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Abstract
This paper addresses the issue of stability of a class of multiple unstable
Cohen–Grossberg neural networks(CGNNs) under impulsive control. Some novel
sufficient conditions are given to make the unstable equilibrium points of the model
locally μ-stable. An example is offered to demonstrate the effectiveness of the
control strategy by comprehensive computer simulations.
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1 Introduction
Recently, the multi-stability of neural network models has attracted extensive attention
because of its wide application in the pattern recognition. Many experts and scholars con-
tributed to this topic (see [1–35]). For example, Cao et al. proved that the CGNNs with
multi-stability and multi-periodicity could find 2n locally exponentially stable equilibrium
points in [1]. The paper [26] revealed the co-existence of unstable and stable equilibrium
points of a class of n-neuron recurrent neural networks model with time-varying delays.
In [31], Nie et al. investigated a class of n-neuron competitive neural networks and showed
that the systems have exactly 5n equilibrium points, and 5n – 3n among them are unstable.
Based on the partition space method, [32] proved that a class of CGNNs with unbounded
time-varying delays could have 3n equilibrium points, of which 3n – 2n are unstable and
the remaining ones are locally μ-stable. By the above-mentioned references, we can see
that most literature focused on the properties of multiple stable equilibrium points of the
system. Still, few papers considered the properties of those unstable equilibrium points.
Hence it is a challenging problem.

It is common knowledge that impulsive control is a very effective and economical
method to address the unstable or chaotic neural networks, and its main idea is to add
a pulse into the network topology to control the state of the system. In the past few years,
many significant results on impulsive control neural network have been proposed, see [36–
52]. In [41], the authors studied the delay-dependent passivity analysis of impulsive neural
networks by using functional and inequality method and compared the system model with
impulsive control and without impulsive control, extended the recent results of passivity.
[45] introduced new sandwich control systems with impulse time windows and illustrated
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the stability of the chaotic system by using impulsive. Li et al. in [50] added impulse inputs
in unstable neural networks to keep the unstable equilibrium point or the chaotic system
stable. Hence it may be a good idea to investigate the stability of unstable equilibrium
points of multiple systems by way of impulsive control.

Motivated by the above discussions, we investigated the stability of multiple unstable
CGNNs in [32] by introducing a pulse into the system and obtained some sufficient con-
ditions to make unstable equilibrium points of the models locally μ-stable, which gener-
alized the results of paper [50]. The arrangement of this article is as follows. In the second
section, the Cohen–Grossberg model and some preliminary conclusions are given. The
main results are given and proved in the third section. The corollaries and comparisons
with the existing literature are given in the fourth section. Section 5 gives a numerical ex-
ample with simulation to illustrate the effectiveness of the control strategy. At the end of
this paper, the conclusion is made.

2 System description and preliminaries
This article focuses on a class of n-neuron multiple unstable neural networks under some
conditions described by the following equations:

⎧
⎨

⎩

dxi(t)
dt = –ai(xi(t))[bi(xi(t)) –

∑n
j=1 cijgj(xj(t)) –

∑n
j=1 dijfj(xj(t – τ (t))) + Ii],

i = 1, 2, . . . , n, t ≥ 0,
(1)

where xi(t) represents the current state of the ith neuron; ai(xi(t)) denotes the amplifica-
tion function of the ith neuron; and bi(xi(t)) is the inhibition behavior function of the ith
neuron; gj(xj(t)) and fj(xj(t – τ (t))) are current activation functions of the jth neuron, and
τ (t) is a nonnegative function and denotes the delay of transmission; cij is the connection
weight of the ith neuron and jth neuron, and dij denotes their delayed feedback connection
weight; Ii is a constant and denotes the external input of the ith neuron.

Suppose that model (1) has the initial condition

xi(s) = ϕi(s), s ∈ (–∞, 0],

where ϕi(s) ∈ C((–∞, 0],R), i = 1, 2, . . . , n. Let (x1(t), x2(t), . . . , xn(t)) and x� = (x�
1, x�

2, . . . , x�
n)

stand for a solution and an equilibrium point of model (1), respectively. Then x� is said
to be μ-stable if there exist a positive constant M and a nondecreasing function μ(t) with
limt→+∞ μ(t) = +∞ such that

∣
∣xi(t) – x�

i
∣
∣ ≤ M

μ(t)
, i = 1, 2, . . . , n.

Imitating [32], we can divide the Rn into 3n non-intersection subregions. Let � be a set
of these subregions, and let (–∞, +∞) = (–∞, pi) ∪ [pi, qi] ∪ (qi, +∞), i = 1, 2, . . . , n. One
can get

� =

{ n∏

i=1

wi | wi = (–∞, pi), [pi, qi] or (qi, +∞)

}

.

