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Abstract
In this paper, we consider the semidifferentiable case of an interval-valued
minimization problem and establish sufficient optimality conditions and Wolfe type
as well as Mond–Weir type duality theorems under semilocal E-preinvex functions.
Furthermore, we present saddle-point optimality criteria to relate an optimal solution
of the semidifferentiable interval-valued programming problem and a saddle point of
the Lagrangian function.
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1 Introduction
The technique of solving optimization problems has wide applications in many research
areas. Optimization problems having real coefficients are known as the deterministic op-
timization problems; however, having random variables with known distributions, they
are classified as the stochastic optimization problems, see for instance [1, 2]. The spec-
ifications of the distributions are more subjective, as many authors invoke the Gaussian
distributions for various parameters in the stochastic theory, so it is hard to tackle the large
area of real-life problems by these specifications. For resolving such difficulties, interval-
valued optimization problems, where coefficients must be chosen as closed intervals, are
preferred for studying uncertainty in this optimization problem.

Paper [3] dealt with two types of solutions for an interval-valued optimization problem
and established the Karush–Kuhn–Tucker optimality conditions. In addition to that, many
solution concepts in the multiobjective view of interval-valued programming problems
were proposed in [4]. Further, [5] presented the concept of a nondominated solution for
vector optimization problems and established weak and strong duality results for interval-
valued programming problems in the presence of an interval-valued Lagrangian function
and its dual. For more details on solution concepts of interval-valued programming, one
can see [6–9] and the references therein.

The sufficient optimality conditions and duality theorems for Mond–Weir type as well
as Wolfe type dual models under generalized invexity assumptions for interval-valued
programming problems have been established in [10]. Paper [11] presented the concepts
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of invexity and preinvexity for interval-valued functions and studied the KKT optimality
conditions for interval-valued programming using Hukuhara differentiability. The Mond–
Weir type duality theorems and saddle-point optimality conditions for interval-valued
programming problems have been derived in [12]. Recently, [13] extended the invexity
assumptions for interval-valued functions with the help of generalized Hukuhara differ-
entiability and presented the Kuhn–Tucker optimality conditions. Further, [14] discussed
some properties of the univex mappings for interval-valued functions and established suf-
ficient optimality conditions for the nondominated solution.

On the other hand, [15] introduced the concept of semidifferentiable functions and
discussed locally star-shaped functions and generalizations of convex functions using
semidifferentiability. Further, [16] extended the concept of semidifferentiability to E-η-
semidifferentiability and, using this, introduced (generalized) semilocal E-preinvex func-
tions.

This paper is prepared as follows: in Sect. 2, we give some basic ideas related to interval
analysis and semilocal E-preinvex functions. In Sect. 3, we establish sufficient optimal-
ity conditions for interval-valued programming using E-η-semidifferentiable and semilo-
cal E-preinvex functions. We give an example to verify our result. In Sect. 4, we propose
Wolfe type and Mond–Weir type dual models involving E-η-semidifferentiable functions.
Further, we derive weak, strong, and strict converse duality results for the described mod-
els. Finally, in the last section, we present relations between an optimal solution of the
interval-valued programming problem and a saddle point of the Lagrangian function in
case of E-η-semidifferentiability.

2 Preliminaries
Suppose that J is the set of all closed and bounded intervals in R. Then, for C = [cL, cU ],
D = [dL, dU ] ∈ J , where cL(dL) and cU (dU ) are respectively the lower and upper bounds of
C(D) with cL ≤ cU and dL ≤ dU , we have

C + D = {c + d : c ∈ C, d ∈ D} =
[
cL + dL, cU + dU]

,

– C = {–c : c ∈ C} =
[
–cU , –cL],

C – D =
[
cL – dU , cU – dL].

Now, for any real number μ, we have

μC = {μc : c ∈ C} =

⎧
⎨

⎩
[μcL,μcU ] if μ ≥ 0,

[μcU ,μcL] if μ < 0.

For further details on interval analysis, one can see [17].
For C � D if and only if cL ≤ dL and cU ≤ dU . Clearly, � is a partial ordering on J .
Again, C ≺ D if and only if C � D and C �= D. This means C ≺ D if and only if

⎧
⎨

⎩
cL < dL,

cU < dU
or

⎧
⎨

⎩
cL ≤ dL,

cU < dU
or

⎧
⎨

⎩
cL < dL,

cU ≤ dU .

Suppose that Rn denotes an n-dimensional Euclidean space, E : Rn → R
n and η : Rn ×

R
n →R

n are two fixed mappings.
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Definition 2.1 ([18]) A set X ⊂R
n is called E-invex with respect to η if

E
(
x∗) + λη

(
E(x), E

(
x∗)) ∈ X, ∀x, x∗ ∈ X,λ ∈ [0, 1].

Definition 2.2 ([18]) A set X ⊂ R
n is called local E-invex with respect to η if ∀x, x∗ ∈ X

there exists u(x, x∗) ∈ (0, 1] such that

E
(
x∗) + λη

(
E(x), E

(
x∗)) ∈ X, ∀λ ∈ [

0, u
(
x, x∗)]. (2.1)

Definition 2.3 ([16]) A function f : Rn → R is called semilocal E-preinvex on X ⊂ R
n

with respect to η if, for all x, x∗ ∈ X (with a maximal positive number u(x, x∗) ≤ 1 satisfying
(2.1)), there exists 0 < v(x, x∗) ≤ u(x, x∗) such that X is a local E-invex set and

f
(
E
(
x∗) + λη

(
E(x), E

(
x∗))) ≤ λf (x) + (1 – λ)f

(
x∗), ∀λ ∈ [

0, v
(
x, x∗)].

