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Abstract
In this paper, using a Bregman distance technique, we introduce a new single
projection process for approximating a common element in the set of solutions of
variational inequalities involving a pseudo-monotone operator and the set of
common fixed points of a finite family of Bregman quasi-nonexpansive mappings in a
real reflexive Banach space. The stepsize of our algorithm is determined by a
self-adaptive method, and we prove a strong convergence result under certain mild
conditions. We further give some applications of our result to a generalized Nash
equilibrium problem and bandwidth allocation problems. We also provide some
numerical experiments to illustrate the performance of our proposed algorithm using
various convex functions and compare this algorithm with other algorithms in the
literature.
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1 Introduction
The theory of variational inequalities has been of great interest due to its wide applica-
tions in several branches of pure and applied sciences. There are several methods for solv-
ing variational inequalities, most of which are based on projection methods. The simplest
form of projection methods is due to Goldstein [25], which is a natural extension of the gra-
dient projected technique for solving optimization problems. This method requires strong
assumptions such as strong monotonicity before its convergence is guaranteed. Moreover,
in general, it converges weakly to a solution of the variational inequalities. In finite dimen-
sional spaces, Korpelevich [40] introduced a double projection method called extragradi-
ent method for solving variational inequalities with monotone and Lipschitz continuous
operator. This method was later extended to infinite dimensional Hilbert spaces by some
researchers; see, for instance, [9, 12–14, 17, 22, 37, 56].

It is important to say that the extragradient method is not efficient in the case where the
feasible set does not have a closed form expression, which makes projection onto it very
difficult. This leads some researchers to introducing modifications of the extragradient
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method; see [15, 16, 18, 27, 39, 64]. In particular, Tseng [64] introduced a single projec-
tion extragradient method (also called forward-backward algorithm) for the variational
inequalities in real Hilbert spaces. A typical disadvantage of Tseng algorithm and many
other algorithms (such as [10, 11, 23, 24, 62] and the references therein) is the assumption
that the Lipschitz constant of the monotone operator is known or can be estimated. In
many practical problems, the Lipschitz constant is very difficult to estimate and the cost
operator might even be pseudo-monotone. Recently, Thong and Vuong [63] introduced
a modified Tseng extragradient method in which the operator is pseudo-monotone and
there is no requirement for a prior estimate of the Lipschitz constant of the cost operator.
The stepsize of their algorithm is determined by a line search process, and they proved
weak and strong convergence results for the variational inequalities in real Hilbert spaces.

In recent years, the study of iterative methods for common solution of variational in-
equalities and fixed point problems has attracted considerable interest of many scien-
tists. This topic develops mathematical tools for solving a wide range of problems aris-
ing in game, equilibrium, optimization theory, operation research, and so on; see, for in-
stance, [30, 31, 44]. Despite its importance, there are very few results on finding a com-
mon solution of variational inequalities and fixed point problems in the literature; see
[13, 30, 31, 36, 41, 44, 67]. Several results on solving variational inequalities in the lit-
erature are considered in real Hilbert spaces or 2-uniformly convex real Banach spaces.
Moreover, it is very interesting to study the variational inequalities in real Banach spaces
due to several physical models and applications which can be modeled as variational in-
equalities in real Banach spaces that are not Hilbert spaces; see, for instance, [1, Exam-
ple 4.4.4]. In view of this, Cai et al. [8] introduced a double projection algorithm for solving
monotone variational inequalities in 2-uniformly convex real Banach spaces. This method
requires finding a prior estimate of the Lipschitz constant of the cost operator before its
convergence is guaranteed. More so, Shehu [55] introduced a single projection method
which also requires the prior estimate of the Lipschitz constant of the constant operator
for solving variational inequalities in 2-uniformly convex real Banach spaces. Apart from
the fact that the Lipschitz constant is very difficult to estimate, the methods of Cai et al.
[8], Shehu [55] and some other related methods (e.g. [14, 20]) are very restricted since they
considered the setting when E is a 2-uniformly convex real Banach space.

Recently, Jolaoso et al. [35] introduced a projections algorithm using Bregman distance
techniques for solving variational inequalities and a fixed point problem in a reflexive real
Banach space. This method requires computing more than one projection onto the feasi-
ble per each iteration. More so, the stepsize is determined by a line search process which
is computationally expensive. Furthermore, Jolaoso and Aphane [33] introduced a Breg-
man subgradient extragradient method with a line search technique for solving variational
inequalities in a real reflexive Banach space. Very recently, Jolaoso and Shehu [34] intro-
duced a single Bregman projection method with self-adaptive stepsize selection technique
for solving variational inequalities in a real reflexive Banach space. The authors proved that
the sequence generated by their algorithm converges weakly to a solution of the variational
inequalities in a real reflexive Banach space.

In this paper, we study the common solution of variational inequalities and fixed point
problems in a real reflexive Banach space. Using the Bregman distance technique, we in-
troduce a new self-adaptive Tseng extragradient method for finding a common solution of
the problems in a real reflexive Banach space. The Bregman distance is a key substitute and
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generalization of the Euclidean distance, and it is induced by a chosen convex function. It
has found numerous applications in optimization theory, nonlinear analysis, inverse prob-
lems, and recently machine learning; see, for instance, [19, 21, 49]. In addition, the use of
Bregman distance allows the consideration of a general feasible set structure for the vari-
ational inequalities. In particular, we can choose Kullback–Leibler divergence (a Bregman
distance on negative entropy) and obtain an explicitly calculated operator of projection
onto simplex. We prove a strong convergence theorem for finding a common solution in
the solution set of variational inequalities with pseudo-monotone and Lipschitz continu-
ous operator, and the set of fixed points for a finite family of Bregman quasi-nonexpansive
mappings in a reflexive Banach space. More so, the stepsize of our algorithm is determined
by a self-adaptive process which is more efficient than the line search technique. We also
present some applications of our algorithm to generalized Nash equilibrium problem and
utility-based bandwidth allocation problem. We give some numerical examples to illus-
trate the performance of our algorithm for various Bregman functions and also compare
with some existing methods in the literature.

The rest of the paper is organized as follows: In Sect. 2, we present some preliminary
results and definitions needed for obtaining our result. In Sect. 3, we present our algorithm
and its convergence analysis. In Sect. 4, we give the applications of our result to generalized
Nash equilibrium problem and utility-based bandwidth allocation problem. In Sect. 5, we
give some numerical experiments and compare our algorithm with some existing methods
in the literature. We finally give some concluding remarks in Sect. 6.

2 Preliminaries
In this section, we introduce some definitions and basic results that will be needed in this
paper.

Let E be a real Banach space with dual E∗, and 〈·, ·〉 denotes the duality pairing between
E and E∗; xn → x denotes the strong convergence of the sequence {xn} ⊂ E to x ∈ E and
xn ⇀ x denotes the weak convergence of {xn} to x. Let SE be the unit sphere of E, C be
a nonempty closed convex subset of E, and A : E → E∗ be a mapping. We consider the
variational inequality problem (shortly, VIP(C, A)) which consists of finding a point x ∈ C
such that

〈Ax, y – x〉 ≥ 0 ∀y ∈ C. (2.1)

We denote the solution set of (2.1) by VI(C, A). A point x ∈ E is called a fixed point of T if
Tx = x. The set of fixed points of T is denoted by F(T).

Definition 2.1 An operator A : C → E∗ is said to be
(a) strongly monotone on C with parameter τ > 0 if and only if

〈Au – Av, u – v〉 ≥ τ‖u – v‖, ∀u, v ∈ C;

(b) monotone on C if and only if

〈Au – Av, u – v〉 ≥ 0, ∀u, v ∈ C;
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(c) strongly pseudo-monotone on C with parameter τ > 0 if

〈Au, v – u〉 ≥ 0 ⇒ 〈Av, v – u〉 ≥ τ‖u – v‖2, ∀u, v ∈ C;

(d) pseudo-monotone on C if

〈Au, v – u〉 ≥ 0 ⇒ 〈Av, v – u〉 ≥ 0, ∀u, v ∈ C;

(e) Lipschitz continuous if there exists a constant L > 0 such that

‖Au – Av‖ ≤ L‖u – v‖ ∀u, v ∈ C;

(f ) weakly sequentially continuous if for any {xn} ⊂ E such that xn ⇀ x implies
Axn ⇀ Ax.