We define the index subsets for each
∏n

i=1 wi ∈ � as N1 = {i | wi = (–∞, pi), i = 1, 2, . . . , n},
N2 = {i | wi = [pi, qi], i = 1, 2, . . . , n}, N3 = {i | wi = (qi, +∞), i = 1, 2, . . . , n}, and obviously
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N1 ∪N2 ∪N3 = {1, 2, . . . , n}. Moreover, we also can separate the set � into two parts �1 and
�2, where �1 = {∏n

i=1 wi | wi = (–∞, pi) or (qi, +∞), i = 1, 2, . . . , n},�2 = �–�1. Obviously,
there are 2n and 3n – 2n elements in �1 and �2, respectively.

For convenience, let Â = diag{ā1, ā2, . . . , ān} and Ǎ = diag{a1, a2, . . . , an} be two positive
diagonal matrices. Denote by a(x(t)) = (a1(x1(t)), . . . , an(xn(t))) the amplification function
of (1), where, for each i, ai(u) is nonnegative continuous and satisfies

ai ≤ ai(u) ≤ āi, u ∈ (–∞, +∞), i = 1, 2, . . . , n.

Denote by b(x(t)) = (b1(x1(t)), . . . , bn(xn(t))) the inhibition behavior function, where bi(u)
is an odd function that grows monotonically, and there exists a positive matrix B =
diag{b1, b2, . . . , bn} such that

bi(y) – bi(z)
y – z

≥ bi, y, z ∈ (–∞, +∞), y �= z, i = 1, 2, . . . , n.

Denote by g(x(t)) = (g1(x1(t)), . . . , gn(xn(t))) and f (x(t)) = (f1(x1(t)), . . . , fn(xn(t))) the activa-
tion functions, where gj(·) and fj(·) are continuous linear nondecreasing piecewise function
or continuous nonlinear nondecreasing sigmoid function, and one can find some con-
stants pj ≤ qj, mj ≤ Mj, m′

j ≤ M′
j , m′′

j ≤ M′′
j , so that

m′
j = lim

x→–∞gj(x), M′
j = lim

x→+∞gj(x), m′′
j = lim

x→–∞fj(x), M′′
j = lim

x→+∞fj(x).

0 ≤ σ l
j ≤ gj(u) – gj(v)

u – v
≤ σ̄ l

j , 0 ≤ δl
j ≤ fj(u) – fj(v)

u – v
≤ δ̄l

j , ∀u, v ∈ (–∞, pj),

0 ≤ σ m
j ≤ gj(u) – gj(v)

u – v
≤ σ̄ m

j , 0 ≤ δm
j ≤ fj(u) – fj(v)

u – v
≤ δ̄m

j , ∀u, v ∈ [pj, qj],

0 ≤ σ r
j ≤ gj(u) – gj(v)

u – v
≤ σ̄ r

j , 0 ≤ δr
j ≤ fj(u) – fj(v)

u – v
≤ δ̄r

j , ∀u, v ∈ (pj, +∞).

Let �g = diag{σ̄1, σ̄2, . . . , σ̄n} and 	f = diag{δ̄1, δ̄2, . . . , δ̄n}, where mj = min{m′
j, m′′

j }, Mj =
min{M′

j , M′′
j }, σ̄j = max{σ̄ l

j , σ̄ m
j , σ̄ r

j }, δ̄j = max{δ̄l
j , δ̄m

j , δ̄r
j }, j = 1, 2, . . . , n. Obviously, both of �g

and 	f are two positive matrices.
In addition, we also denote by C = (cij)n×n and D = (dij)n×n the connection weight matri-

ces. Other hypotheses and notations of this article are consistent with the literature [32],
no more explanation.

By Theorems 1–3 of paper [32], we know that model (1) has 3n equilibrium points, 3n –
2n among them are unstable, and others are locally μ-stable. Here, we present only the
results in [32] as lemmas directly without proof.