Definition 2.4 ([16]) Let f : X ⊂ R
n → R, where X is a local E-invex set. Then f is said

to be pseudo-semilocal E-preinvex with respect to η if, for all x, x∗ ∈ X (with a maximal
positive number u(x, x∗) ≤ 1 satisfying (2.1)), there are positive numbers v(x, x∗) ≤ u(x, x∗)
and w(x, x∗) such that

f (x) < f
(
x∗) ⇒

f
(
E
(
x∗) + λη

(
E(x), E

(
x∗))) ≤ f

(
x∗) – λw

(
x, x∗), ∀λ ∈ [

0, v
(
x, x∗)].

Definition 2.5 ([16]) Let f : X ⊂R
n →R, where X is a local E-invex set. Then f is said to

be quasi-semilocal E-preinvex with respect to η if, for all x, x∗ ∈ X (with a maximal positive
number u(x, x∗) ≤ 1 satisfying (2.1)), there is a positive number v(x, x∗) ≤ u(x, x∗) such that

f (x) ≤ f
(
x∗) ⇒ f

(
E
(
x∗) + λη

(
E(x), E

(
x∗))) ≤ f

(
x∗), ∀λ ∈ [

0, v
(
x, x∗)].

Definition 2.6 ([16]) A function f : X → R is said to be E-η-semidifferentiable at x̄ ∈ X,
where X ⊂R

n is a local E-invex set with respect to η, if E(x̄) = x̄ and

(df )+(
x̄;η

(
E(x), x̄

))
= lim

λ→0+

1
λ

[
f
(
x̄ + λη

(
E(x), x̄

))
– f (x̄)

]
exists ∀x ∈ X.

Remark 2.1 When E becomes an identity map, then the notion of E-η-semidifferentiability
is η-semidifferentiability, and for E as an identity map with η(x, x̄) = x – x̄, the same is con-
verted into a semidifferentiable function (see [15]).

Lemma 2.1 (see [16]) (i) Suppose that f is (strictly) semilocal E-preinvex and E-η-
semidifferentiable at x̄ ∈ X ⊂R

n, where X is a local E-invex set with respect to η. Then

f (x) – f (x̄)(>) ≥ (df )+(
x̄;η

(
E(x), x̄

))
, ∀x ∈ X.

(ii) Suppose that f is pseudo(quasi)-semilocal E-preinvex and E-η-semidifferentiable at
x̄ ∈ X ⊂R

n, where X is a local E-invex set with respect to η. Then

f (x) < (≤)f (x̄) ⇒ (df )+(
x̄;η

(
E(x), x̄

))
< (≤)0, ∀x ∈ X.
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3 Optimality conditions for interval-valued programming problem
Consider the following interval-valued minimization problem:

(IVP) min F(x) =
[
FL(x), FU (x)

]

subject to gj(x) ≤ 0, j = 1, 2, . . . , l,

where F : X → I is an interval-valued function and FL(x), FU (x) (FL(x) ≤ FU (x)), and gj :
X →R, j = 1, 2, . . . , l, are real-valued functions on a local E-invex set X ⊂R

n.
Let P = {x ∈ X : gj(x) ≤ 0, j = 1, 2, . . . , l} be a feasible set of (IVP).

Definition 3.1 ([19]) Let x̄ be a feasible solution of problem (IVP). We say that x̄ is an LU
optimal solution of the problem if there exists no x′ ∈ P such that

F
(
x′) ≺ F(x̄).

Now, we define semilocal E-preinvexity for interval-valued functions as follows.

Lemma 3.1 Suppose that F is an E-η-semidifferentiable interval-valued function. Then F
is semilocal E-preinvex with respect to η at x̄ if both real-valued functions FL and FU are
semilocal E-preinvex with respect to the same η at x̄.

Motivated by [19] and [20], we state the Karush–Kuhn–Tucker type necessary condi-
tions for interval-valued programming problems in terms of E-η-semidifferentiable func-
tions.

Theorem 3.1 Let E(x̄) = x̄. Suppose that x̄ is an LU optimal solution to (IVP) and the
suitable constraint qualification is satisfied, and all functions FL, FU , and gj are E-η-
semidifferentiable at x̄. Then there exist scalars wL, wU (> 0) ∈ R, and τj(≥ 0) ∈ R, j =
1, 2, . . . , l, such that

wL(dFL)+(
x̄;η

(
E
(
x′), x̄

))
+ wU(

dFU)+(
x̄;η

(
E
(
x′), x̄

))

+
l∑

j=1

τj(dgj)+(
x̄;η

(
E
(
x′), x̄

)) ≥ 0, ∀x′ ∈ P,
(3.1)

l∑

j=1

τjgj(x̄) = 0. (3.2)

Now, we present some sufficient optimality conditions for (IVP).

