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Abstract
In this paper, we present Padé approximations of some functions involving complete
elliptic integrals of the first kind K (x), and motivated by these approximations we also
present the following double inequality:
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Our results have superiority over some new recent results.
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1 Introduction
It is well known that the complete elliptic integrals of the first kind and of the second
kind are classical integrals, and apart from their theoretical importance in the theory
of theta functions, they have important applications in mechanics, statistical mechanics,
electrodynamics, magnetic field calculations, astronomy, geodesy, quasiconformal map-
pings, and other fields of mathematics and mathematical physics. In most applications, we
encounter complicated expressions involving the complete elliptic integrals (which are not
always in a form that is immediately recognizable), and it is difficult to find numerical val-
ues of such expressions to a sufficient number of significant digits. The complete elliptic
integrals cannot be expressed in terms of elementary functions and have representations
as infinite series that slowly converge, so these series are not the most computationally
efficient approach for most scientists and engineers. Therefore, there is a need for appro-
priate approximations and bounds for these integrals.
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The complete elliptic integrals of the first and second kinds K(x) and E(x), respectively,
are defined as [9, 14]

K(x) =
∫ π

2

0

dt√
1 – x2 sin2 t

, 0 < x < 1 (1)

and

E(x) =
∫ π

2

0

√
1 – x2 sin2 t dt, 0 < x < 1, (2)

which satisfy

lim
x→0+

K(x) = lim
x→0+

E(x) =
π

2
, lim

x→1–
K(x) = ∞, lim

x→1–
E(x) = 1, (3)

K ′(x) = K
(√

1 – x2
)

and E′(x) = E
(√

1 – x2
)
.

The functions K(x) and E(x) have the following representation [23]:

K(x) =
π

2
F
(

1
2

,
1
2

, 1, x2
)

(4)

and

E(x) =
π

2
F
(

1
2

,
–1
2

, 1, x2
)

,

where the hypergeometric function F(a, b, c, x) is defined by [5]

F(a, b, c, x) =
∞∑

n=0

(a)n(b)n

(c)n

xn

n!
, –1 < x < 1, (5)

with (a)n = �(a+n)
�(a) and the Euler gamma function �(x) is defined by the improper integral

�(x) =
∫ ∞

0
e–vvx–1 dv, x > 0.

The hypergeometric function F(a, b, c, x) has the differentiation formula [5]

dr

dxr F(a, b, c, x) =
(a)r(b)r

(c)r
F(a + r, b + r, c + r, x) (6)

and the transformation

(1 – x)a+b–cF(a, b, c, x) = F(c – a, c – b, c, x), a, b, c > 0; a + b > c. (7)

Wallis’s ratio Wn is defined as [10, 12]

Wn =
�(n + 1/2)

�( 1
2 )�(n + 1)

, n ∈N, (8)
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and satisfies the recurrence relation

Wn+1 =
n + 1/2
n + 1

Wn.

In [31], Yang et al. show that

Un = π

n∑
k=0

W 2
k W 2

n–k
(k + 1)(n – k + 1)

–
6(2n + 1)W 2

n
(n + 1)(n + 2)

< 0, n ≥ 8. (9)

K(x) can be written using the notation Wn as follows:

K(x) =
π

2

∞∑
n=0

W 2
n x2n, 0 < x < 1. (10)

The importance of elliptic integrals led to deduction of many of their inequalities. In
[11], Carlson and Gustafson presented the inequality

log
4√

1 – x2
< K(x) <

4
3 + x2 log

4√
1 – x2

, 0 < x < 1. (11)

In [16], Kühnau deduced the lower bound

K(x) >
9

8 + x2 log
4√

1 – x2
, 0 < x < 1, (12)

which is an improvement of the left-hand side of inequality (11). In [4], Anderson et al.
deduced the inequality

π

2

√
tanh–1(x)

x
< K(x) <

π

2
tanh–1(x)

x
, 0 < x < 1. (13)

Alzer and Qiu [1] presented the inequality

π

2

(
tanh–1(x)

x

)μ

< K(x) <
π

2

(
tanh–1(x)

x

)ν

, 0 < x < 1, (14)

with the best possible constants μ = 3/4 and ν = 1, which improved the lower bound of
(13). In [31], Yang et al. proved the inequality

log
4√

1 – x2
< K(x) < log

(
e

π
2 – 4 +

4√
1 – x2

)
, 0 < x < 1. (15)