From Definition 2.1, it is easy to see that

(a) ⇒ (b) ⇒ (d) and (a) ⇒ (c) ⇒ (d);

however, the converse implications are not always true; see [26, 29, 36].

Definition 2.2 A function f : E → R is said to be proper if the domain of f , domf = {x ∈
E : f (x) < +∞} is nonempty. The Fenchel conjugate of f is the function f ∗ : E∗ →R defined
by

f ∗(x∗) = sup
{〈

x, x∗〉 – f (x) : x ∈ E
}

for any x∗ ∈ E∗. The function f is said to be Gâteaux differentiable at x ∈ int(domf ) if the
limit

lim
t→0

f (x + ty) – f (x)
t

= f ′(x, y) (2.2)

exists for any y ∈ E. f is said to be Gâteaux differentiable if it is Gâteaux differentiable at
every x ∈ int(domf ). More so, when the limit in (2.2) holds uniformly for any y ∈ SE and
x ∈ int(domf ), we say that f is Fréchet differentiable. The gradient of f at x ∈ E is the linear
function ∇f (x) such that 〈y,∇f (x)〉 = f ′(x, y) for all y ∈ E. f is called a Legendre function if
and only if it satisfies

(i) int(domf ) �= ∅, dom∇f = int(domf ) and f is Gâteaux differentiable;
(ii) int(domf ∗) �= ∅, dom∇f ∗ = int(domf ∗) and f ∗ is Gâteaux differentiable.

For examples and more information on Legendre functions, see [3, 4, 6]. Also, f is said to
be strongly coercive if

lim‖x‖→∞
f (x)
‖x‖ = ∞,

and strongly convex with strong convexity parameter β > 0 if

f (y) ≥ f (x) +
〈∇f (x), y – x

〉
+

β

2
‖x – y‖2 ∀x, y ∈ E.
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Definition 2.3 ([5]) Let f : E → R∪{+∞} be a Gâteaux differentiable function. The Breg-
man distance Df : domf × int(domf ) →R is defined by

Df (x, y) = f (x) – f (y) –
〈
x – y,∇f (y)

〉 ∀x ∈ domf , y ∈ int(domf ). (2.3)

Note that Df is not a metric since it does not satisfy symmetric and the triangular in-
equality properties; however, it has the following important properties: for any x, w ∈
domf and y, z ∈ int(domf ),

Df (x, y) + Df (y, z) – Df (x, z) =
〈
x – y,∇f (z) – ∇f (y)

〉
, (2.4)

and

Df (x, y) – Df (x, z) – Df (w, y) + Df (w, z) =
〈
x – w,∇f (z) – ∇f (y)

〉
. (2.5)

Next, we give some examples of convex functions with their corresponding Bregman dis-
tance (see also [28]).

Example 2.4 Let E = R
m, then

(i) when f KL(x) =
∑n

i=1 xi log(xi) (called the Shannon entropy),
∇f (x) = (1 + log(x1), . . . , 1 + log(xm))T , ∇f ∗(x) = (exp(x1 – 1), . . . , exp(xm – 1))T and

Df KL (x, y) =
n∑

i=1

(
xi log

(
xi

yi

)
+ yi – xi

)

which is called Kullback–Leibler distance;
(ii) when f SE(x) = 1

2‖x‖2, ∇f (x) = x, ∇f ∗(x) = x, and

Df SE (x, y) =
1
2
‖x – y‖2

which is the squared Euclidean distance;
(iii) when f IS(x) = –

∑n
i∈I(x) log(xi) (called the Burg entropy), ∇f (x) = –( 1

x , . . . , 1
xm

)T ,
∇f ∗(x) = –( 1

x , . . . , 1
xm

)T and

Df IS (x, y) =
n∑

i∈I(x)

(
log

(
xi

yi

)
+

xi

yi
– 1

)

which is called Itakura–Saito distance;
(iv) when f SM(x) = 1

2 xT x, where xT is stands for the transpose of x ∈R
n and

Q = diag(1, 2, . . . , n) ∈R
n, ∇f (x) = Qx, ∇f ∗(x) = Q–1(x) and

Df SM (x, y) =
1
2

(x – y)T (x – y),

which is called the squared Mahalanobis distance.
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The relationship between Df and norm ‖ · ‖ is guaranteed when f is strongly convex
with strong convexity constant β > 0 i.e.

Df (x, y) ≥ β

2
‖x – y‖2 ∀x ∈ domf , y ∈ int(domf ), (2.6)

(see [65, Lemma 7]). The necessarily unique vector Projf
C(x) which satisfies

Df
(
Projf

C(x), x
)

= inf
{

Df (x, y) : y ∈ C
}

is called the Bregman projection onto the convex set C. It is characterized by the following
result.

Lemma 2.5 ([7, 52]) Suppose that f : E →R is Gâteaux differentiable and C ⊂ int(domf )
is a nonempty closed and convex set. Then the Bregman projection Projf

C : E → C satisfies
the following properties:

(i) w = Projf
C(x) if and only if 〈∇f (x) – ∇f (w), y – w〉 ≤ 0 for all y ∈ C;

(ii) Df (y, Projf
C(x)) + Df (Projf

C(x), x) ≤ Df (y, x) for all y ∈ C and x ∈ E.

Let f : E → R be a Legendre function. We define the function Vf : E × E∗ → [0,∞)
associated with f by

Vf
(
x, x∗) = f (x) –

〈
x, x∗〉 + f ∗(x∗), ∀x ∈ E, x∗ ∈ E∗. (2.7)

It is easy to see from (2.7) that Vf is nonnegative and Vf (x, x∗) = Df (x,∇f ∗(x∗)). In addition,
Vf satisfies the following inequality (see [54]):

Vf
(
x, x∗) +

〈
y∗,∇f ∗(x∗) – x

〉 ≤ Vf
(
x, x∗ + y∗) ∀x ∈ E, x∗, y∗ ∈ E∗. (2.8)

Definition 2.6 ([38]) Let T : C → C be a mapping. A point x ∈ E is called an asymptotic
fixed point of T if there exists a sequence {xn} ⊂ C such that xn ⇀ x and limn→∞ ‖xn –
Txn‖ = 0. We denote the set of asymptotic fixed points of T by F̂(T).

Definition 2.7 ([38, 50]) The mapping T : C → C is called
(i) Bregman firmly nonexpansive (BFNE) if

∇f (x) – ∇f (Ty), Tx – Ty〉 ≤ 〈∇f (x) – ∇f (y), Tx – Ty
〉 ∀x, y ∈ C;

(ii) Bregman strongly nonexpansive (BSNE) with respect to F̂(T) if Df (z, Tx) ≤ Df (z, x)
for all z ∈F̂(T) and x ∈ C, and if whenever {xn} ⊂ C is bounded and

lim
n→∞

(
Df (z, xn) – Df (z, Txn)

)
= 0,

it follows that limn→∞ Df (xn, Txn) = 0;
(iii) Bregman quasi-nonexpansive (BQNE) if F(T) �= ∅ and

Df (z, Tx) ≤ Df (z, x) ∀z ∈ F(T), x ∈ C.
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In the case when F(T) = F̂(T), it is easy to see that the following inclusions hold:

BFNE ⇒ BSNE ⇒ BQNE

(see [38]). The following lemmas will be used in the sequel.

Lemma 2.8 If f : E →R is a strongly coercive and Legendre function, then
(i) ∇f : E → E∗ is one-to-one, onto, and norm-to-weak* continuous;

(ii) {x ∈ E : Df (x, y) ≤ ρ} is bounded for all y ∈ E and ρ > 0;
(iii) domf ∗ = E∗, f ∗ is Gâteaux differentiable and ∇f ∗ = (∇f )–1.