Theorem 3.2 Let E(x̄) = x̄ and x̄ ∈ P. Suppose that functions FL, FU , and gj are E-
η-semidifferentiable at x̄ and there exist scalars wL, wU (> 0) ∈ R, and τj(≥ 0) ∈ R, j =
1, 2, . . . , l, such that

(i) wL(dFL)+(
x̄;η

(
E
(
x′), x̄

))
+ wU(

dFU)+(
x̄;η

(
E
(
x′), x̄

))

+
l∑

j=1

τj(dgj)+(
x̄;η

(
E
(
x′), x̄

)) ≥ 0, ∀x′ ∈ P,
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(ii)
l∑

j=1

τjgj(x̄) = 0,

(iii) F and
l∑

j=1

τjgj are semilocal E-preinvex at x̄.

Then x̄ is an LU optimal solution to (IVP).

Proof Suppose that x̄ is not an LU optimal solution to (IVP), then there exists a point x′ ∈ P
such that F(x′) ≺ F(x̄).

This means
⎧
⎨

⎩
FL(x′) < FL(x̄),

FU (x′) < FU (x̄)
or

⎧
⎨

⎩
FL(x′) ≤ FL(x̄),

FU (x′) < FU (x̄)
or

⎧
⎨

⎩
FL(x′) < FL(x̄),

FU (x′) ≤ FU (x̄).

For wL, wU > 0, we can write

wLFL(x′) + wU FU(
x′) < wLFL(x̄) + wU FU (x̄). (3.3)

Since F is semilocal E-preinvex with respect to η at x̄, then

FL(x′) – FL(x̄) ≥ (
dFL)+(

x̄;η
(
E
(
x′), x̄

))
(3.4)

and

FU(
x′) – FU (x̄) ≥ (

dFU)+(
x̄;η

(
E
(
x′), x̄

))
. (3.5)

Multiplying (3.4) by wL and (3.5) by wU and adding them, we get

[{
wLFL(x′) + wU FU(

x′)} –
{

wLFL(x̄) + wU FU (x̄)
}]

≥ wL(dFL)+(
x̄;η

(
E
(
x′), x̄

))
+ wU(

dFU)+(
x̄;η

(
E
(
x′), x̄

))
.

Using (3.3), the above inequality becomes

wL(dFL)+(
x̄;η

(
E
(
x′), x̄

))
+ wU(

dFU)+(
x̄;η

(
E
(
x′), x̄

))
< 0. (3.6)

From (ii) with the feasibility of x′ to (IVP), we find that

l∑

j=1

τjgj
(
x′) ≤

l∑

j=1

τjgj(x̄). (3.7)

Since
∑l

j=1 τjgj is semilocal E-preinvex with respect to η at x̄, then

l∑

j=1

τjgj
(
x′) –

l∑

j=1

τjgj(x̄) ≥
l∑

j=1

τj(dgj)+(
x̄;η

(
E
(
x′), x̄

))
.
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Using (3.7), the above inequality becomes

l∑

j=1

τj(dgj)+(
x̄;η

(
E
(
x′), x̄

)) ≤ 0. (3.8)

Adding (3.6) and (3.8), we obtain

wL(dFL)+(
x̄;η

(
E
(
x′), x̄

))
+ wU(

dFU)+(
x̄;η

(
E
(
x′), x̄

))

+
l∑

j=1

τj(dgj)+(
x̄;η

(
E
(
x′), x̄

))
< 0, ∀x′ ∈ P,

a contradiction to assumption (i). Hence, x̄ is an LU optimal solution to (IVP). �

Example 3.1 Consider the interval-valued programming problem:

min F(x) =
[
x3 + 2, 2x3 + 3x + 4

]
, x ≥ 0,

subject to g1(x) = –3x + 2.

It is easy to see that FL, FU , and g1 are E-η-semidifferentiable functions, where E : R →
R, defined by

E(x) =

⎧
⎪⎪⎨

⎪⎪⎩

–2, x < 0,

4, 1 < x ≤ 2,

x, 0 ≤ x ≤ 1 or x > 2;

and the map η : R×R→R is defined as follows:

η
(
x, x∗) =

⎧
⎨

⎩
0, x = x∗,

x – 1, x �= x∗.

The feasible set of the problem is P = {x : –3x + 2 ≤ 0}. Clearly, x̄ = 1 is feasible. Choose
another point x′ = 3 ∈ P.

Now,

(
dFL)+(

x̄;η
(
E
(
x′), x̄

))
= lim

λ→0+

1
λ

[
FL(x̄ + λη

(
E
(
x′), x̄

))
– FL(x̄)

]

= lim
λ→0+

1
λ

[
FL(1 + λη

(
E(3), 1

))
– FL(1)

]

= lim
λ→0+

1
λ

[
FL(1 + λη(3, 1)

)
– FL(1)

]

= lim
λ→0+

1
λ

[
FL(1 + 2λ) – FL(1)

]

= lim
λ→0+

1
λ

[
(1 + 2λ)3 + 2 – 3

]

= 6,
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(
dFU)+(

x̄;η
(
E
(
x′), x̄

))
= lim

λ→0+

1
λ

[
FU(

x̄ + λη
(
E
(
x′), x̄

))
– FU (x̄)

]

= lim
λ→0+

1
λ

[
FU (1 + 2λ) – FU (1)

]

= lim
λ→0+

1
λ

[
2(1 + 2λ)3 + 3(1 + 2λ) + 4 – 9

]

= 18,

(dg1)+(
x̄;η

(
E
(
x′), x̄

))
= lim

λ→0+

1
λ

[
g1

(
x̄ + λη

(
E
(
x′), x̄

))
– g1(x̄)

]

= lim
λ→0+

1
λ

[
g1(1 + 2λ) – g1(1)

]

= lim
λ→0+

1
λ

[
–3(1 + 2λ) + 2 + 1

]

= –6.