In 2019, Yang and Tian [32] deduced the inequality

ρ log

(
1 +

4√
1 – x2

)
< K(x) < σ log

(
1 +

4√
1 – x2

)
, (16)

with the best possible constants ρ = π
2 ln 5 and σ = 1. Recently, Wang et al. [27] presented

the inequality

K(x) < log

(
1 +

4√
1 – x2

)[
π

2 log 5
+

(
1 –

π

2 log 5

)
x2

]
, 0 < x < 1. (17)
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For more details about inequalities, applications, and other related special functions to
K(x) and E(x), we refer to [2, 3, 13, 15, 17–22, 24–26, 28–30] and the references therein.

Padé approximant [6–8] of order (r, s) of a function f (x) is a rational function

[r/s]f (x) =
∑r

i=0 αixi

1 +
∑s

i=1 βixi , r; s ≥ 0,

where singularities of f (x) are only poles. There are many different ways to determine the
other coefficients αjs for 0 ≤ j ≤ r and βks for 1 ≤ k ≤ s. Among them is the matching
between the first r + s + 1 coefficients in Maclaurin series f (x) =

∑∞
k=0 ckxk and the first

r + s + 1 coefficients of Padé approximant by the relation

r+s+1∑
k=0

ckxk =
∑r

i=0 αixi∑s
i=0 βixi or

(r+s+1∑
k=0

ckxk

)( s∑
i=0

βixi

)
=

( r∑
i=0

αixi

)
.

Hence, we solve the following equations for αis and βis:

cr+1 +
s∑

k=1

ckβr+1–k = 0 and αr =
r∑

k=0

βr–kck ,

and we have

[r/s]f (x) – f (x) = O
(
xr+s+1).

2 Main results
Theorem 1 The following inequality

K(x) <
π

2
log

[
e

p + 1

(
p +

1√
1 – x2

)]
, 0 < x < 1 (18)

holds for the best possible constant p = 1.

Proof Consider the function

Fp(x) =
e

2K (x)
π

p + 1√
1–x2

.

Using (4) and (6), we have

F ′
p(

√
x) =

eF( 1
2 , 1

2 ,1,x)

4(p + 1√
1–x )2

[(
p +

1√
1 – x

)
F
(

3
2

,
3
2

, 2, x
)

–
2

(1 – x) 3
2

]
,

and then the function Fp(
√

x) is strictly decreasing on x ∈ (0, 1) if and only if

p ≤ 2
F( 3

2 , 3
2 , 2, x)(1 – x) 3

2
–

1√
1 – x

� f (x).
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Using relation (7), we have

f (x) =
2 – F( 1

2 , 1
2 , 2, x)√

1 – xF( 1
2 , 1

2 , 2, x)
,

and hence

f ′(x) =
1

4F( 1
2 , 1

2 , 2, x)2(1 – x) 3
2

f1(x),

where

f1(x) = 4F
(

1
2

,
1
2

, 2, x
)

– 2F
(

1
2

,
1
2

, 2, x
)2

– (1 – x)F
(

3
2

,
3
2

, 3, x
)

.

From (8), we have

f1(x) = 4
∞∑

n=0

W 2
n

n + 1
xn – 2

( ∞∑
n=0

W 2
n

n + 1
xn

)2

+
∞∑

n=0

2(4n – 1)W 2
n

(n + 1)(n + 2)
xn

= –2
∞∑

n=0

n∑
k=0

W 2
k W 2

n–k
(k + 1)(n – k + 1)

xn +
∞∑

n=0

6(2n + 1)W 2
n

(n + 1)(n + 2)
xn

= –
∞∑

n=0

μnxn,

where

μn = 2
n∑

k=0

W 2
k W 2

n–k
(k + 1)(n – k + 1)

–
6(2n + 1)W 2

n
(n + 1)(n + 2)

.