Lemma 2.9 ([48]) If f : E → (–∞, +∞] is a proper, lower semi-continuous, and convex
function, f ∗ : E∗ → (–∞, +∞] is a weak* lower semi-continuous and convex function. Thus,
for all w ∈ E, we have

Df

(

w,∇f ∗
( N∑

i=1

δi∇f (xi)

))

≤
N∑

i=1

δiDf (w, xi),

where {xi} ⊂ E and {δi} ⊆ (0, 1) satisfying
∑N

i=1 δi = 1.

Lemma 2.10 ([47]) Let f : E → R be a continuous uniformly convex function on bounded
subsets of E and r > 0 be a constant. Then

f

( n∑

k=0

αkxk

)

≤
n∑

k=0

αkf (xk) – αiαjρr
(‖xi – xj‖

)
(2.9)

for all i, j ∈ N ∪ {0}, xk ∈ Br , αk ∈ (0, 1), and k ∈ N ∪ 0 with
∑n

k=0 αk = 1, where ρr is the
gauge of uniform convexity of g .

Lemma 2.11 ([50]) If f : E → R is uniformly Fréchet differentiable and bounded on
bounded subsets of E, then ∇f is norm-to-norm uniformly continuous on bounded subsets
of E and thus, both f and ∇f are bounded on bounded subsets of E.

Definition 2.12 ([45]) The minty variational inequality problem (MVIP) is defined as
finding a point x̄ ∈ C such that

〈Ay, y – x̄〉 ≥ 0, ∀y ∈ C. (2.10)

We denote by M(C, A) the set of solutions of (2.10). Some existence results for the MVIP
have been presented in [42]. Also, the assumption that M(C, A) �= ∅ has already been used
for solving VI(C, A) in finite dimensional spaces (see e.g. [57]). It is not difficult to prove
that pseudo-monotonicity implies the property M(C, A) �= ∅, but the converse is not true.
Indeed, let A : R →R be defined by A(x) = cos(x) with C = [0, π

2 ]. We have that VI(C, A) =
{0, π

2 } and M(C, A) = {0}. But if we take x = 0 and y = π
2 in Definition 2.1(d), we see that A

is not pseudo-monotone.
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Lemma 2.13 ([45]) Consider VIP (2.1). If the mapping h : [0, 1] → E∗ defined as h(t) =
A(tx + (1 – t)y) is continuous for all x, y ∈ C (i.e. h is hemicontinuous), then M(C, A) ⊂
VI(C, A). Moreover, if A is pseudo-monotone, then VI(C, A) is closed, convex and VI(C, A) =
M(C, A).

Lemma 2.14 ([66]) Let {an} be a sequence of nonnegative real numbers satisfying the fol-
lowing identity:

an+1 ≤ (1 – αn)an + αnδn, n ≥ 0,

where {αn} ⊂ (0, 1) and {δn} ⊂ R such that
∑∞

n=0 αn = ∞ and lim supn→∞ δn ≤ 0 or
∑∞

n=0 |αnδn| < ∞. Then limn→∞ an = 0.

Lemma 2.15 ([43]) Let {an} be a sequence of real numbers such that there exists a subse-
quence {ani} of {an} with ani < ani+1 for all i ∈N. Consider the integer {mk} defined by

mk = max{j ≤ k : aj < aj+1}.

Then {mk} is a nondecreasing sequence verifying limn→∞ mn = ∞, and for all k ∈ N, the
following estimates hold:

amk ≤ amk +1 and ak ≤ amk +1.

3 Main results
In this section, we introduce a new iterative algorithm for solving pseudo-monotone vari-
ational inequality and common fixed point problems in a reflexive Banach space. In order
to present our method and its convergence analysis, we make the following assumptions.

Assumption 3.1
(a) The feasible set C is a nonempty closed convex subset of a real reflexive Banach

space E;
(b) The operator A : E → E∗ is pseudo-monotone, L-Lipschitz continuous, and weakly

sequentially continuous on E;
(c) For i = 1, 2, . . . , N , {Ti} is a family of Bregman quasi-nonexpansive mappings on E

such that F(T) = F̂(T) for all i = 1, 2, . . . , N ;
(d) The solution set 	 = VI(C, A) ∩ ⋂N

i=1 F(Ti) is nonempty.

Assumption 3.2 The function f : E →R satisfies the following:
(a) f is proper, convex, and lower semicontinuous;
(b) f is uniformly Fréchet differentiable;
(c) f is strongly convex on E with strong convexity constant β > 0;
(d) f is a strongly coercive and Legendre function which is bounded on bounded

subsets of E.

Assumption 3.3 Also, we assume that the control sequences satisfy:
(a) {βn,i} ⊂ (0, 1),

∑N
i=0 βn,i = 1, and lim infn→∞ βn,0βn,i > 0 for all i = 1, 2, . . . , N and

n ∈N;
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(b) {δn} ⊂ (0, 1), limn→∞ δn = 0, and
∑∞

n=0 δn = ∞;
(c) {un} ⊂ E, limn→∞ un = u∗ for some u∗ ∈ E.

We first highlight some novelties of Algorithm 1 with respect to some methods in the
literature.

(i) In [32, 35], the authors introduced extragradient-type methods for solving VIP (2.1)
in reflexive Banach spaces. It should be observed that these methods used more
than one projection onto the feasible set per each iteration, whereas Algorithm 1
performs only one projection onto the feasible set per each iteration.

(ii) In [32, 35, 55, 63], the authors employed a line search technique which uses inner
loops and might consume additional computation time for determining the
stepsize. In Algorithm 1 we use a self-adaptive method which is very simple and
does not possess any inner loop.

(iii) Our work also improves and extends the results of [55, 60–63] on finding a
common solution of VIP(C, A) and a fixed point problem from real Hilbert spaces
and 2-uniformly convex Banach spaces to real reflexive Banach spaces.

Algorithm 1: A self-adaptive Tseng extragradient method with Bregman distance
(Alg. 3.4)

Step 0: Pick x0 ∈ E, α0 > 0, and μ ∈ (0,β). Set n = 0.
Step 1: Given the n-th iterates xn and αn, compute

yn = Projf
C
(∇f ∗(∇f (xn) – αnAxn

))
.

If xn – yn = 0: set xn = zn and go to Step 3. Else: do step 2.
Step 2: Compute

zn = ∇f ∗(∇f (yn) – αn(Ayn – Axn)
)
.

Step 3: Compute

wn = ∇f ∗
(

βn,0∇f (zn) +
N∑

i=1

βn,i∇f (Tizn)

)

.

Step 4: Calculate xn+1 and αn+1 via

xn+1 = ∇f ∗(δn∇f (un) + (1 – δn)∇f (wn)
)

and

αn+1 =

⎧
⎨

⎩
min{ μ‖xn–yn‖

‖Axn–Ayn‖ ,αn} if Axn �= Ayn,

αn otherwise,
(3.1)

Set n := n + 1 and go to Step 1.
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Remark 3.4 Note that in case where xn = yn = wn, we arrived at a common solution of
the VIP and fixed point of Ti (i = 1, 2, . . . , N ). In our convergence analysis, we implicitly
assumed that this does not occur after finite iterations so that Algorithm 1 generates in-
finitely many iterations. More so, it is easy to see that the sequence {αn} generated by (3.1)
is monotonically nonincreasing and bounded below by min{μ

L ,α0}. Hence, limn→∞ αn ex-
ists.

Lemma 3.5 Let {xn}, {yn}, {zn} be sequences generated by Algorithm 1 and u ∈ 	. Then

Df (u, zn) ≤ Df (u, xn) –
(

1 –
αnμ

αn+1β

)
Df (zn, yn) –

(
1 –

αnμ

αn+1β

)
Df (yn, xn)

for all n ≥ 0.