If we choose wL = 1, wU = 1, and τ1 = 0, then

wL(dFL)+(
x̄;η

(
E
(
x′), x̄

))
+ wU(

dFU)+(
x̄;η

(
E
(
x′), x̄

))

+ τ1(dg1)+(
x̄;η

(
E
(
x′), x̄

))
= 24 > 0,

and τ1g1(x̄) = 0.

Moreover, functions F and τ1g1 are semilocal E-preinvex at x̄ = 1. Therefore, x̄ = 1 is an
LU optimal solution to the given problem. Thus, Theorem 3.2 is verified.

Theorem 3.3 Let E(x̄) = x̄ and x̄ ∈ P. Suppose that functions FL, FU , and gj are E-
η-semidifferentiable at x̄ and there exist scalars wL, wU (> 0) ∈ R, and τj(≥ 0) ∈ R, j =
1, 2, . . . , l, such that

(i) wL(dFL)+(
x̄;η

(
E
(
x′), x̄

))
+ wU(

dFU)+(
x̄;η

(
E
(
x′), x̄

))

+
l∑

j=1

τj(dgj)+(
x̄;η

(
E
(
x′), x̄

)) ≥ 0, ∀x′ ∈ P,

(ii)
l∑

j=1

τjgj(x̄) = 0,

(iii) wLFL + wU FU is pseudo-semilocal E-preinvex and
l∑

j=1

τjgj

is quasi-semilocal E-preinvex at x̄.

Then x̄ is an LU optimal solution to (IVP).

Proof On the contrary, suppose that x̄ is not an LU optimal solution to (IVP), then there
exists a point x′ ∈ P such that F(x′) ≺ F(x̄).



Lai et al. Journal of Inequalities and Applications         (2021) 2021:35 Page 8 of 18

That is,
⎧
⎨

⎩
FL(x′) < FL(x̄),

FU (x′) < FU (x̄)
or

⎧
⎨

⎩
FL(x′) ≤ FL(x̄),

FU (x′) < FU (x̄)
or

⎧
⎨

⎩
FL(x′) < FL(x̄),

FU (x′) ≤ FU (x̄).

Since wL, wU > 0, we can write

wLFL(x′) + wU FU(
x′) < wLFL(x̄) + wU FU (x̄).

The above inequality together with the pseudo-semilocal E-preinvexity of wLFL + wU FU

with respect to η at x̄ gives

wL(dFL)+(
x̄;η

(
E
(
x′), x̄

))
+ wU(

dFU)+(
x̄;η

(
E
(
x′), x̄

))
< 0. (3.9)

Again, from the feasibility of x′ to (IVP) and by (ii), we have

l∑

j=1

τjgj
(
x′) ≤

l∑

j=1

τjgj(x̄).

With above inequality, use the fact that
∑l

j=1 τjgj is quasi-semilocal E-preinvex with re-
spect to η at x̄, then

l∑

j=1

τj(dgj)+(
x̄;η

(
E
(
x′), x̄

)) ≤ 0. (3.10)

Adding (3.9) and (3.10), we get

wL(dFL)+(
x̄;η

(
E
(
x′), x̄

))
+ wU(

dFU)+(
x̄;η

(
E
(
x′), x̄

))

+
l∑

j=1

τj(dgj)+(
x̄;η

(
E
(
x′), x̄

))
< 0, ∀x′ ∈ P,

a contradiction to assumption (i). Thus, x̄ is an LU optimal solution to (IVP). �

4 Duality
4.1 Wolfe type duality
Consider the following Wolfe type dual model:

(IVWD) max F(z) +
l∑

j=1

τjgj(z) =

[

FL(z) +
l∑

j=1

τjgj(z), FU (z) +
l∑

j=1

τjgj(z)

]

subject to

wL(dFL)+(
z;η

(
E(x̄), z

))
+ wU(

dFU)+(
z;η

(
E(x̄), z

))

+
l∑

j=1

τj(dgj)+(
z;η

(
E(x̄), z

)) ≥ 0, ∀x̄ ∈ X,
(4.1)

wL, wU > 0, τj ≥ 0, j = 1, 2, . . . , l. (4.2)
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Definition 4.1 Let (z̄, w̄L, w̄U , τ̄ ) be a feasible solution of the dual problem. Then (z̄, w̄L,
w̄U , τ̄ ) is said to be an LU optimal solution of dual problem (IVWD) if there exists no
(z, w̄L, w̄U , τ̄ ) such that

F(z̄) +
l∑

j=1

τ̄jgj(z̄) ≺ F(z) +
l∑

j=1

τ̄jgj(z).

Theorem 4.1 (Weak duality) Let x̄ and (z, wL, wU , τ ) be the feasible solutions to (IVP) and
(IVWD), respectively, with E(z) = z. Assume that F and

∑l
j=1 τjgj are semilocal E-preinvex,

and all functions are E-η-semidifferentiable at z such that wL + wU = 1. Then

F(x̄) � F(z) +
l∑

j=1

τjgj(z).