Using (9), we obtain

μn < Un < 0, n ≥ 8,

and μ0 = –1, μ1 = –1
4 , μ2 = –17

128 , μ3 = –43
512 , μ4 = –953

16,384 , μ5 = –2801
65,536 , μ6 = –137,401

4,194,304 , μ7 =
–485,318

16,777,216 . Hence μn < 0 for n ≥ 0, f1(x) > 0 and therefore the function f (x) is increasing
on x ∈ (0, 1) with

lim
x→0+

f (x) = 1,

which implies that p ≤ 1. Therefore, the function Fp(x) is strictly decreasing on x ∈ (0, 1)
if and only if p ≤ 1, and using the first limit in (3), we obtain inequality (18). �

Theorem 2 The following inequality

K(x) >
π

2
log

[
e

q + 1

(
q +

1√
1 – 11

12 x2

)]
, 0 < x < 1 (19)

holds for the best possible constant q = 5
6 .
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Proof Consider the function

Hq(x) =
e

2K (x)
π

q + 1√
1– 11

12 x2

.

Using (4) and (6), we have

H ′
q(x) =

eF( 1
2 , 1

2 ,1,x)

4(q + 1√
1– 11

12 x
)2

[(
q +

1√
1 – 11

12 x

)
F
(

3
2

,
3
2

, 2, x
)

–
11

6(1 – 11
12 x) 3

2

]
,

and then the function Hq(
√

x) is strictly increasing on (0, 1) if and only if

q ≥ 11
6F( 3

2 , 3
2 , 2, x)(1 – 11

12 x) 3
2

–
1√

1 – 11
12 x

� h(x).

Then

h′(x) =
11

√
3

2F( 3
2 , 3

2 , 2, x)2(12 – 11x) 5
2

h1(x),

where

h1(x) = 132F
(

3
2

,
3
2

, 2, x
)

+ (–24 + 22x)F
(

3
2

,
3
2

, 2, x
)2

+ 9(–12 + 11x)F
(

5
2

,
5
2

, 3, x
)

.

From (8), we have

h1(x) = 132
∞∑

n=0

(2n + 1)2W 2
n

n + 1
xn + (–24 + 22x)

( ∞∑
n=0

(2n + 1)2W 2
n

n + 1
xn

)2

+ 9(–12 + 11x)
∞∑

n=0

2(2n + 1)2(2n + 3)2W 2
n

9(n + 1)(n + 2)
xn

= 4
∞∑

n=1

n∑
k=0

–2(2k + 1)2((n – k + 1
2 )2 + 11

4 )W 2
k W 2

n–k

(k + 1)(n – k + 1)
xn

– 4
∞∑

n=1

(2n + 1)2(2n2 – 5n – 12)W 2
n

(n + 1)(n + 2)
xn

= 4
∞∑

n=1

Vnxn

and

Vn =
n∑

k=0

–2(2k + 1)2((n – k + 1
2 )2 + 11

4 )W 2
k W 2

n–k

(k + 1)(n – k + 1)
–

(2n + 1)2(2n + 3)(n – 4)W 2
n

(n + 1)(n + 2)
.

The sequence Vn < 0 for n = 4, 5, 6, . . . and

V0 = 0, V1 =
–19

8
, V2 =

–663
128

, V3 =
–8367
1024

.
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Then Vn < 0 for n ≥ 0, h1(x) < 0 and therefore the function h(x) is decreasing with

lim
x→0+

h(x) =
5
6

,

which implies that q ≥ 5
6 . Therefore, the function Hq(x) is strictly increasing on x ∈ (0, 1)

if and only if q ≥ 5
6 , and using the limits in (3), we obtain inequality (19). �

Based on the Padé approximation method, we can conclude the following approxima-
tions.

Proposition 3 The Padé approximations of orders (3, 4) and (3, 7) of the function

f (x) =
2e 2

π K (x)–1

(1 + 1√
1–x2 )

= 1 –
x4

64
–

13x6

768
–

261x8

16,384
–

14,317x10

983,040
+ · · · , x → 0

are the following rational functions:

[3/4]f (x) =
1 – 13x2

12

1 – 13x2
12 + x4

64

+ O
(
x8) (20)

and

[3/7]f (x) =
1 – 795x2

832

1 – 795x2
832 + x4

64 + 319x6
159,744

+ O
(
x11). (21)

Proposition 4 The Padé approximations of orders (3, 7) and (3, 9) of the function

g(x) =
11e 2

π K (x)–1

12( 1
5
6 +

√
1– 11x2

12

)

=
1
2

+
19x6

9216
+

403x8

110,592
+

167,659x10

35,389,440
+

1,862,857x12

339,738,624
+ · · · , x → 0

are the following rational functions:

