma 2.4, we can conclude that {xk} converges to p∗. The proof is complete. �

Note that the stepsize condition on {αk} in Theorem 3.2 needs the boundedness from
below by a positive real number. Next, we show that this condition can be ensured by the
Lipschitz continuity assumption on ∇h1.

Proposition 3.3 Let {αk} be the sequence generated by Linesearch C of Method 5. If ∇h1 :
X →X is Lipschitz continuous with a constant L > 0, then αk ≥ min{σ , 2δθ/L} for all k ∈N.

Proof Let ∇h1 be L-Lipschitz continuous on X . Since αk := Linesearch C(wk ,σ , θ , δ), then
αk ≤ σ for all k ∈ N. If αk < σ , then αk = σθmk where mk is the smallest positive integer
such that

αk

2
{∥

∥∇h1
(

FB2
αk

(wk)
)

– ∇h1
(

FBαk (wk)
)∥

∥ +
∥

∥∇h1
(

FBαk (wk)
)

– ∇h1(wk)
∥

∥

}

≤ δ
(∥

∥FB2
αk

(wk) – FBαk (wk)
∥

∥ +
∥

∥FBαk (wk) – wk
∥

∥

)

.
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Set α̂k := αk/θ . By the Lipschitz continuity of ∇h1 and the above expression, we have

α̂kL
2

(∥

∥FB2
α̂k

(wk) – FBα̂k (wk)
∥

∥ +
∥

∥FBα̂k (wk) – wk
∥

∥

)

≥ α̂k

2
(∥

∥∇h1
(

FB2
α̂k

(wk)
)

– ∇h1
(

FBα̂k (wk)
)∥

∥ +
∥

∥∇h1
(

FBα̂k (wk)
)

– ∇h1(wk)
∥

∥

)

> δ
(∥

∥FB2
α̂k

(wk) – FBα̂k (wk)
∥

∥ +
∥

∥FBα̂k (wk) – wk
∥

∥

)

,

it follows that αk > 2δθ/L. Therefore, αk ≥ min{σ , 2δθ/L} for all k ∈N. �

Remark 3.4 It is worth mentioning that the Lipschitz continuity assumption on the gradi-
ent of h1 is sufficient for Assumption (AI). However, if we assume this assumption further,
the computation of the stepsize αk generated by Linesearch C is still independent of the
Lipschitz constant.

4 Numerical experiments in image and signal recovery
In this section, we apply the convex minimization problem, Problem (1), to image and
signal recovery problems. We analyze and illustrate the convergence behavior of Method
5 for recovering images and signals, and also compare its efficiency with Methods 1–4. All
experiments and visualizations are performed on a laptop computer (Intel Core-i5/4.00
GB RAM/Windows 8/64-bit) with MATLAB.

Many problems in image and signal processing, especially the image/signal recovery, are
the problems of inferring an image/signal x ∈R

N from the observation of an image/signal
y ∈ R

M via the linear equation

y = Tx + ε, (31)

where T : RN → R
M is a bounded linear operator and ε is an additive noise. To approx-

imate the original image/signal in (31), we need to minimize the value of ε by using the
LASSO problem [31]

min
x∈RN

{

1
2
‖y – Tx‖2

2 + λ‖x‖1

}

, (32)

where λ is a positive parameter, ‖ · ‖1 is the l1-norm, and ‖ · ‖2 is the Euclidean norm. It is
worth noting that Problem (1) can be applied to the LASSO problem (32) by setting

h1(x) =
1
2
‖y – Tx‖2

2 and h2(x) = λ‖x‖1.

4.1 Image recovery
In the following two examples, we set a regularization parameter in the LASSO problem
(32) by λ := 10–5. Signal-to-noise ratio (PSNR) in decibel (dB) [30] and structural similar-
ity index metric (SSIM) [33] are used as image quality metrics. The maximum iteration
number for all deblurring methods is fixed at 500.

Example 4.1 Consider a prototype image (Lenna) with size of 256 × 256, which is con-
taminated by Gaussian blur of filter size 7 × 7 with standard deviation σ̂ = 6 and noise
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10–5, see the original image (a) and the blurred image (b) in Fig. 1. The values of PSNR
and SSIM of the blurred image are 24.6547 dB and 0.4770, respectively. The parameters
of our method (Method 5) are chosen as follows:

σ = 2, θ = 0.9, δ = 0.1, τk =
1050

k2 , γk =
1

50k
, μk =

tk – 1
tk+1

,

tk+1 =
1 +

√

1 + 4t2
k

2
, t1 = 1.