Proof Since u ∈ 	, then

Df (u, zn) = Df
(
u,∇f ∗(∇f (yn) – αn(Ayn – Axn)

))

= f (u) –
〈
u – zn,∇f (yn) – αn(Ayn – Axn)

〉
– f (zn)

= f (u) +
〈
zn – u,∇f (yn)

〉
+

〈
u – zn,αn(Ayn – Axn)

〉
– f (zn)

= f (u) –
〈
u – yn,∇f (yn)

〉
– f (yn) +

〈
u – yn,∇f (yn)

〉
+ f (yn)

+
〈
zn – u,∇f (yn)

〉
+

〈
u – zn,αn(Ayn – Axn)

〉
– f (zn)

= Df (u, yn) – f (zn) + f (yn) +
〈
zn – yn,∇f (yn)

〉
+

〈
u – zn,αn(Ayn – Axn)

〉

= Df (u, yn) – Df (zn, yn) +
〈
u – zn,αn(Ayn – Axn)

〉
. (3.2)

Note that from (2.5) we have

Df (u, yn) – Df (zn, yn) = Df (u, xn) – Df (zn, xn) +
〈
u – zn,∇f (xn) – ∇f (yn)

〉
. (3.3)

Thus it follows from (3.2) and (3.3) that

Df (u, zn) = Df (u, xn) – Df (zn, xn) +
〈
u – zn,∇f (xn) – ∇f (yn)

〉

+
〈
u – zn,αn(Ayn – Axn)

〉
. (3.4)

Also from (2.4) we have

Df (zn, xn) = Df (zn, yn) + Df (yn, xn) –
〈∇f (xn) – ∇f (yn), zn – yn

〉
. (3.5)

Then from (3.4) and (3.5) we obtain

Df (u, zn) = Df (u, xn) – Df (zn, yn) – Df (yn, xn) +
〈∇f (xn) – ∇f (yn), zn – yn

〉

+
〈
u – zn,∇f (xn) – ∇f (yn)

〉
+

〈
u – zn,αn(Ayn – Axn)

〉

= Df (u, xn) – Df (zn, yn) – Df (yn, xn) +
〈∇f (xn) – ∇f (yn), u – yn

〉

+
〈
u – zn,αn(Ayn – Axn)

〉
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= Df (u, xn) – Df (zn, yn) – Df (yn, xn) +
〈∇f (xn) – ∇f (yn), u – yn

〉

–
〈
zn – yn + yn – u,αn(Ayn – Axn)

〉

= Df (u, xn) – Df (zn, yn) – Df (yn, xn) +
〈∇f (xn) – ∇f (yn), u – yn

〉

–
〈
zn – yn,αn(Ayn – Axn)

〉
–

〈
yn – u,αn(Ayn – Axn)

〉

= Df (u, xn) – Df (zn, yn) – Df (yn, xn) –
〈
zn – yn,αn(Ayn – Axn)

〉

–
〈
yn – u,αn(Ayn – Axn) –

(∇f (yn) – ∇f (xn)
)〉

. (3.6)

Moreover, by the definition of yn and using Lemma 2.5 (i), we obtain

〈∇f (xn) – αnAxn – ∇f (yn), u – yn
〉 ≤ 0. (3.7)

Also, since u ∈ VI(C, A) and A is pseudo-monotone, it follows that

〈Ayn, yn – u〉 ≥ 0. (3.8)

Combining (3.7) and (3.8), we get

〈
αn(Ayn – Axn) –

(∇f (yn) – ∇f (xn)
)
, yn – u

〉 ≥ 0.

Therefore it follows from (3.6) that

Df (u, zn) ≤ Df (u, xn) – Df (zn, yn) – Df (yn, xn) –
〈
zn – yn,αn(Ayn – Axn)

〉
.

Using the Cauchy–Schwarz inequality and (3.1) with (2.6), we obtain

Df (u, zn) ≤ Df (u, xn) – Df (zn, yn) – Df (yn, xn)

+
〈
yn – zn,αn(Ayn – Axn)

〉

≤ Df (u, xn) – Df (zn, yn) – Df (yn, xn)

+
αn

αn+1
αn+1‖yn – zn‖ · ‖Ayn – Axn‖

≤ Df (u, xn) – Df (zn, yn) – Df (yn, xn)

+
αn

αn+1
μ‖yn – zn‖ · ‖yn – xn‖

≤ Df (u, xn) – Df (zn, yn) – Df (yn, xn)

+
αn

αn+1
× μ

2
(‖yn – zn‖2 + ‖yn – xn‖2)

≤ Df (u, xn) – Df (zn, yn) – Df (yn, xn)

+
αn

αn+1
× μ

β

(
Df (zn, yn) + Df (yn, xn)

)

= Df (u, xn) –
(

1 –
αnμ

αn+1β

)
Df (zn, yn) –

(
1 –

αnμ

αn+1β

)
Df (yn, xn). (3.9)

�

Next, we show that the sequences generated by Algorithm 1 are bounded.
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Lemma 3.6 Let {xn} be the sequence generated by Algorithm 1. Then {xn} is bounded.

Proof Let u∗ ∈ 	, from Lemma 3.5 we obtain

Df (u, zn) ≤ Df (u, xn) –
(

1 –
αnμ

αn+1β

)
Df (zn, yn) –

(
1 –

αnμ

αn+1β

)
Df (yn, xn). (3.10)

Since limn→∞ αn exists and μ ∈ (0,β), then

lim
n→∞ 1 –

αnμ

αn+1β
= 1 –

μ

β
> 0.

This implies that there exists N > 0 such that

1 –
αnμ

αn+1β
> 0 ∀n ≥ N .

Hence from (3.10) we get

Df (u, zn) ≤ Df (u, xn).

Also from Lemma 2.9 we obtain

Df (u, wn) = Df

(

u,∇f ∗
(

βn,0∇f (zn) +
N∑

i=1

βn,i∇f (Tizn)

))

≤ βn,0Df (u, zn) +
N∑

i=1

βn,iDf (u, Tizn)

≤ βn,0Df (u, zn) +
N∑

i=1

βn,iDf (u, zn)

= Df (u, zn).

Therefore

Df (u, xn+1) = Df
(
u,∇f ∗(δn∇f (un) + (1 – δn)∇f (wn)

))

≤ δnDf (u, un) + (1 – δn)Df (u, wn)

≤ δnDf (u, un) + (1 – δn)Df (u, xn)

≤ max
{

Df (u, un), Df (u, xn)
}

.

Since the sequence {un} is bounded and ∇f is bounded on bounded subsets of E, there
exists a real number ρ > 0 such that Df (u, un) ≤ ρ for all n ∈ N. Hence, by induction, we
obtain

Df (u, xn+1) ≤ max
{
ρ, Df (u, x0)

}
.

Thus {Df (u, xn)} is bounded, and this implies that {xn} is bounded. Consequently, {yn},
{zn}, {wn} are bounded too. �
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Lemma 3.7 Let {xn} be the sequence generated by Algorithm 1. Then {xn} satisfies the fol-
lowing inequalities:

(i) an+1 ≤ (1 – δn)an + δnbn,
(ii) –1 ≤ bn < +∞,

where an = Df (u, xn), bn = 〈∇f (un) – ∇f (u), xn+1 – u〉, and u ∈ 	 for all n ∈N.