Proof On the contrary, suppose that F(x̄) ≺ F(z) +
∑l

j=1 τjgj(z).
That is,

⎧
⎨

⎩
FL(x̄) < FL(z) +

∑l
j=1 τjgj(z),

FU (x̄) < FU (z) +
∑l

j=1 τjgj(z)
or

⎧
⎨

⎩
FL(x̄) ≤ FL(z) +

∑l
j=1 τjgj(z),

FU (x̄) < FU (z) +
∑l

j=1 τjgj(z)
or

⎧
⎨

⎩
FL(x̄) < FL(z) +

∑l
j=1 τjgj(z),

FU (x̄) ≤ FU (z) +
∑l

j=1 τjgj(z).

Using the fact that wL, wU > 0 and wL + wU = 1 with the feasibility of x̄ to (IVP), the above
inequalities become

wLFL(x̄) + wU FU (x̄) +
l∑

j=1

τjgj(x̄) < wLFL(z) + wU FU (z) +
l∑

j=1

τjgj(z). (4.3)

Since F is semilocal E-preinvex with respect to η at z, then

FL(x̄) – FL(z) ≥ (
dFL)+(

z;η
(
E(x̄), z

))

and

FU (x̄) – FU (z) ≥ (
dFU)+(

z;η
(
E(x̄), z

))
.

Since wL, wU > 0, then the above inequalities become

wLFL(x̄) – wLFL(z) ≥ wL(dFL)+(
z;η

(
E(x̄), z

))
(4.4)

and

wU FU (x̄) – wU FU (z) ≥ wU(
dFU)+(

z;η
(
E(x̄), z

))
. (4.5)



Lai et al. Journal of Inequalities and Applications         (2021) 2021:35 Page 10 of 18

From the semilocal E-preinvexity of
∑l

j=1 τjgj with respect to η at z, we have

l∑

j=1

τjgj(x̄) –
l∑

j=1

τjgj(z) ≥
l∑

j=1

τj(dgj)+(
z;η

(
E(x̄), z

))
. (4.6)

Adding (4.4), (4.5), and (4.6), we get

[{

wLFL(x̄) + wU FU (x̄) +
l∑

j=1

τjgj(x̄)

}

–

{

wLFL(z) + wU FU (z) +
l∑

j=1

τjgj(z)

}]

≥ wL(dFL)+(
z;η

(
E(x̄), z

))
+ wU(

dFU)+(
z;η

(
E(x̄), z

))
+

l∑

j=1

τj(dgj)+(
z;η

(
E(x̄), z

))
.

On using inequality (4.3), the above inequality becomes

wL(dFL)+(
z;η

(
E(x̄), z

))
+ wU(

dFU)+(
z;η

(
E(x̄), z

))

+
l∑

j=1

τj(dgj)+(
z;η

(
E(x̄), z

))
< 0,

a contradiction to dual constraint (4.1) with (z, wL, wU , τ ) feasible to (IVWD). This com-
pletes the proof. �

Theorem 4.2 (Strong duality) Let E(x̄) = x̄. Suppose that x̄ is an LU optimal solution
to (IVP) and suitable constraint qualification is satisfied, and all functions are E-η-
semidifferentiable at x̄. Then there exist w̄L > 0, w̄U > 0, and τ̄ ≥ 0 such that (x̄, w̄L, w̄U , τ̄ )
is a feasible solution to (IVWD) and the two objective values are the same. Further, if the
assumptions of weak duality Theorem 4.1 hold for all feasible solutions (z̄, w̄L, w̄U , τ̄ ), then
(x̄, w̄L, w̄U , τ̄ ) is an LU optimal solution to (IVWD).

Proof As x̄ is an LU optimal solution to (IVP) and suitable constraint qualification holds
at x̄, so by Theorem 3.1 there exist scalars w̄L > 0, w̄U > 0, τ̄j ≥ 0, j = 1, 2, . . . , l, such that

w̄L(dFL)+(
x̄;η

(
E
(
x′), x̄

))
+ w̄U(

dFU)+(
x̄;η

(
E
(
x′), x̄

))

+
l∑

j=1

τ̄j(dgj)+(
x̄;η

(
E
(
x′), x̄

)) ≥ 0, ∀x′ ∈ P,

and
l∑

j=1

τ̄jgj(x̄) = 0

show that (x̄, w̄L, w̄U , τ̄ ) is a feasible solution to (IVWD) and the analogous objective values
are the same. Assume that (x̄, w̄L, w̄U , τ̄ ) is not an LU optimal solution to (IVWD), this
means there is a feasible solution (z̄, w̄L, w̄U , τ̄ ) to (IVWD) such that

F(x̄) ≺ F(z̄) +
l∑

j=1

τ̄jgj(z̄),
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which is a contradiction to weak duality Theorem 4.1. Thus, (x̄, w̄L, w̄U , τ̄ ) is an LU optimal
solution to (IVWD). �

Theorem 4.3 (Strict converse duality) Let x̄ and (z̄, w̄L, w̄U , τ̄ ) be the feasible solutions
to (IVP) and (IVWD), respectively, with E(z̄) = z̄. Assume that F is strictly semilocal E-
preinvex and

∑l
j=1 τ̄jgj is semilocal E-preinvex, and all functions are E-η-semidifferentiable

at z̄ with

w̄LFL(x̄) + w̄U FU (x̄) +
l∑

j=1

τ̄jgj(x̄) ≤ w̄LFL(z̄) + w̄U FU (z̄) +
l∑

j=1

τ̄jgj(z̄). (4.7)

Then x̄ = z̄.