Lemma 1 ([32], Theorem 1) For any
∏n

i=1 wi ∈ �, if
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

–bi(pi) + ciigi(pi) + diifi(pi) +
∑n

j=1
j �=i

max{(cij + dij)mj, (cij + dij)Mj} – Ii < 0,

i ∈ N1 ∪ N2,

–bi(qi) + ciigi(qi) + diifi(qi) +
∑n

j=1
j �=i

min{(cij + dij)mj, (cij + dij)Mj} – Ii > 0,

i ∈ N2 ∪ N3,

(2)

then there exists at least an equilibrium point of (1) in
∏n

i=1 wi.
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Lemma 2 ([32], Theorem 2) For any
∏n

i=1 wi ∈ �1, given that

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

–bi(pi) + ciigi(pi) +
∑n

j=1
j �=i

max{cijmj, cijMj} +
∑n

j=1 max{dijmj, dijMj} – Ii < 0,

i ∈ N1,

–bi(qi) + ciigi(qi) +
∑n

j=1
j �=i

min{cijmj, cijMj} +
∑n

j=1 min{dijmj, dijMj} – Ii > 0,

i ∈ N3,

(3)

and the nondecreasing function μ(t) > 0 with

lim
t→+∞μ(t) = +∞, 0 ≤ sup

t≥T∗
μ̇(t)
μ(t)

≤ α, sup
t≥T∗

μ(t)
μ(t – τ (t))

≤ 1 + β , (4)

where α ≥ 0,β ≥ 0, and T∗ ≥ 0. Then x� is μ-stable in
∏n

i=1 wi (locally μ-stable in �1) if
there exist some positive constants ζ1, ζ2, . . . , ζn such that

(–aiβi + α)ζi +
∑

j∈N1

ζjāiσ̄
l
j |cij| +

∑

j∈N3

ζjāiσ̄
r
j |cij|

+ (1 + β)
(∑

j∈N1

ζjāiδ̄
l
j |dij| +

∑

j∈N3

ζjāiδ̄
r
j |dij|

)

< 0, (5)

where i = 1, 2, . . . , n.

Lemma 3 ([32], Theorem 3) For any
∏n

i=1 wi ∈ �2, given that (2) holds. If there exist some
positive constants ξ1, . . . , ξn such that

min
i∈N2

{
(
–βi + ciiσ

m
i

)
ξi –

∑

j∈N1

ξj|cij|σ̄ l
j –

∑

j∈N2

ξj|cij|σ̄ m
j –

∑

j∈N3

ξj|cij|σ̄ r
j

–
∑

j∈N1

ξj|dij|δ̄l
j –

∑

j∈N2

ξj|dij|δ̄m
j –

∑

j∈N3

ξj|dij|δ̄r
j

}

> max{λ, 0}, (6)

where

λ � max
i∈N1∪N3

{

(–βiξi +
∑

j∈N1

ξj|cij|σ̄ l
j +

∑

j∈N2

ξj|cij|σ̄ m
j +

∑

j∈N3

ξj|cij|σ̄ r
j

+
∑

j∈N1

ξj|dij|δ̄l
j +

∑

j∈N2

ξj|dij|δ̄m
j +

∑

j∈N3

ξj|dij|δ̄r
j

}

, (7)

then x� in
∏n

i=1 wi ∈ �2 is unstable.

To discuss the stability under impulsive control of unstable equilibrium points of model
(1), the following two lemmas are useful.

Lemma 4 ([11]) Let Q be a positive definite matrix. Then, for any y, z ∈ R
n, 2yT z ≤

yT Q–1y + zT Qz.
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Lemma 5 ([22]) The LMI Q =
( Q11 Q12

QT
12 Q22

)
< 0 with Q11 = QT

11, Q22 = QT
22 is equivalent to one

of the following conditions:
(i) Q22 < 0, Q11 – Q12Q–1

22 QT
12 < 0.

(ii) Q11 < 0, Q22 – QT
12Q–1

11 Q12 < 0.

3 Impulsive control strategy and main results
For the unstable equilibrium points of model (1), we consider designing an impulsive con-
trol strategy to make the unstable equilibrium points stable in each subregion of �2. For
any subregion

∏n
i=1 wi ∈ �2, assume that x� is one unstable equilibrium point in

∏n
i=1 wi of

model (1). Then we introduce the following impulsive control on account of x� at discrete
instances:

	x(ti) = ϒi
(
x
(
t–
i
)

– x�
)
, i ∈ Z+, (8)

where ϒi ∈ R
n×n is a control matrix based on the ith pulse. Let h(t) = x(t) – x�. We can

transform (1) and (8) into the matrix equation shown below:

⎧
⎪⎪⎨

⎪⎪⎩

dh(t)
dt = A(h(t))[–B(h(t)) + CG(h(t)) + DF(h(t – τ (t)))], t > 0, t �= ti,

	h(ti) = ϒih(t–
i ), t = ti, i ∈ Z+,

h(s) = φ(s), s ≤ 0,

(9)

where φ(t) = ϕ(t) – x�, A(h(t)) = a(h(t) + x�), B(h(t)) = b(h(t) + x�) – b(x�), G(h(t)) = g(h(t) +
x�) – g(x�), F(h(t)) = f (h(t) + x�) – f (x�), and limt→∞ τ (t) = +∞.