Proof (i) Let u ∈ 	, in view of (2.7) and Lemma 2.10, we have

Df (u, wn) = Df

(

u,∇f ∗
(

βn,0∇f (zn) +
N∑

i=1

βn,i∇f (Tizn)

))

= Vf

(

u,βn,0∇f (zn) +
N∑

i=1

βn,i∇f (Tizn)

)

= f (u) –

〈

u,βn,0∇f (zn) +
N∑

i=1

βn,i∇f (Tizn)

〉

+ f ∗
(

βn,0∇f (zn) +
N∑

i=1

βn,i∇f (Tizn)

)

= f (u) – βn,0
〈
u,∇f (zn)

〉
+

N∑

i=1

βn,i
〈
u,∇f (Tizn)

〉
+ βn,0f ∗(∇f (zn)

)

+
N∑

i=1

βn,if ∗(∇f (Tizn)
)

– βn,0βn,iρ
∗
r
(∥∥∇f (zn) – ∇f (Tizn)

∥∥)

= βn,0Vf
(
u,∇f (zn)

)

+
N∑

i=1

βn,iVf
(
u,∇f (Tizn)

)
– βn,0βn,iρ

∗
r
(∥∥∇f (zn) – ∇f (Tizn)

∥∥)

= βn,0Df (u, zn) +
N∑

i=1

Df (u, Tizn) – βn,0βn,iρ
∗
r
(∥∥∇f (zn) – ∇f (Tizn)

∥∥)

≤ Df (u, zn) – βn,0βn,iρ
∗
r
(∥∥∇f (zn) – ∇f (Tizn)

∥
∥)

. (3.11)

Furthermore, using (2.8), we have

Df (u, xn+1) = Df
(
u,∇f ∗(δn∇f (u) + (1 – δn)∇f (wn)

))

= Vf
(
u, δn∇f (un) + (1 – δn)∇f (wn)

)

≤ Vf
(
u, δn∇f (un) + (1 – δn)∇f (wn) – δn

(∇f (un) – ∇f (u)
))

– δn
〈
–
(∇f (un) – ∇f (u)

)
, xn+1 – u

〉

= Vf
(
u, δn∇f (u) + (1 – δn)∇f (wn)

)
+ δn

〈∇f (un) – ∇f (u), xn+1 – u
〉

≤ δnDf (u, u) + (1 – δn)Df (u, wn) + δn
〈∇f (un) – ∇f (u), xn+1 – u

〉

≤ (1 – δn)Df (u, xn) + δn
〈∇f (un) – ∇f (u), xn+1 – u

〉
.

Thus, we established (i).
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(ii) Since {xn} and {un} are bounded, then

sup
n≥0

bn ≤ sup
n≥0

∥∥∇f (un) – ∇f (u)
∥∥ · ‖xn+1 – u‖ < ∞.

This implies that lim supn→∞ bn < ∞. Next we show that lim supn→∞ bn ≥ –1. On the con-
trary, suppose lim supn→∞ bn < –1. Then we can choose n0 ∈ N such that bn < –1 for all
n ≥ n0. Then, for all n ≥ n0, we get from (i)

an+1 ≤ (1 – δn)an + δnbn

< (1 – δn)an – δn

= an – δn(an + 1)

≤ an – δn.

Taking lim sup of the last inequality, we obtain

lim sup
n→∞

an+1 ≤ an0 – lim
n→∞

∞∑

i=n0

δi = –∞.

This contradicts the fact that {an} is a nonnegative sequence. Hence lim supn→∞ bn ≥
–1. �

We now prove the convergence of Algorithm 1.

Theorem 3.8 Suppose that {xn} is generated by Algorithm 1. Then {xn} converges strongly
to a point x̄, where x̄ = Projf

	(x̄).

Proof Let u ∈ 	 and an = Df (u, xn). We consider the following two possible cases.
Case I: Suppose that {an} is monotonically decreasing. Since {an} is bounded, then an –

an+1 → 0. From (3.11), we have

Df (u, xn+1) ≤ δnDf (u, un) + (1 – δn)Df (u, wn)

≤ δnDf (u, un) + (1 – δn)
[
Df (u, zn) – βn,0βn,iρ

∗
r
(∥∥∇f (zn) – ∇f (Tizn)

∥∥)]

≤ δnDf (u, un) + (1 – δn)
[
Df (u, xn) – βn,0βn,iρ

∗
r
(∥∥∇f (zn) – ∇f (Tizn)

∥∥)]
.

This implies that

(1 – δn)βn,0βn,iρ
∗
r
(∥∥∇f (zn) – ∇f (Tizn)

∥
∥)

≤ δnDf (u, un) + (1 – δn)Df (u, xn) – Df (u, xn+1)

= δn
(
Df (u, un) – an

)
+ an – an+1. (3.12)

Since δn → 0 as n → ∞, it follows from (3.12) that

lim
n→∞βn,0βn,iρ

∗
r
(∥∥∇f (zn) – ∇f (Tizn)

∥∥)
= 0.
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Also, since lim infn→∞ βn,0βn,i > 0 and by the property of ρ∗
r , we obtain

lim
n→∞

∥
∥∇f (zn) – ∇f (Tizn)

∥
∥ = 0.

Moreover, f is uniformly Fréchet differentiable, then ∇f ∗ is uniformly continuous on
bounded subsets of E∗, and thus

lim
n→∞‖zn – Tizn‖ = 0. (3.13)

Furthermore, from Lemma 3.5, we have

Df (u, xn+1)

≤ δnDf (u, un) + (1 – δn)Df (u, wn)

≤ δnDf (u, un) + (1 – δn)Df (u, zn)

≤ δnDf (u, un)

+ (1 – δn)
[

Df (u, xn) –
(

1 –
αnμ

αn+1β

)
Df (zn, yn) –

(
1 –

αnμ

αn+1β

)
Df (yn, xn)

]
.

This implies that

(1 – δn)
[(

1 –
αnμ

αn+1β

)
Df (zn, yn) +

(
1 –

αnμ

αn+1β

)
Df (yn, xn)

]

≤ δnDf (u, un) + (1 – δn)Df (u, xn) – Df (u, xn+1)

= δn
(
Df (u, un) – an

)
+ an – an+1.

This implies that

lim
n→∞

[(
1 –

αnμ

αn+1β

)
Df (zn, yn) +

(
1 –

αnμ

αn+1β

)
Df (yn, xn)

]
= 0,

and hence

lim
n→∞

[(
1 –

μ

β

)
Df (zn, yn) +

(
1 –

μ

β

)
Df (yn, xn)

]
= 0.

Since μ ∈ (0,β), we get

lim
n→∞

(
Df (zn, yn) + Df (yn, xn)

)
= 0.

This implies that

lim
n→∞ Df (zn, yn) = lim

n→∞ Df (yn, xn) = 0.

Consequently,

lim
n→∞‖zn – yn‖ = lim

n→∞‖yn – xn‖ = 0.



Jolaoso et al. Journal of Inequalities and Applications         (2021) 2021:44 Page 16 of 28

Then

lim
n→∞‖zn – xn‖ = 0. (3.14)

It is clear that

∥∥∇f (wn) – ∇f (zn)
∥∥ =

N∑

i=1

βn,i
∥∥∇f (zn) – ∇f (Tizn)

∥∥ → 0.

Hence, since ∇f ∗ is norm-to-norm continuous on bounded subsets of E∗, we obtain

lim
n→∞‖wn – zn‖ = 0,

therefore

lim
n→∞‖wn – xn‖ = 0.

Since {xn} is bounded, there exists a subsequence {xnj} of {xn} such that xnj ⇀ x∗ ∈ C. We
now show that x∗ ∈ 	. Since ynj = Projf

C(∇f ∗(∇f (xnj –αnj Axnj ))), it follows from Lemma 2.5
(i) that

〈∇f (xnj ) – αnj Axnj – ∇f (ynj ), x – ynj

〉 ≤ 0 ∀x ∈ C.

Then

〈∇f (xnj ) – ∇f (ynj ), x – ynj

〉 ≤ αnj〈Axnj , x – ynj〉
= αnj〈Axnj , xnj – ynj〉 + αnj〈Axnj , x – xnj〉.