Proof Suppose, on the contrary, that x̄ �= z̄. Since F is strictly semilocal E-preinvex with
respect to η at z̄, i.e.,

FL(x̄) – FL(z̄) >
(
dFL)+(

z̄;η
(
E(x̄), z̄

))

and

FU (x̄) – FU (z̄) >
(
dFU)+(

z̄;η
(
E(x̄), z̄

))
.

Multiplying the above inequalities by w̄L and w̄U , respectively, and adding them, we get

[{
w̄LFL(x̄) + w̄U FU (x̄)

}
–

{
w̄LFL(z̄) + w̄U FU (z̄)

}]

> w̄L(dFL)+(
z̄;η

(
E(x̄), z̄

))
+ w̄U(

dFU)+(
z̄;η

(
E(x̄), z̄

))
.

(4.8)

By the semilocal E-preinvexity of
∑l

j=1 τ̄jgj with respect to η at z̄, we have

l∑

j=1

τ̄jgj(x̄) –
l∑

j=1

τ̄jgj(z̄) ≥
l∑

j=1

τ̄j(dgj)+(
z̄;η

(
E(x̄), z̄

))
. (4.9)

Adding (4.8) and (4.9), we get

[{

w̄LFL(x̄) + w̄U FU (x̄) +
l∑

j=1

τ̄jgj(x̄)

}

–

{

w̄LFL(z̄) + w̄U FU (z̄) +
l∑

j=1

τ̄jgj(z̄)

}]

> w̄L(dFL)+(
z̄;η

(
E(x̄), z̄

))
+ w̄U(

dFU)+(
z̄;η

(
E(x̄), z̄

))
+

l∑

j=1

τ̄j(dgj)+(
z̄;η

(
E(x̄), z̄

))
.

The above inequality with the feasibility of (z̄, w̄L, w̄U , τ̄ ) to (IVWD) (i.e., with dual con-
straint (4.1)) becomes

w̄LFL(x̄) + w̄U FU (x̄) +
l∑

j=1

τ̄jgj(x̄) > w̄LFL(z̄) + w̄U FU (z̄) +
l∑

j=1

τ̄jgj(z̄),

a contradiction to inequality (4.7). Hence, x̄ = z̄. �
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4.2 Mond–Weir type duality
Consider the following Mond–Weir type dual model:

(IVMWD) max F(z) =
[
FL(z), FU (z)

]

subject to

wL(dFL)+(
z;η

(
E(x̄), z

))
+ wU(

dFU)+(
z;η

(
E(x̄), z

))

+
l∑

j=1

τj(dgj)+(
z;η

(
E(x̄), z

)) ≥ 0, ∀x̄ ∈ X,
(4.10)

l∑

j=1

τjgj(z) ≥ 0, (4.11)

wL, wU > 0, τj ≥ 0, j = 1, 2, . . . , l. (4.12)

Definition 4.2 Let (z̄, w̄L, w̄U , τ̄ ) be a feasible solution of the dual problem. Then (z̄, w̄L,
w̄U , τ̄ ) is said to be an LU optimal solution of dual problem (IVMWD) if there exists no
(z, w̄L, w̄U , τ̄ ) such that

F(z̄) ≺ F(z).

Theorem 4.4 (Weak duality) Let x̄ and (z, wL, wU , τ ) be the feasible solutions to (IVP) and
(IVMWD), respectively, with E(z) = z. Suppose that wLFL + wU FU is pseudo-semilocal E-
preinvex and

∑l
j=1 τjgj is quasi-semilocal E-preinvex, and all functions are E-η-semidiffer-

entiable at z. Then

F(x̄) � F(z).

Proof On the contrary, suppose that F(x̄) ≺ F(z).
This means

⎧
⎨

⎩
FL(x̄) < FL(z),

FU (x̄) < FU (z)
or

⎧
⎨

⎩
FL(x̄) ≤ FL(z),

FU (x̄) < FU (z)
or

⎧
⎨

⎩
FL(x̄) < FL(z),

FU (x̄) ≤ FU (z).

For wL > 0 and wU > 0, we can write

wLFL(x̄) + wU FU (x̄) < wLFL(z) + wU FU (z),

which together with the pseudo-semilocal E-preinvexity of wLFL + wU FU with respect to
η at z gives

wL(dFL)+(
z;η

(
E(x̄), z

))
+ wU(

dFU)+(
z;η

(
E(x̄), z

))
< 0. (4.13)
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Again, from the feasibility of x̄ and (z, wL, wU , τ ) to (IVP) and (IVMWD), respectively, we
have

l∑

j=1

τjgj(x̄) ≤
l∑

j=1

τjgj(z).