Consider a contraction f in the form of f (x) = ηx, where 0 < η < 1. We take the parameter
η as the following five cases:

Case 1: η = 0.1, Case 2: η = 0.3, Case 3: η = 0.5, Case 4: η = 0.8,

Case 5: η = 0.99.

Now, the experiments for recovering the Lenna image of Method 5 with Cases 1–5 are
shown in Figs. 1 and 2. It is observed from Fig. 2 that Case 5 gives the higher values of
PSNR and SSIM than other cases.

Figure 1 Restoration for the Lenna image at the 500th iteration. (a) Original image; (b) Blurry image
contaminated by Gaussian blur; (c)–(g) Restored images by Method 5 with different parameters η

Figure 2 Plot of PSNR and SSIM of restored images by Method 5
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Table 1 The parameters for the deblurring methods

Parameters Methods

1 2 3 4 5

αk = k
(k+1)L , L = λmax(T�T ) – – –

√
–

σ = 1, θ = 0.9, δ = 0.1
√ √ √

–
√

μk = k
k+1 , τk =

1050

k2
– – – –

√
γk = 1

50k – – –
√ √

Figure 3 Restoration for the hall image at the 500th iteration. (a) Original image; (b) Blurry image
contaminated by Gaussian blur; (c)–(g) Restored images by Methods 1–5

Figure 4 The comparison of PSNR and SSIM values for the blurred image and restored images by Methods
1–5 at the 500th iteration

Example 4.2 Consider a prototype image (hall) with size of 256 × 256, which is contam-
inated by Gaussian blur of filter size 9 × 9 with standard deviation σ̂ = 4 and noise 10–5,
see the original image (a) and the blurred image (b) in Fig. 3. The parameters for each
deblurring method are set as in Table 1.

Also, we define a contraction f by f (x) = 0.99x for Methods 4 and 5.
Let us see the comparative experiments for recovering the hall images of Methods 1–

5 as shown in Figs. 3–5. It can be seen that Method 5 gives the higher values of PSNR
and SSIM than the other tested methods. So, our method has the highest image recovery
efficiency compared with other methods.

4.2 Signal recovery
Example 4.3 In the LASSO problem (32), the matrix T ∈R

M×N is generated by the normal
distribution with mean zero and variance one. The vector x ∈R

N is generated by a uniform
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Figure 5 Plot of PSNR and SSIM of restored images by Methods 1–5

Figure 6 Signal recovery in case of N = 512, M = 256,m = 15. (a) Original signal; (b) Observed data; (c)–(g)
Recovered signals by Methods 1–5

distribution in [–2, 2] with m nonzero elements. The vector y is generated by the Gaussian
noise with the signal-to-noise ratio (SNR) as 40 dB. The regularization parameter is taken
by λ = 1. The parameters of Methods 1–5 are set as in Table 1 in Example 4.2. We use the
mean squared error (MSE) as the stopping criterion defined by

MSE(k) :=
1
N

∥

∥xk – p∗∥
∥

2
2 ≤ 10–5,

where p∗ is an original signal.
Now, the experiments for recovering two signals by Methods 1–5 are shown in Figs. 6–7,

and the graphs of the MSE for two cases are shown in Fig. 8. It is observed from Figs. 6–8
that the convergence speed of Method 5 is better than that of Methods 1–4 and hence our
method has a better convergence behavior than the other tested methods in terms of the
number of iterations.
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Figure 7 Signal recovery in case of N = 1024, M = 512,m = 40. (a) Original signal; (b) Observed data; (c)–(g)
Recovered signals by Methods 1–5

Figure 8 The MSE versus the number of iterations for recovering the signals by Methods 1–5

5 Conclusion
In this work, we discuss the convex minimization problem of the sum of two convex func-
tions in a Hilbert space. The challenge of removing the Lipschitz continuity assumption
on the gradient of the function attracts us to study the concept of the linesearch method.
We introduce a new linesearch and propose an inertial viscosity forward-backward algo-
rithm whose stepsize does not depend on any Lipschitz constant for solving the consid-
ered problem without any Lipschitz continuity condition on the gradient. We prove that
the sequence generated by our proposed method converges strongly to a minimizer of the
sum of those two convex functions under some mild control conditions. As applications,
we apply our method to solving image and signal recovery problems. The comparative
experiments show that our method has a higher efficiency than the well-known methods
in [9, 16, 18].
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