Definition 1 Let h(t) be a solution to model (9). Then model (9) is said to be locally μ-
stable, if one can find a constant M > 0 satisfying that

‖h‖2 ≤ M
μ(t)

‖φ‖2, t ≥ 0,

where ‖φ‖2 = sups≤0 ‖φ(s)‖2, and μ(t) is a continuously differentiable and nondecreasing
function on [0, +∞).

Remark 1 The definition of local μ-stability here includes some famous stabilities such as
local asymptotic stability, local Lipschitz stability, and so on. Besides, we design an impul-
sive control strategy {ti,ϒi}i∈Z+ (8) to stabilize the unstable equilibrium points of system
(1).

Theorem 1 Suppose that there are two constants μ1 ≥ 1, μ2 > 0 such that

μ(ti)
μ(ti–1)

≤ μ1,
∫ ti

ti–1

μ(t)
μ∗(t – τ (t))

dt ≤ μ2, i ∈ Z+, (10)

where t0 = 0, and μ∗(t) = μ(t) if t ≥ 0 and μ∗(t) = 1 if t < 0. Besides, one can find a matrix
P > 0, two diagonal matrices Q1 > 0, Q2 > 0, and three constants λ1 ≥ 0,λ2 ≥ 0,γ > 1 such
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that

⎛

⎜
⎝

� PÂC PÂD
∗ –Q1 0
∗ ∗ –Q2

⎞

⎟
⎠ ≤ 0, 	f Q2	

f ≤ λ2P, (11)

and

lnμ1 + λ1θ + μ2λ2γ < lnγ , (12)

where � = –PǍβ – βǍP + �gQ1�
g – λ1P, θ = supi∈Z+{ti – ti–1}.

Consider the following positive definite Lyapunov function:

sP(t) = μ∗hT Ph,

where h(t) is an arbitrary solution in
∏n

i=1 wi ∈ �2 of model (9) with the initial condition
h(s) = φ(s), s ≤ 0. If there exist i ∈ Z+ and some ν1 < ν2 ∈ [ti–1, ti) such that {h(t)|h(t) =
(h1(t), h2(t), . . . , hn(t)), t ∈ [ν1,ν2]} ⊆ ∏n

i=1 wi ∈ �2, {h(t – τ (t))|h(t) = (h1(t), h2(t), . . . , hn(t)),
t ∈ [ν1,ν2]} ⊆ ∏n

i=1 wi ∈ �2, and

sP(s) ≤ γ sP(t), ∀s ∈ (–∞, t], (13)

then

sP(ν2) ≤ γ sP(ν1).

Proof For ∀t ∈ [ν1,ν2], by Lemma 3 and Lemma 4, the right upper Dini derivative of func-
tion sP(t) can be inferred from (11) and (13):

D+
sP(t) = μ∗′(t)hT Ph + 2μ∗(t)hT Ph′

≤ μ′(t)hT Ph + μ(t)
[
hT (–PǍβ – βǍP)h + hT PÂCQ1CT ÂPh + hT�gQ1�

gh

+ hT PÂDQ2DT ÂPh + hT(
t – τ (t)

)
	f Q2	

f h
(
t – τ (t)

)]

=
μ′(t)
μ(t)

μ(t)hT Ph + μ(t)
[
hT(

–PǍβ – βǍP + PÂCQ1CT ÂP + �gQ1�
g

+ PÂDQ2DT ÂP
)
h + hT(

t – τ (t)
)
	f Q2	

f h
(
t – τ (t)

)]

≤ μ′(t)
μ(t)

μ(t)hT Ph + μ(t)
[
hTλ1Ph + hT(

t – τ (t)
)
λ2Ph

(
t – τ (t)

)]

=
(

μ′(t)
μ(t)

+ λ1

)

μ(t)hT Ph + λ2
μ(t)

μ∗(t – τ (t))
μ∗(t – τ (t)

)
hT(

t – τ (t)
)
Ph

(
t – τ (t)

)

=
(

μ′(t)
μ(t)

+ λ1

)

sP(t) + λ2
μ(t)

μ∗(t – τ (t))
sP

(
t – τ (t)

)

≤
(

μ′(t)
μ(t)

+ λ1 + λ2γ
μ(t)

μ∗(t – τ (t))

)

sP(t). (14)
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Let us take the integral of (14) for t in the interval [ν1,ν2]. By (10) and (12), it can be
obtained that

ln
sP(ν2)
sP(ν1)

≤ ln
μ(ti)