This implies that

〈∇f (xnj ) – ∇f (ynj ), x – ynj

〉
+ αnj〈Axnj , ynj – xnj〉 ≤ αnj〈Axnj , x – xnj〉. (3.15)

Since ‖xnj – ynj‖ → 0 and f is strongly coercive, then

lim
k→∞

∥∥∇f (xnj ) – ∇f (ynj )
∥∥ = 0. (3.16)

Fix x ∈ C, it follows from (3.15), (3.16) and the fact that lim infj→∞ αnj > 0, that

0 ≤ lim inf
j→∞ 〈Axnj , x – xnj〉 ∀x ∈ C. (3.17)

Now let {εj} be a sequence of decreasing nonnegative numbers such that εj → 0 as j → ∞.
For each εj, we denote by nj the smallest positive integer such that

〈Axnj , x – xnj〉 + εj ≥ 0 ∀k ≥ nj,
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where the existence of nj follows from (3.17). Since {εj} is decreasing, then {nj} is increas-
ing. Also, for each j, Axnj �= 0 and, setting

tnj =
Axnj

‖Axnj‖2 ,

one gets 〈Axnj , tnj〉 = 1 for each k. Therefore,

〈Axnj , x + εjtnj – xnj〉 ≥ 0.

Since A is pseudo-monotone, we have from (3.17) that

〈
A(x + εjtnj ), x + εjtnj – xnj

〉 ≥ 0. (3.18)

Since {xnj} converges weakly to x∗ as j → ∞ and A is weakly sequentially continuous, we
have that {Axnj} converges weakly to Ax∗. Suppose Ax∗ �= 0 (otherwise, x∗ ∈ VI(C, A)).
Then, by the sequentially weakly lower semicontinuity of the norm, we get

0 <
∥∥Ax∗∥∥ = lim inf

j→∞ ‖Axnj‖.

Since {xnj} ⊂ {xnj} and εj → 0 as j → ∞, we get

0 ≤ lim sup
j→∞

‖εjtnj‖ = lim sup
j→∞

(
εj

‖Ax2nj‖
)

≤ lim supj→∞ εj

lim infj→∞ ‖Axnj‖
≤ 0

‖Ax∗‖ = 0,

and this means limj→∞ ‖εjt2nj‖ = 0. Passing the limit j → ∞ in (3.18), we get

〈
Ax, x – x∗〉 ≥ 0.

Therefore, from Lemma 2.13, we have x∗ ∈ VI(C, A). Furthermore, following from (3.13)
and (3.14), we have that x∗ ∈ F̂(Ti) = F(Ti) for all i = 1, 2, . . . , N , hence x∗ ∈ ⋂N

i=1 F(Ti).
Therefore x∗ ∈ 	.

We now show that {xn} converges strongly to a point x̄ = Projf
	(x̄). To do this, it suffices

to show that lim supn→∞〈∇f (un) – ∇f (x̄), xn+1 – x̄〉 ≤ 0. Choose a sequence {xnj} of {xn}
such that

lim sup
n→∞

〈∇f (un) – ∇f (x̄), xn+1 – x̄
〉

= lim
j→∞

〈∇f (unj ) – ∇f (x̄), xnj+1 – x̄
〉
.

Since unj → u∗ and xnj ⇀ x∗, it follows from Lemma 2.5 (i) that

lim sup
n→∞

〈∇f (un) – ∇f (x̄), xn+1 – x̄
〉

= lim
j→∞

〈∇f (unj ) – ∇f (x̄), xnj+1 – x̄
〉

=
〈∇f

(
u∗) – ∇f (x̄), x∗ – x̄

〉

≤ 0.
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Hence

lim sup
n→∞

〈∇f (un) – ∇f (x̄), xn+1 – x̄
〉 ≤ 0. (3.19)

Putting u = x̄ in Lemma 3.7, it follows from Lemma 2.14 and (3.19) that limn→∞ an = 0.
Consequently, limn→∞ ‖xn – x̄‖ = 0. This implies that {xn} converges strongly to a point
x̄ = Projf

	(x̄).
Case II: Suppose that {an} is not monotonically decreasing, that is, there is a subsequence

{anj} of {an} such that anj < anj+1 for all j ∈ N. Then, by Lemma 2.15, we can define an
integer sequence {τ (n)} for all n ≥ n0 by

τ (n) = max{k ≤ n : 	k < 	k+1}.

Moreover, {τ (n)} is a nondecreasing sequence such that τ (n) → ∞ as n → ∞ and aτ (n) ≤
	τ (n)+1 for all n ≥ n0. Following a similar argument as in Case I, we obtain

lim
n→∞‖yτ (n) – xτ (n)‖ = 0, lim

n→∞‖zτ (n) – xτ (n)| = 0 and lim
n→∞‖wτ (n) – xτ (n)‖ = 0.

By a similar argument as in Case A, we also obtain

lim sup
n→∞

〈∇f (uτ (n)) – ∇f (u), xτ (n)+1 – u
〉 ≤ 0. (3.20)

Also, by Lemma 3.7 (i), we get

0 ≤ aτ (n)+1 – aτ (n)

≤ (1 – δτ (n))Df (u, xτ (n)) + δτ (n)
〈∇f (uτ (n)) – ∇f (u), xτ (n)+1 – u

〉
– Df (u, xτ (n)).

This implies that

Df (u, xτ (n)) ≤ 〈∇f (uτ (n)) – ∇f (u), xτ (n)+1 – u
〉
.

Hence from (3.20) we obtain lim supn→∞ Df (u, xτ (n)) ≤ 0, which implies that limn→∞ Df (u,
xτ (n)) = 0. Consequently, we have

0 ≤ an ≤ max{aτ (n), aτ (n)+1} ≤ aτ (n)+1 → 0.

Hence Df (u, xn) → 0. This implies that ‖xn – u‖ → 0, and thus xn → u = Prof f
	 (u). This

completes the proof. �

The following can be obtained directly as consequences of our main result.
(i) If A : E → E∗ is monotone and Lipschitz continuous on E, then we obtain the follow-

ing result.

Corollary 3.9 Let E be a real reflexive Banach space, A : E → E∗ be a monotone and
Lipschitz continuous operator, and {Ti} (i = 1, 2, . . . , N ) be a finite family of Bregman
quasi-nonexpansive mappings on E such that F(Ti) = F̂(Ti) for i = 1, 2, . . . , N . Let f : E →
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R ∪ {+∞} be a function satisfying Assumption 3.2 and {βn,i}, {δn}, and {un} be sequences
satisfying Assumption 3.3. Suppose 	 = VI(C, A) ∩ ⋂N

i=1 F(Ti) �= ∅. Then the sequence {xn}
generated by Algorithm 1 converges strongly to a solution x̄, where x̄ = Projf

	(x̄).

Note that in this case the weak sequential continuity of A in Assumption 3.1 (b) has to
be dropped since it follows from the monotonicity and (3.15) that

〈∇f (xnj ) – ∇f (ynj ), x – ynj

〉
+ αnj〈Axnj , ynj – xnj〉 ≤ αnj〈Axnj , x – xnj〉

≤ αnj〈Ax, x – xnj〉.

Passing limit to the above inequality and using the facts that ‖xnj – ynj‖ → 0 and ‖∇f (xnj ) –
∇f (ynj )‖ → 0, we obtain

〈
Ax, x – x∗〉 ≥ 0 ∀x ∈ C. (3.21)

(ii) In addition, if we take {Ti} (i = 1, 2, . . . , N ) as a finite family of Bregman nonexpansive
mappings on E, then we obtain the following result.

Corollary 3.10 Let E be a real reflexive Banach space and A : E → E∗ and f : E → R ∪
{+∞} satisfy Assumptions 3.1 and 3.2 respectively, where Ti (i = 1, 2, . . . , N ) is a finite family
of Bregman nonexpansive mappings. Suppose that {βn,i} ⊂ (0, 1) and {δn} ⊂ (0, 1) {un} ⊂ E
satisfy Assumption 3.3. Then the sequence generated by Algorithm 1 converges strongly to
a point x̄, where x̄ = Proj	(x̄).

4 Applications
In this section, we give some applications of our result to a generalized Nash equilibrium
problem and bandwidth allocation problem.