With the above inequality, use the fact that
∑l

j=1 τjgj is quasi-semilocal E-preinvex with
respect to η at z, then

l∑

j=1

τj(dgj)+(
z;η

(
E(x̄), z

)) ≤ 0. (4.14)

Adding (4.13) and (4.14), we get

wL(dFL)+(
z;η

(
E(x̄), z

))
+ wU(

dFU)+(
z;η

(
E(x̄), z

))

+
l∑

j=1

τj(dgj)+(
z;η

(
E(x̄), z

))
< 0,

a contradiction to dual constraint (4.10) for (z, wL, wU , τ ) feasible to (IVMWD). Hence,
F(x̄) � F(z). �

Theorem 4.5 (Strong duality) Let E(x̄) = x̄. Suppose that x̄ is an LU optimal solution
to (IVP) and suitable constraint qualification is satisfied, and all functions are E-η-
semidifferentiable at x̄. Then there exist w̄L > 0, w̄U > 0, and τ̄ ≥ 0 such that (x̄, w̄L, w̄U , τ̄ ) is
a feasible solution to (IVMWD) and the analogous objective values are the same. Again,
if the assumptions of weak duality Theorem 4.4 are satisfied for all feasible solutions
(z̄, w̄L, w̄U , τ̄ ), then (x̄, w̄L, w̄U , τ̄ ) is an LU optimal solution to (IVMWD).

Proof As x̄ is an LU optimal solution to (IVP) and suitable constraint qualification holds
at x̄, so by Theorem 3.1 there exist scalars w̄L > 0, w̄U > 0, and τ̄j ≥ 0, j = 1, 2, . . . , l, such
that

w̄L(dFL)+(
x̄;η

(
E
(
x′), x̄

))
+ w̄U(

dFU)+(
x̄;η

(
E
(
x′), x̄

))

+
l∑

j=1

τ̄j(dgj)+(
x̄;η

(
E
(
x′), x̄

)) ≥ 0, ∀x′ ∈ P,

and
l∑

j=1

τ̄jgj(x̄) = 0

show that (x̄, w̄L, w̄U , τ̄ ) is a feasible solution to (IVMWD) and the analogous objective
values are the same. Assume that (x̄, w̄L, w̄U , τ̄ ) is not an LU optimal solution to (IVMWD),
this means there is a feasible solution (z̄, w̄L, w̄U , τ̄ ) to (IVMWD) such that

F(x̄) ≺ F(z̄),
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which is a contradiction to weak duality Theorem 4.4. Thus, (x̄, w̄L, w̄U , τ̄ ) is an LU optimal
solution to (IVMWD). �

Theorem 4.6 (Strict converse duality) Let x̄ and (z̄, w̄L, w̄U , τ̄ ) be the feasible solutions
to (IVP) and (IVMWD), respectively, with E(z̄) = z̄. Assume that w̄LFL + w̄U FU is strictly
pseudo-semilocal E-preinvex and

∑l
j=1 τ̄jgj is quasi-semilocal E-preinvex, and all functions

are E-η-semidifferentiable at z̄ with

w̄LFL(x̄) + w̄U FU (x̄) ≤ w̄LFL(z̄) + w̄U FU (z̄). (4.15)

Then x̄ = z̄.

Proof Suppose, contrary to the result, that x̄ �= z̄. Using τ̄j ≥ 0, j = 1, 2, . . . , l, with the feasi-
bility of x̄ and (z̄, w̄L, w̄U , τ̄ ) to (IVP) and (IVMWD), respectively, we have

l∑

j=1

τ̄jgj(x̄) ≤
l∑

j=1

τ̄jgj(z̄).

The above inequality, with the fact that
∑l

j=1 τ̄jgj is quasi-semilocal E-preinvex with re-
spect to η at z̄, gives

l∑

j=1

τ̄j(dgj)+(
z̄;η

(
E(x̄), z̄

)) ≤ 0.

Since (z̄, w̄L, w̄U , τ̄ ) is feasible to (IVMWD), then from dual constraint (4.10) and the above
inequality, we obtain

w̄L(dFL)+(
z̄;η

(
E(x̄), z̄

))
+ w̄U(

dFU)+(
z̄;η

(
E(x̄), z̄

)) ≥ 0.

With the above inequality using the strict pseudo-semilocal E-preinvexity of w̄LFL + w̄U FU

with respect to η at z̄, we get

w̄LFL(x̄) + w̄U FU (x̄) > w̄LFL(z̄) + w̄U FU (z̄),

a contradiction to inequality (4.15). Hence, x̄ = z̄. �

5 Lagrangian function and saddle-point criteria
Consider the following Lagrangian function for interval-valued optimization problem
(IVP):

L
(
x, wL, wU , τ

)
= wLFL(x) + wU FU (x) +

l∑

j=1

τjgj(x), (5.1)

where x ∈ X, wL ≥ 0, wU ≥ 0, τ ∈R
l
+.
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Definition 5.1 ([20]) Suppose that w̄L ≥ 0 and w̄U ≥ 0 are fixed. A point (x̄, w̄L, w̄U , τ̄ ) ∈
X ×R+ ×R+ ×R

l
+ is called a saddle point of the real-valued function L(x, wL, wU , τ ) if the

following condition holds:

L
(
x̄, w̄L, w̄U , τ

) ≤ L
(
x̄, w̄L, w̄U , τ̄

) ≤ L
(
x, w̄L, w̄U , τ̄

)
, ∀x ∈ X,∀τ ∈R

l
+. (5.2)

Theorem 5.1 ([20]) Suppose that w̄L > 0 and w̄U > 0 are fixed and (x̄, w̄L, w̄U , τ̄ ) is a saddle
point of L(x, wL, wU , τ ). Then x̄ is an LU optimal solution to (IVP).