μ(ti–1)
+ λ1θ + λ2γ

∫ tk

tk–1

μ(t)
μ∗(t – τ (t))

dt

≤ lnμ1 + λ1θ + λ2γμ2 ≤ lnγ . (15)

Therefore, one can get sP(ν2) ≤ γ sP(ν1) from (15). �

Theorem 2 Let x� be one unstable equilibrium point in
∏n

i=1 wi ∈ �2 of model (1). If (10),
(11), and (12) hold and

γ (I + ϒi)T P(I + ϒi) ≤ P, i ∈ Z+, (16)

then model (9) is locally μ-stable. Furthermore, x� under impulsive control strategy
{ti,ϒi}i∈Z+ (8) is locally μ-stable, and so model (1) can increase 3n – 2n locally μ-stable
equilibrium points.

Proof We use a similar method as that in [50] to prove the theorem. Let φ �= 0. Then we
just have to prove the following inequality:

sP(t) ≤ γ M, t ∈ [ti–1, ti), i ∈ Z+, (17)

where M = μ(0)λmax(P)‖φ‖2, {h(t)|h(t) ∈ Rn, t ∈ [ti–1, ti)} ⊂ ∏n
i=1 wi in �2. Note that

sP(t) = μ∗hT Ph = hT Ph ≤ μ(0)λmax(P)‖φ‖2 ≤ γ M, t ≤ 0. (18)

Firstly, if sP(t) ≤ γ M is not true when k = 1, then there is ν2 ∈ (0, t1) so that h(ν2) ∈
∏n

i=1 wi, and then

sP(ν2) = γ M, sP(t) ≤ γ M, t ≤ ν2. (19)

By (18) and (19), it can be seen that there must exist ν1 ∈ [0,ν2) and h(ν1) ∈ ∏n
i=1 wi in �2

so that

sP(ν1) = M, M ≤ sP(t) ≤ γ M, t ∈ [ν1,ν2]. (20)

For any t ∈ [ν1,ν2], by (19) and (20), it follows that

sP(s) ≤ γ M ≤ γ sP(t), ∀s ∈ (–∞, t]. (21)

Meanwhile, by Theorem 1, we can get

γ M = sP(ν2) < γ sP(ν1) = γ M,

which is a contradiction. Hence sP(t) ≤ γ M, and k = 1 holds.
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Secondly, suppose that sP(t) ≤ γ M holds for any k ≤ N ,∀N ∈ Z+. However, if sP(t) ≤
γ M is not true when n = N + 1, then there exists ν∗

2 ∈ (tN , tN+1) such that h(ν∗
2 ) ∈ ∏n

i=1 wi,
and then

sP
(
ν∗

2
)

= γ M, sP(t) ≤ γ M, t ≤ ν∗
2 . (22)

With respect to (16), we can obtain that

sP(tN ) = μ∗(tN )hT (tN )Ph(tN ) = μ∗hT(
t–
N
)
(I + ϒN )T P(I + ϒN )h

(
t–
N
)

≤ 1
γ
sP

(
t–
N
)

= M. (23)

By (22) and (23), there must exist ν∗
1 ∈ [tN ,ν∗

2 ) so that h(ν∗
1 ) ∈ ∏n

i=1 wi, and then

sP
(
ν∗

1
)

= M, M ≤ sP(t) ≤ γ M, t ∈ [
ν∗

1 ,ν∗
2
]
. (24)

Furthermore, for any t ∈ [ν∗
1 ,ν∗

2 ], by (23) and (24), we have

sP(s) ≤ γ M ≤ γ sP(t), ∀s ∈ (–∞, t]. (25)

However, we can obtain by Theorem 1

γ M = sP
(
ν∗

2
)

< γ sP
(
ν∗

1
)

= γ M,

which leads to a contradiction. Thus sP(t) ≤ γ M, and k = N + 1 holds.
Finally, by mathematical induction, we get

μ(t)λmin(P)hT h ≤ μ∗(t)hT Ph = sP(t) ≤ γμ(0)λmax(P)‖ϕ‖2,

∀t ∈ [ti–1, ti), i ∈ Z+, (26)

which implies that (26) satisfies Definition 1. Hence model (9) is μ-stable in
∏n

i=1 wi of �2.
Consequently, x� under impulsive control (8) is locally μ-stable, and so model (1) can add
3n – 2n locally μ-stable points. �

Remark 2 Theorem 2 shows that the impulse control can make the unstable regions stable
and also increases the stable equilibrium points of model (1).

4 Corollaries and comparisons
On the basis of lemmas and theorems above, the following conclusions are drawn and
compared with those in the existing literature.