1. Generalized Nash equilibrium problem (GNEP)
Let I = {1, 2, . . . , N} be the set of players with each player i ∈ I controlling variable xi ∈

Ci ⊂ R
mi and C =

∏
i∈I Ci ⊂ ∏

i∈I R
mi , where mi (i ∈ I) satisfy m =

∑N
i=1 mi. The point xi

is called the strategy of the ith player. We denote by x ∈ R
m the vector of strategies x =

(x1, . . . , xN ), and x–i denotes the vector formed by all player decision variables xj except the
player i. Thus, we can write x = (xi, x–i), which is the shorthand to denote the vector x =
(x1, . . . , xi–1, xi, xi+1, . . . , xN ). The set Ci(x–i) = {xi ∈ R

mi : (xi, x–i) ∈ C} denotes the strategy
set of the ith player when the remaining player chooses strategies x–i (see e.g. [53]). We
note that the aim of the ith player given the strategy x–i is to choose a strategy xi such that
xi solves the following minimization problem:

min θi
(
xi, x–i) such that xi ∈ Ci

(
x–i). (4.1)

For any given x–i, we denote the solution set of (4.1) by Soli(x–i). Using the above notation,
we give the precise definition of the GNEP as follows (see e.g. [32]).

Definition 4.1 A GNEP is defined as finding x̄ ∈ C such that x̄i ∈ Soli(x̄–i) for every i ∈ I .

The following result follows from the first order optimality condition for the solution of
problem (4.1) for each i ∈ I .
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Theorem 4.2 Consider the GNEP such that
(a) C is closed and convex,
(b) θi is continuously differentiable for every i ∈ I ,
(c) θi(·, x–i) : Rmi →R is convex for every i ∈ I and every x ∈ C .

Define an operator F : Rm →R
m as

F(x) =
(∇x1θ1(x), . . . ,∇xN θN (x)

)
, (4.2)

where ∇xiθi denotes the gradient of θi with respect to its first argument. Then every solution
of VIP(C, F) is a solution of the GNEP.

In addition, the sets Ci can be defined as the intersection of simpler closed convex sets
C(j)

i (j = 1, 2, . . . , li) i.e.

Ci =
li⋂

j=1

C(j)
i .

Let T : Rmi →R
mi be defined by

x := (x1, x2, . . . , xm) �→

Tx =

( l1∑

j=1

ω
(j)
1 
C(j)

1
(x1),

l2∑

j=1

ω
(j)
1 
C(j)

2
(x2), . . . ,

lm∑

j=1

ω
(j)
1 
C(j)

m
(xm)

)

,

with the projections 

(j)
Ci

: Rmi → C(j)
i (i ∈ I , j = 1, 2, . . . , li) and ω

(j)
i > 0 (i ∈ I , j = 1, 2, . . . , li)

such that
∑li

j=1 ω
(j)
i = 1. Then T is nonexpansive (see [2]) and satisfies F(T) =

∏
i∈I Ci = C.

Hence, the GNEP can be expressed as the following variational inequality:

Find x ∈ C such that x ∈ VI(C, F). (4.3)

It is worthy to mention that formulation (4.3) offers a simple approach of dealing with the
GNEP since the sets C(j)

i can have closed form expressions. This can be applied to more
general cases, where the projection onto C is not necessarily easy, while the computations
of projections 
C(j)

i
(i ∈ I , j = 1, 2, . . . , li) are in fact traceable.

By choosing f (x) = ‖x‖2 and N = 1 in Algorithm 1, we can then apply our result to solving
the GNEP as follows.

Corollary 4.3 Suppose that the GNEP is consistent (i.e. has a solution), and let C , F , and T
be as defined above such that ∇F is monotone and Lipschitz continuous. Then the sequence
{xn} generated by Algorithm 1 converges strongly to a solution of the GNEP.

2. Utility-based bandwidth allocation problem
Efficient network distribution is very important for making communication networks

reliable and stable. Network resources such as power, channel, and bandwidth are shared
among many sources. In utility-based bandwidth network, the objective is to share avail-
able bandwidths among different traffic sources so as to maximize the overall utility under
a capacity constraint [46, 58].
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The utility based allocation problem can be modeled as a function U of the transmis-
sion rates allocated to the traffic source which represents the efficiency and fairness of the
bandwidth sharing [58]. U is typically assumed to be concave and continuously differen-
tiable. A well-known utility function is the weighted proportionally fair function defined
by Upf (x) =

∑
i∈I ωi log(xi) for all x := (x1, x2, . . . , xm)T ∈ R

m
+ \{0}, where xi > 0 denotes the

transmission rate of source i ∈ I = {1, 2, . . . , m}, ωi > 0 is the weighted parameter for source
i, and R

m
+ := {(x1, x2, . . . , xm)T ∈R

m : xi ≥ 0, (i ∈ I)}. The optimal bandwidth allocation cor-
responding to Upf is said to be weighted proportionally fair.

The capacity constraint for each line can be expressed as an inequality constraint in
which the total sum of the transmission rate for all source sharing the link is less than or
equal to the capacity of the link. For each link l ∈ L = {1, 2, . . . , L}, the capacity constraint
is expressed as Rm

+ ∩ Cl , where

Cl :=
{

x := (x1, x2, . . . , xm)T ∈R
m :

∑

s∈I

xiIi,l ≤ Cl

}
,

cl > 0 stands for the capacity of link l, and Ii,l takes the value 1 if l is the link used by source
s, and 0 otherwise. Then the objective in bandwidth allocation is to solve the following
utility-based bandwidth allocation problem [58, Chap. 2] for maximizing the utility func-
tion subject to the capacity constraints:

Maximize Upf (x) subject to x ∈ C, (4.4)

where C ⊂R
m is the capacity constraint set defined by

C := R
m
+ ∩

⋂

l∈L
Cl = R

m
+ ∩

⋂

l∈L

{
(x1, x2, . . . , xm)T ∈R

m :
∑

i∈I

xiIi,l ≤ cl

}
. (4.5)

Note that the set C (4.5) can be expressed as the fixed point set of a mapping composed
of the projections onto Cls. Let us define a mapping Tproj : Rm → R

m composed of the
projections onto R

m
+ and Cls as follows:

Tproj := PR
m
+

∏

l∈L
PCl = PR

m
+ PC1 PC2 . . . PCL ,

where PD stands for the projection onto a nonempty, closed and convex set D ⊂R
m. Then

Tproj satisfies the nonexpansivity condition because PR
m
+ and PCl s are nonexpansive. More-

over, C coincides with the fixed point set of Tproj [2, Proposition 2.10] i.e.

C = F(Tproj) := {x ∈R : Tprojx = x}.

Also, –∇Upf is strongly monotone and Lipschitz continuous on a certain set. Then the
bandwidth allocation problem (4.4) can be expressed as a common variational inequality
and fixed point problem as follows:

Find x ∈ VI(C, –∇Upf ) ∩ F(Tproj). (4.6)

Choosing f (x) = ‖x‖2 and N = 1 in Algorithm 1, we apply Algorithm 1 to solving the utility-
based bandwidth network allocation as follows.
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Corollary 4.4 Suppose that the utility based allocation problem (4.4) is consistent, and
let Upf , Tproj and the capacity constraint C be defined as above. Then the sequence {xn}
generated by Algorithm 1 converges strongly to a solution of Problem (4.4).

5 Numerical experiments
In this section, we present some numerical experiments for our proposed algorithm. We
compare the performance of Algorithm 1 for different types of convex functions listed
below and with some other algorithms in the literature. All codes are written with a Lenovo
PC with the following specification: Intel(R)core i7-5600, CPU 2.48 GHz, RAM 8.0 GB,
MATLAB version 9.5 (R2019b).