[3/7]g(x) =
1
2 – 403x2

456

– 19x6
4608 – 403x2

228 + 1
+ O

(
x11) (22)

and

[3/9]g(x) =
1
2 – 167,659x2

257,920

1 – 167,659x2
128,960 – 19x6

4608 – 3,436,157x8
1,782,743,040

+ O
(
x13). (23)

Unfortunately, formulas (20),(21), (22), and (23) did not give bounds of the function
K(x) for all x in the domain (0, 1). But formula (20) motivates us to establish the following
inequalities.
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Theorem 5 The following inequality

K(x) <
π

2
log

(
e
2

(
1 +

1√
1 – x2

)( 1 – 96
100 x2

1 – 96
100 x2 + x4

64

))
(24)

holds for 0 < x < 1.

Proof Consider the function

T(x) =
e

2K (x)
π

e
2 (1 + 1√

1–x2 )( 1– 96
100 x2

1– 96
100 x2+ x4

64
)
,

and hence

T ′(
√

x) =
(–1600 + (1536 – 25x)x)eF( 1

2 , 1
2 ,1,x)

128e
√

1 – x(–25 + 24x)(1 +
√

1 – x)
t1(x)

(x2 – 1)
,

where

t1(x) = w1(x) – w2(x)

with

w1(x) =
(
x2 – 1

)
F
(

1
2

,
1
2

, 2, x
)

and

w2(x) =
(x2 – 1)

(1 +
√

1 – x)(25 – 24x)(1600 – (1536 – 25x)x)
[
80,000

– 200(793 + 25
√

1 – x)x + (82,378 + 7400
√

1 – x)x2

– 1200(3 + 2
√

1 – x)x3].

Now

w1(x) =
∞∑

n=0

W 2
n

n + 1
xn+2 –

∞∑
n=0

W 2
n

n + 1
xn

= –1 –
x
8

+
∞∑

n=2

(64n3 – 104n2 + 48n – 9)W 2
n

(n + 1)(2n – 1)2(2n – 3)2 xn

and

w′′
1(x) =

∞∑
n=0

(n + 1)(n + 2)(183 + 400n + 280n2 + 64n3)W 2
n+2

(n + 3)(3 + 4n(n + 2))2 xn.

Then w1(x) is a convex function between the points (0, –1) and (1, 0). Also,

w′′
2
(
1 – u2) =

w3(u)
w4(u)

, 0 < u < 1,
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where

w4(u) = –2u
(
89 + 3622u2 + 35,689u4 + 600u6)3(1 + u)3 < 0

and

w3(u) = –422,9814 – 171,806,490u – 1,017,032,637u2 – 107,1925,167u3

– 26,188,833,484u4 + 167,770,858,692u5 – 106,178,812,935u6

+ 2,315,906,378,995u7 – 2,725,881,138,990u8 – 8,235,729,120,210u9

– 93,146,282,277,931u10 – 135,010,050,058,665u11 – 381,354,896,855,688u12

– 469,576,678,642,848u13 – 381,450,253,571,121u14

– 157,869,853,296,507u15 – 117,933,228,362,600u16

– 118,127,740,267,800u17 – 38,943,594,964,800u18 – 1,971,366,120,000u19

– 629,017,920,000u20 – 11,016,000,000u21 – 3,456,000,000u22

= (1 – u)24
∫ ∞

0
e(1–u)tw5(t) dt < 0,

where

w5(t) = –
1,937,500t23

26,298,031,350,591
–

415,555,625t22

18,294,282,678,672
–

154,777,075t21

48,915,194,328

–
167,679,321,125t20

633,568,231,296
–

90,786,961,225t19

6,092,002,224
–

100,101,056,444,021t18

166,728,481,920

–
3,562,788,612,574,819t17

198,486,288,000
–

133,198,651,249,637,299t16

326,918,592,000

–
2,692,769,780,390,699t15

378,378,000
–

174,766,864,343,435,699t14

1,816,214,400

–
43,522,631,386,179,371t13

43,243,200
–

5,123,113,557,369,119t12

633,600

–
122,852,110,141,292,563t11

2,494,800
–

809,450,870,289,838,177t10

3,628,800

–
2,111,790,435,345,101t9

2880
–

68,468,628,875,595,707t8

40,320

–
169,054,344,340,120t7

63
–

5,639,548,747,095t6

2
– 1,965,373,967,040t5

– 924,471,855,000t4 – 276,448,320,000t3 – 43,524,000,000t2

– 3,456,000,000t < 0.