Theorem 5.2 Let E(x̄) = x̄ and x̄ be an LU optimal solution to (IVP), with all functions FL,
FU , and gj being E-η-semidifferentiable at x̄. Suppose that there exist scalars w̄L, w̄U (> 0) ∈
R, and τ̄j(≥ 0) ∈R, j = 1, 2, . . . , l, such that

(i) w̄L(dFL)+(
x̄;η

(
E(x), x̄

))
+ w̄U(

dFU)+(
x̄;η

(
E(x), x̄

))

+
l∑

j=1

τ̄j(dgj)+(
x̄;η

(
E(x), x̄

)) ≥ 0, ∀x ∈ X,

(ii)
l∑

j=1

τ̄jgj(x̄) = 0,

(iii) F and
l∑

j=1

τ̄jgj are semilocal E-preinvex at x̄.

Then (x̄, w̄L, w̄U , τ̄ ) is a saddle point of L(x, wL, wU , τ ).

Proof As F is semilocal E-preinvex with respect to η at x̄, then

FL(x) – FL(x̄) ≥ (
dFL)+(

x̄;η
(
E(x), x̄

))

and

FU (x) – FU (x̄) ≥ (
dFU)+(

x̄;η
(
E(x), x̄

))
.

Multiplying the above inequalities by w̄L and w̄U , respectively, and adding them, we get

[{
w̄LFL(x) + w̄U FU (x)

}
–

{
w̄LFL(x̄) + w̄U FU (x̄)

}]

≥ w̄L(dFL)+(
x̄;η

(
E(x), x̄

))
+ w̄U(

dFU)+(
x̄;η

(
E(x), x̄

))
.

By the semilocal E-preinvexity of
∑l

j=1 τ̄jgj with respect to η at x̄, we get

l∑

j=1

τ̄jgj(x) –
l∑

j=1

τ̄jgj(x̄) ≥
l∑

j=1

τ̄j(dgj)+(
x̄;η

(
E(x), x̄

))
.
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On adding the above two inequalities
[{

w̄LFL(x) + w̄U FU (x) +
l∑

j=1

τ̄jgj(x)

}

–

{

w̄LFL(x̄) + w̄U FU (x̄) +
l∑

j=1

τ̄jgj(z̄)

}]

≥ w̄L(dFL)+(
x̄;η

(
E(x), x̄

))
+ w̄U(

dFU)+(
x̄;η

(
E(x), x̄

))
+

l∑

j=1

τ̄j(dgj)+(
x̄;η

(
E(x), x̄

))
.

The above inequality together with given assumption (i) gives

w̄LFL(x̄) + w̄U FU (x̄) +
l∑

j=1

τ̄jgj(x̄) ≤ w̄LFL(x) + w̄U FU (x) +
l∑

j=1

τ̄jgj(x),

i.e., L
(
x̄, w̄L, w̄U , τ̄

) ≤ L
(
x, w̄L, w̄U , τ̄

)
. (5.3)

As x̄ is feasible to (IVP) and τ ∈R
l
+, then

l∑

j=1

τjgj(x̄) ≤ 0. (5.4)

By inequality (5.4) with assumption (ii), we find that

L
(
x̄, w̄L, w̄U , τ

) ≤ L
(
x̄, w̄L, w̄U , τ̄

)
. (5.5)

From (5.3) and (5.5), it is clear that (x̄, w̄L, w̄U , τ̄ ) is a saddle point of L(x, wL, wU , τ ). �

Theorem 5.3 Let E(x̄) = x̄ and x̄ be an LU optimal solution to (IVP), with all functions FL,
FU , and gj being E-η-semidifferentiable at x̄. Suppose that there exist scalars w̄L, w̄U (> 0) ∈
R, and τ̄j(≥ 0) ∈R, j = 1, 2, . . . , l, such that

(i) w̄L(dFL)+(
x̄;η

(
E(x), x̄

))
+ w̄U(

dFU)+(
x̄;η

(
E(x), x̄

))

+
l∑

j=1

τ̄j(dgj)+(
x̄;η

(
E(x), x̄

)) ≥ 0, ∀x ∈ X,

(ii)
l∑

j=1

τ̄jgj(x̄) = 0,

(iii) w̄LFL + w̄U FU +
l∑

j=1

τ̄jgj is semilocal E-preinvex at x̄.

Then (x̄, w̄L, w̄U , τ̄ ) is a saddle-point of L(x, wL, wU , τ ).

Proof Assumption (i), together with the semilocal E-preinvexity of w̄LFL + w̄U FU +
∑l

j=1 τ̄jgj with respect to η at x̄, yields

w̄LFL(x̄) + w̄U FU (x̄) +
l∑

j=1

τ̄jgj(x̄) ≤ w̄LFL(x) + w̄U FU (x) +
l∑

j=1

τ̄jgj(x).

Now, the rest of the proof is the same as the proof of Theorem 5.2. �
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6 Conclusions
We have considered interval-valued programming problems (IVP) for E-η-semidifferenti-
able functions. We established sufficient optimality conditions for (IVP) and illustrated the
result with the help of an example. We formulated the Wolfe type and Mond–Weir type
dual models for (IVP) and established the usual duality results for the described models.
Further, we presented the saddle-point optimality criteria to establish the relation between
an optimal solution of semidifferentiable (IVP) and a saddle point of the Lagrangian func-
tion. In the future, the results obtained in this paper can be extended to multiobjective
case and generalized type-I functions.
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