When ai(xi(t)) = 1, model (1) converts into the model HNN:
⎧
⎨

⎩

dxi(t)
dt = –bi(xi(t)) +

∑n
j=1 cijgj(xj(t)) +

∑n
j=1 dijfj(xj(t – τ (t))) – Ii,

i = 1, 2, . . . , n, t ≥ 0.
(27)

According to conditions (2)–(6), there are at least 3n equilibrium points in model (27), 2n

of them in �1 are locally μ-stable, and the remaining in �2 are unstable.
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Let h(t) = x(t) – x�, t ≥ 0, where x� is an unstable equilibrium point in
∏n

i=1 wi ∈ �2 and
x(t) is a solution of (27) with the initial condition x(s) = ϕ(s) ∈ �2, s ∈ (–∞, 0]. Then model
(27) and the impulsive control (8) with respect to x� can be turned into

⎧
⎪⎪⎨

⎪⎪⎩

dh(t)
dt = –B(h(t)) + CG(h(t)) + DF(h(t – τ (t))), t > 0, t �= ti,

h(t) = φ(t), t ≤ 0,

	h(ti) = ϒih(t–
i ), t = ti, i ∈ Z+.

(28)

Corollary 1 Under conditions (10), (12), (16), and

⎛

⎜
⎝

� PC PD
∗ –Q1 0
∗ ∗ –Q2

⎞

⎟
⎠ ≤ 0, 	f Q2	

f ≤ λ2P, (29)

where � = –Pβ – βP + �gQ1�
g – λ1P, model (28) is μ-stable in

∏n
i=1 wi. Furthermore, x�

under impulsive control strategy {ti,ϒi}i∈Z+ (8) is locally μ-stable, and so model (27) can
increase 3n – 2n locally μ-stable points.

When ai(xi(t)) = 1 and bi(xi(t)) = bi · xi(t), model (1) changes into

⎧
⎨

⎩

dxi(t)
dt = –bi · xi(t) +

∑n
j=1 cijgj(xj(t)) +

∑n
j=1 dijfj(xj(t – τ (t))) – Ii,

i = 1, 2, . . . , n, t ≥ 0.
(30)

If (30) meets (4) and the following conditions (31)–(33):

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

–bipi + ciigi(pi) +
∑n

j=1
j �=i

max{cijmj, cijMj} +
∑n

j=1 max{dijmj, dijMj} – Ii < 0,

–biqi + ciigi(qi) +
∑n

j=1
j �=i

min{cijmj, cijMj} +
∑n

j=1 min{dijmj, dijMj} – Ii > 0,

i = 1, 2, . . . , n.

(31)

(–aiβi + α)ζi +
∑

j∈N1

ζjāiσ̄
l
j |cij| +

∑

j∈N3

ζjāiσ̄
r
j |cij|

+ (1 + β)
(∑

j∈N1

ζjāiδ̄
l
j |dij| +

∑

j∈N3

ζjāiδ̄
r
j |dij|

)

< 0, (32)

min
i∈N2

{
(
–bi + ciiσ

m∗
i

)
ξi –

∑

j∈N1

ξj|cij|σ̄ l
j –

∑

j∈N2

ξj|cij|σ̄ m
j –

∑

j∈N3

ξj|cij|σ̄ r
j –

∑

j∈N1

ξj|dij|δ̄l
j

–
∑

j∈N2

ξj|dij|δ̄m
j –

∑

j∈N3

ξj|dij|δ̄r
j

}

> max{λ, 0}, (33)

where ζ1, ζ2, . . . , ζn, ξ1, ξ2, . . . , ξn are positive constants, and

λ � max
i∈N1∪N3

{

(–biξi +
∑

j∈N1

ξj|cij|σ̄ l
j +

∑

j∈N2

ξj|cij|σ̄ m
j +

∑

j∈N3

ξj|cij|σ̄ r
j

+
∑

j∈N1

ξj|dij|δ̄l
j +

∑

j∈N2

ξj|dij|δ̄m
j +

∑

j∈N3

ξj|dij|δ̄r
j

}

, (34)
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then one can obtain that there exist at least 3n equilibrium points in model (30), 3n – 2n of
them in �2 are unstable, and the remaining 2n points in �1 are locally μ-stable.

Let x� be an unstable equilibrium point in
∏n

i=1 wi ∈ �2 and x(t) be a solution of (30)
with the initial condition x(s) = ϕ(s) ∈ �2, s ∈ (–∞, 0], and let h(t) = x(t) – x�, t ≥ 0. Then
model (30) and the impulsive control (8) with respect to x� can transform into the following
matrix form:

⎧
⎪⎪⎨

⎪⎪⎩

dh(t)
dt = –Bh(t) + CG(h(t)) + DF(h(t – τ (t))), t > 0, t �= ti,

h(t) = φ(t), t ≤ 0,

	h(ti) = ϒih(t–
i ), t = ti, i ∈ Z+.