Then w2(x) is a convex function between the same two points (0, –1) and (1, 0). Also,

lim
x→0+

w′
2(x) =

–1
8

, lim
x→0+

w′
1(x) =

–1
8
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and

lim
x→1–

w′
2(x) = 4, lim

x→1–
w′

1(x) =
8
π

.

Then w1(x) > w2(x), t1(x) > 0 and T(x) is decreasing on x ∈ (0, 1). Hence, using the limits
in (3), we obtain inequality (24). �

Theorem 6 The inequality

K(x) >
π

2
log

(
e
2

(
1 +

1√
1 – x2

)(
1 – x2

1 – x2 + x4
62

))
(25)

holds for x ∈ (0, 1).

Proof Consider the function

G(x) =
e

2K (x)
π

e
2 (1 + 1√

1–x2 )( 1–x2

1–x2+ x4
62

)

and hence

G′(
√

x) =
(62 – 62x + x2)eF( 1

2 , 1
2 ,1,x)

124e(1 – x) 3
2 (1 +

√
1 – x)

g1(x),

where

g1(x) = F
(

1
2

,
1
2

, 2, x
)

–
2(62 – 2(33 + 2

√
1 – x)x + (3 + 2

√
1 – x)x2

(1 +
√

1 – x)(62 – 62x + x2)
.

Using (5), we get

F
(

1
2

,
1
2

, 2, x
)

=
∞∑

n=0

W 2
n

n + 1
xn > 1 +

x
8

+
3x2

64
+

25x3

1024
. (26)

Now let

g2(x) = (1 +
√

1 – x)2
(

2
(
62 – 2(33 + 2

√
1 – x)x + (3 + 2

√
1 – x)x2)

–
(

1 +
x
8

+
3x2

64
+

25x3

1024

)
(1 +

√
1 – x)

(
62 – 62x + x2)).

g ′
2
(
1 – u2) =

g3(u)
2048u

, 0 < u < 1,

where

g3(u) = –1225 – 114,096u + 533,640u2 – 875,268u3 + 489,925u4 + 154,176u5

– 194,208u6 – 67,464u7 + 75,897u8 + 13,520u9 – 14,872u10 + 300u11
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– 325u12 – 194,208u6 – 67,464u7 + 75,897u8 + 13,520u9 – 14,872u10

+ 300u11 – 325u12

= (1 – u)14
∫ ∞

0
e(1–u)tg4(t) dt

< 0,

where

g4(t) = –
1

623,700
[
48t11 + 6864t10 + 313,225t9 + 5,268,780t8

+ 85,446,900t7 + 794,011,680t6 + 3,030,340,005t5 + 4,942,822,500t4

+ 3,432,636,900t3 + 1,122,660,000t2 + 202,702,500t
]
.

Then g2(x) is deceasing with

lim
x→0+

g2(x) = 0.

Hence g2(x) < 0, and we have

2(62 – 2(33 + 2
√

1 – x)x + (3 + 2
√

1 – x)x2

(1 +
√

1 – x)(62 – 62x + x2)
< 1 +

x
8

+
3x2

64
+

25x3

1024
. (27)

From inequalities (26) and (27), we get g1(x) > 0 and the function G(x) is increasing. Hence,
using the limits in (3), we obtain inequality (25) �

3 Remarks
Comparing our new bounds of the function K(x) with its previous ones presents the fol-
lowing remarks.

Remark 7 Our upper bound in (24) is better than our upper bound in (18) for x ∈ (0, 1).

Remark 8 The upper bound in (24) is better than the upper bound in (11) for x ∈ (0, 0.97).

Remark 9 The upper bound in (24) is better than the upper bound in (14) for x ∈ (0, 1).

Remark 10 The upper bound in (24) is better than the upper bound in each of (15), (16),
and (17) for x ∈ (0, 0.98).

Remark 11 Our lower bounds in (19) and (25) are not contained in each other for x ∈ (0, 1).

Remark 12 Our lower bound in (25) is better than the lower bound in (12) for x ∈ (0, 9).

Remark 13 The lower bound in (25) is better than the lower bound in (14) for x ∈ (0, 87).

Remark 14 The lower bound in (25) is better than the lower bound in (15) for x ∈ (0, 94).

Remark 15 The lower bound in (25) is better than the lower bound in (16) for x ∈ (0, 91).
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