Example 5.1 Let E = R
m and A : Rm →R

m be defined by A(x) = Mx + q, where

M = BBT + S + D

such that B is an m × m matrix, S is an m × m skew symmetric matrix, D is an m ×
m diagonal matrix whose diagonal is nonnegative (so M is positive definite) and q is a
vector in R

m. The feasible set C is defined by C = {x = (x1, . . . , xm)T : ‖x‖ ≤ 1 and xj ≥
a, j = 1, . . . , m}, where a < 1/

√
m. It is clear that A is monotone and Lipschitz continuous

with Lipschitz constant L = ‖M‖. For q = 0, the unique solution of the corresponding VI
is {0}. We define the mapping Ti : Rm → R

m as the projection onto C for i = 1, 2, . . . , 5,
which is Bregman nonexpansive (see [51]). The starting point x0 ∈ [0, 1]m and the entries
of matrices B, S, D are generated randomly for m = 5, 20, 50, 100. We choose α0 = 0.23,
μ = 0.36, δn = 1

n+1 , un = 1
n5 , βn,i = 1

6 for i = 0, 1, 2, . . . , 5, and n ∈ N. We test Algorithm 1
using f KL, f SE , f IS , f SM given in Example 2.4

We also compare the performance of Algorithm 1 with Algorithm 3.1 of Thong and Hieu
[60] and Algorithm 3.1 of Thong and Hieu [61]. For [60] algorithm, we choose γ = 2, l =
0.2, μ = 0.36, βn = 2n

3n+4 , αn = 1
n+1 , and f (x) = x

2 . We also choose for [61] algorithm μ = 0.36,
τ0 = 0.23, βn = n

5n+5 ∀n ∈ N. The projection onto C is calculated explicitly, and we stop
the iterations when ‖xn+1 – xn‖ < 10–4. The computational results are shown in Table 1
and Fig. 1.

Table 1 Computation result for Example 5.1

m = 5 m = 20 m = 50 m = 100

Alg. 1 with f KL No of Iter. 10 10 10 10
CPU time (sec) 0.0024 0.0032 0.0039 0.0041

Alg. 1 with f ES No of Iter. 11 11 11 13
CPU time (sec) 0.0035 0.0039 0.0042 0.0056

Alg. 1 with f IS No of Iter. 35 40 44 40
CPU time (sec) 0.0115 0.0154 0.0157 0.0180

Alg. 1 with f SM No of Iter. 4 4 5 5
CPU time (sec) 0.0022 0.0021 0.0033 0.0033

Thong and Hieu [60] No of Iter. 35 43 46 47
CPU time (sec) 0.0397 0.0112 0.0197 0.0189

Thong and Hieu [61] No of Iter. 12 12 11 10
CPU time (sec) 0.0037 0.0039 0.0036 0.0037
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Figure 1 Experiment 1, top left:m = 5; top right:m = 20; bottom left:m = 50; bottom right:m = 100

Next, we consider an example in an infinite dimension space where A is a pseudo-
monotone and Lipschitz continuous operator but not monotone. In this example, we
choose f (x) = ‖x‖2 and compare our Algorithm 1 with Algorithm 2 of Thong and Vuong
[63].

Example 5.2 Let E = L2([0, 1]) endowed with inner product 〈x, y〉 =
∫ 1

0 x(t)y(t) dt for
all x, y ∈ L2([0, 1]) and norm ‖x‖ = (

∫ 1
0 |x(t)|2 dt) 1

2 for all x ∈ L2([0, 1]). Let C = {x ∈
L2([0, 1]) : 〈y, x〉 ≤ a}, where y = 3t2 + 9 and a = 1. Define g : C → R by g(u) = 1

1+‖u‖2

and F : L2([0, 1]) → L2([0, 1]) as the Volterra integral operator given by F(u)(t) =
∫ t

0 u(s) ds
for all u ∈ L2([0, 1]) and t ∈ [0, 1]. F is bounded, linear, and monotone with L = π

2 . Let
A : L2([0, 1]) → L2([0, 1]) be defined by A(u)(t) = (g(u)F(u))(t). It is easy to show that A
is L-Lipschitz continuous, pseudo-monotone, and not monotone. We choose α0 = 0.09,
μ = 0.34, Tix = x, N = 1, βm,i = n

2n+2 , and δn = 1√
n+1 , ∀n ∈ N. For Algorithm 2 of [63], we

take γ = 2, l = 0.02, μ = 0.34, αn = 1√
n+1 , βn = 1–αn

2 , ∀n ∈ N . We test the algorithms with
the following initial points:

Case I: x0 = cos(2t)
6 ,

Case II: x0 = exp(2t) + sin(3t),
Case III: x0 = exp(–3t)

7 ,
Case IV: x0 = t3 + 2t + 3.

We stop the algorithms when ‖xn+1 – xn‖ < 10–4 is reached and plot the graphs of error
(‖xn+1 – xn‖) against a number of iterations. The numerical results are shown in Table 2
and Fig. 2.
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Table 2 Computation result for Example 5.2

Algorithm 1 Thong and Vuong alg.

Case I No of Iter. 6 10
CPU time (sec) 1.7734 3.9753

Case II No of Iter. 8 15
CPU time (sec) 2.8547 15.5367

Case III No of Iter. 6 9
CPU time (sec) 2.0768 6.9321

Case IV No of Iter. 8 14
CPU time (sec) 1.0313 2.4360

Figure 2 Experiment 2, top left: Case I; top right: Case II; bottom left: Case III; bottom right: Case IV

Example 5.3 Let E = �3(R), where �3(R) = {x = (x1, x2, . . . , xi, . . . ), xi ∈ R :
∑∞

i=1 |xi|3 < ∞}
with norm ‖x‖� = (

∑∞
i=1 |xi|3) 1

3 for x ∈ E. Let C = {x ∈ E : ‖x‖�3 ≤ 1}. For all x ∈ E, we
define the operator A : E → E be

Ax =
x
2

+ (1, 1, 0, 0, . . . ).

Then A satisfies Assumption 3.1 (b). Let f : E → R be defined by f (x) = 1
3‖x‖3

�3
for all

x ∈ �3(R). Also, let {en} be the standard basis of �3 defined by en = (δn,1, δn,2, . . . ) for each
n ∈N, where

δn,i =

⎧
⎨

⎩
1 if n = i,

0 if n �= i,
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and T : E → E be defined by

Tx =

⎧
⎨

⎩

x
n+1 if x = en,
x
2 if x �= en.

Clearly, F(T) = {0} and T is Bregman quasi-nonexpansive (see [59]). We choose the fol-
lowing parameters for our computation: βn = 1

100(n+1) , δn = 50n
70n+3 , μ = 0.26, α0 = 0.0025,

un = x0
n+1 . We compare the performance of Algorithm 1 with Algorithm 3.6 of [33] (namely

BSEM) and Algorithm 3.3 of [34] using the following initial value:
Case I: x0 = (1, 1√

2 , 1√
3 , . . . );

Case II: x0 = (25, 5, 1, . . . );
Case III: x0 = (2, 2, 1, 1, . . . );
Case IV: x0 = (1, 0, 1, 0, . . . ).

Table 3 Computation result for Example 5.3

Algor. 1 SBPM BSEM

Case I No of Iter. 17 32 58
CPU time (sec) 0.0052 0.0104 0.0144

Case II No of Iter. 22 34 58
CPU time (sec) 0.0059 0.0092 0.0116

Case III No of Iter. 21 33 58
CPU time (sec) 0.0070 0.0097 0.0135

Case IV No of Iter. 13 30 50
CPU time (sec) 0.0030 0.0058 0.0112

Figure 3 Example 5.3, top left: Case I; top right: Case II;bottom left: Case III; bottom right: Case IV
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We plot the graphs of error (‖xn+1 – xn‖�3 ) against a number of iterations using ‖xn+1 –
xn‖�3 < 10–4 as the stopping criterion. The computational results are shown in Table 3 and
Fig. 3.

6 Conclusion
This paper introduced a single projection method using Bregman distance techniques for
finding a common element in the set of solutions of variational inequalities and the set
of common fixed points of a finite family of Bregman quasi-nonexpansive mappings in
the framework of a reflexive Banach space. The stepsize of the algorithm is selected self-
adaptively, and strong convergence theorem is proved without using the Lipschitz con-
stant of the cost operator as an input parameter. Some applications to generalized Nash
equilibrium and bandwidth network problems were given, and some numerical examples
were also presented to illustrate the performance of the algorithm. This result improves
and extends several results such as [35, 45, 55, 60–63] in the literature.
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