(35)

Corollary 2 Under conditions (10),(12),(16), and (29), where � = –PB – BP + �gQ1�
g –

λ1P, model (35) is μ-stable in
∏n

i=1 wi. Furthermore, x� under impulsive control strategy
{ti,ϒi}i∈Z+ (8) is locally μ-stable, and so model (30) can increase 3n – 2n locally μ-stable
points.

Remark 3 The net self-inhibition function bi(xi(t)) in model (30) is monotone increasing
and odd, which contains the case of Ref. [50]. Hence model (30) is more general.

Remark 4 Ref. [50] studied the stability of unstable systems with unbounded time-varying
delays at some certain discrete time for HNN model (30) and derived some control results
to stabilize neural networks with an unstable equilibrium point by the impulsive control.
However, we studied in the present paper the stability of multiple unstable equilibrium
points.

Corollary 3 When μ(t) = 1 + ς t,ς > 0, and τ (t) = kt, k ∈ (0, 1), assume that (2), (3), (6)
hold in �1, and satisfy

(–aiβi + ς )ζi +
∑

j∈N1

ζjāiσ̄
l
j |cij| +

∑

j∈N3

ζjāiσ̄
r
j |cij|

+ (1 + ςτ )
(∑

j∈N1

ζjāiδ̄
l
j |dij| +

∑

j∈N3

ζjāiδ̄
r
j |dij|

)

< 0.

Let ln(1 + ςθ ) + λ1θ + θ
1–τ

λ2γ < lnγ . If (11) and (16) hold for �2, then model (1) under the
impulsive control (8) is asymptotically stable in each local region of �2.

Corollary 4 When μ(t) = ln(f + t), f > e, and τ (t) = t – ln t/t, assume that (2), (3), (6) hold
in �1 and satisfy

–aiβiζi +
∑

j∈N1

ζjāiσ̄
l
j |cij| +

∑

j∈N3

ζjāiσ̄
r
j |cij| +

(∑

j∈N1

ζjāiδ̄
l
j |dij| +

∑

j∈N3

ζjāiδ̄
r
j |dij|

)

< 0.

Let ln ln(f +θ )
ln f + λ1θ + ln(1 + θ/f )λ2γ < lnγ . If (11) and (16) hold for �2, then model (1) under

impulsive control (8) is log-stable in each local region of �2.



Jia and Chen Journal of Inequalities and Applications         (2021) 2021:39 Page 11 of 16

Corollary 5 When μ(t) = ln(f + t), τ (t) = (f + t) – (f + t)ε , where f > e, ε ∈ (0, 1), assume
that (2), (3), (6) hold in �1 and satisfy

–aiβiζi +
∑

j∈N1

ζjāiσ̄
l
j |cij| +

∑

j∈N3

ζjāiσ̄
r
j |cij| +

1
ε

(∑

j∈N1

ζjāiδ̄
l
j |dij| +

∑

j∈N3

ζjāiδ̄
r
j |dij|

)

< 0.

Let ln ln(f +θ )
ln f +λ1θ + θ

ε
λ2γ < lnγ . If (11) and (16) hold for �2, then model (1) under impulsive

control (8) is log-log-stable in each region of �2.

5 Numerical example
Example Consider the following two-dimensional CGNNs model:

⎧
⎨

⎩

dxi(t)
dt = –a(xi(t))[bi(xi(t)) –

∑n
j=1 cijg(xj(t)) –

∑n
j=1 dijf (xj(t – τ (t))) + Ii],

i = 1, 2, t ≥ 0,
(36)

where a(x) = 1 + 0.2 sin(x), b1(x1(t)) = x1(t), b2(x2(t)) = –1.2x2(t), f (x) = |x+1|–|x–1|
2 ,

g(x) =

⎧
⎪⎪⎨

⎪⎪⎩

tanh(0.2x) – tanh(1) + tanh(0.2), x < –1,

tanh(x), –1 ≤ x ≤ 1,

tanh(0.2x) + tanh(1) – tanh(0.2), x > 1,

τ (t) = 0.2t,

C = (cij) =

(
3.5 0.2
0.4 4.8

)

, D = (dij) =

(
0.4 0.2
0.2 0.5

)

, I1 = I2 =

(
–0.3
–0.6

)

.

Let μ∗(t) = 1 + 0.2t if t ≥ 0 and μ∗(t) = 1 if t < 0. Then we know that the hypothesis of
Eq. (36) and μ∗(t) satisfy condition (6) by calculation. Therefore, by Lemmas 1–3, there are
nine equilibrium points in model (36), four of which are μ-stable, and others are unstable.
Running program [x, fval] = fsolve(′myfun7′, x0) with Matlab software for model (36) in
each subregion, one can obtain the nine equilibrium points of (36) as follows:

x(1) = (–3.8676, 5.9164)T , x(2) = (–0.2792, 6.4788)T ,

x(3) = (6.1086, 7.4167)T , x(4) = (–4.6061, 0.0284)T ,

x(5) = (–0.0852, –0.1349)T , x(6) = (5.2870, –0.3416)T ,

x(7) = (–5.3083, –6.1639)T , x(8) = (0.0586, –5.2811)T ,

x(9) = (4.8374, –4.3921)T .

Trace the solutions of model (36) with 150 initial conditions, the dynamics of x1(t) and
x2(t) are depicted in the above three graphs of Fig. 1, which show that there are four locally
μ-stable equilibrium points, which is in accord with our results.

With the functions and parameters given above, we can find that Ǎ = diag{0.8, 0.8},
Â = diag{1.2, 1.2}, �g = diag{1.564, 1.564}, 	f = diag{1, 1}, λ1 = 18. And we can obtain the
following results by resorting to Matlab LMI control toolbox:

P =

(
0.4605 0.0069
0.0069 0.4558

)

, Q1 =

(
1.7450 0

0 1.7450

)

,
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Figure 1 The state trajectories and phase diagrams without impulsive input (three graphs above) and with
impulsive input (three graphs below)of model (36)

Figure 2 Transient behavior and state trajectories of x1 and x2 nearby the equilibrium point
x(4) = (–4.6061, 0.0284)T without impulsive input in the left graphs, and with impulsive input in the right
graphs

Q2 =

(
4.6120 0

0 4.6120

)

.

Let λ2 = 11,γ = 3.5, θ = 0.0186, and ti = 0.018i. Then we can deduce the following impul-
sive control matrix by (16):

ϒi =

(
–0.7 0

0 –0.7

)

. (37)

Under the impulsive control matrix (37), the state trajectory curve of model (36) can be
obtained with the same 150 initial solutions, which is the below three graphs of Fig. 1.
It is easy to get that the stable equilibrium points of model (36) are more than before
adding impulse, and just right one equilibrium point exists in each region of model (36).
Specifically, Figs. 2–6 show that the other five equilibrium points are unstable, while they
are locally μ-stable after adding impulse, which verifies the effectiveness of the control
strategy and the correctness of the obtained results.
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Figure 3 Transient behavior and state trajectories of x1 and x2 near the equilibrium point
x(2) = (–0.2792, 6.4788)T without impulsive input in the left graphs, and with impulsive input in the right
graphs

Figure 4 Transient behavior and state trajectories of x1 and x2 near the equilibrium point
x(5) = (–0.0852, –0.1349)T without impulsive input in the left graphs, and with impulsive input in the right
graphs

Figure 5 Transient behavior and state trajectories of x1 and x2 near the equilibrium point
x(8) = (0.0586, –5.2811)T without impulsive input in the left graphs, and with impulsive input in the right
graphs

Remark 5 The activation functions in the example of Ref. [50] without time delay and
with time delay are the same, but they are different in the present paper. Therefore, the
simulation of this paper is closer to the results of the theory.
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Figure 6 Transient behavior and state trajectories of x1 and x2 near the equilibrium point
x(6) = (5.2870, –0.3416)T without impulsive input in the left graphs, and with impulsive input in the right
graphs

6 Conclusion
Impulsive control of multiple unstable CGNNs with unbounded time-varying delays is
studied in this article. Ref. [32] proved that there exist multiple equilibrium points, and
some of them are unstable in model(1). For those unstable equilibrium points, we intro-
duce an impulsive control strategy into the unstable region to ensure that system (1) is
μ-stable in each local region of �2. In Sect. 4, we conclude some results of other mod-
els and point out the advantages of model (28). Meanwhile, we summarize that model (1)
is μ-stable in each local region of Rn under impulsive control, including the asymptoti-
cally stable, log-stable, and log-log-stable. In addition, we also show the effectiveness of
impulsive control strategy by one example and its comprehensive numerical simulations.
From the results of this article, we see that it is an effective method to study the stability
of multiple unstable CGNNs by introducing impulse inputs. Therefore, we can investigate
the stability of other multiple unstable system by employing the impulsive control strategy
further.
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