
Edely and Mursaleen Journal of Inequalities and Applications         (2021) 2021:34 
https://doi.org/10.1186/s13660-021-02564-4

R E S E A R C H Open Access

On statistical A-Cauchy and statistical
A-summability via ideal
Osama H.H. Edely1 and M. Mursaleen2,3*

*Correspondence:
mursaleenm@gmail.com
2Department of Mathematics,
Aligarh Muslim University, Aligarh,
202002, India
3Department of Medical Research,
China Medical University Hospital,
China Medical University (Taiwan),
Taichung, Taiwan
Full list of author information is
available at the end of the article

Abstract
The notion of statistical convergence was extended to I-convergence by (Kostyrko et
al. in Real Anal. Exch. 26(2):669–686, 2000). In this paper we use such technique and
introduce the notion of statistically AI-Cauchy and statistically AI∗

-Cauchy
summability via the notion of ideal. We obtain some relations between them and
prove that under certain conditions statistical AI-Cauchy and statistical AI∗

-Cauchy
summability are equivalent. Moreover, we give some Tauberian theorems for
statistical AI-summability.
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1 Introduction and preliminaries
Fast [10], introduced the notion of statistical convergence, which is an extension of con-
vergence. A sequence η = (ηk) in R is statistically convergent to the number s if the set
K(ε) = {k ≤ n : |ηk – s| ≥ ε,∀ε > 0} has natural density 0; δ(K(ε)) = limn

|K (ε)|
n = 0, where

| · | indicates the number of elements in the set. We write st-limη = s. More generalization
and application on this work can be found in ([1, 5, 8, 12, 14, 16, 23, 27]). One of such gen-
eralizations is the ideal (or I)-convergence [18] which generalizes the usual convergence
as well as the statistical convergence.

A non-empty class I (F , resp.) ⊆P(X) of subsets of X �= ∅ is called ideal (filter, resp.) if
(i) ∅ ∈ I (∅ /∈ F , resp.), (ii) (D1 ∪ D2 for D1,D2 ∈ I) (D1 ∩ D2 for D1,D2 ∈ F , resp.) ∈ I

(∈ F , resp.), (iii) D1 ∈ I, D2 ⊆ D1 (D1 ∈ F ,D2 ⊇ D1, resp.) ⇒ D2 ∈ I (D2 ∈ F , resp.). An
ideal I is called non-trivial if I �= ∅, X /∈ I, and is called admissible if {a} ∈ I, for each
a ∈X.

Let I be a non-trivial ideal in X, the filter FI = {M = X \ A : A ∈ I} is called the filter
associated with the ideal I. Recall that a real sequence η = (ηk) is said to be I-convergent
to s ∈ R if {k : |ηk – s| ≥ ε, for every ε > 0} ∈ I, and we write I-limk ηk = s, [18]. More
generalization and recent work can be found in ([3, 15, 17, 21, 22, 24, 25, 28, 29]).

Let A = (ank) be an infinite matrix and η = (ηk) be a number sequence. By Aη = (An(η)),
we denote the A-transform of the sequence η = (ηk), where An(η) =

∑∞
k=1 ankηk . A matrix
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A is regular if A-transforms c into c and limn An(η) = limk ηk for all η ∈ c; the space of all
convergent sequences. Let � denote the class of all nonnegative regular matrices. In [29],
Savas et al. introduced the following definition. Let A = (ank) ∈ �. A real sequence η = (ηk)
is AI-summable to s ∈ R if the sequence (An(η)) is I-convergent to s, which we write
AI-limk ηk = s. Notice that, if I = Iδ = {E ⊆ N : δ(E) = 0}, then AI-summability becomes
statistical A-summability due to [9].

Recently, Edely [6] introduced the notion of AI∗ -summability and gave some relations
with AI-summability.

Definition 1.1 ([6]) Let I be a non-trivial admissible ideal in N and A = (ank) ∈ �. We say
that a sequence η = (ηk) is AI∗ -summable to s if there is a set H ∈ I such that M = N \H =
{m1, m2, . . .} ∈FI, and limi

∑
k amikηk = limi ymi = s. In this case we write AI∗ -limηk = s.

Theorem 1.1 ([6]) Let I be a non-trivial admissible ideal in N.
(a) If AI∗ -limηk = s then AI-limηk = s.
(b) If I satisfies the condition (AP) and AI-limηk = s, then AI∗ -limηk = s.

Definition 1.2 ([28]) A real sequence η = (ηk) is I-statistically convergent to s ∈R if ∀ε >
0 and ν > 0,

{

n :
1
n

∣
∣
{

k ≤ n : |ηk – s| ≥ ε
}∣
∣ ≥ ν

}

∈ I

then we write I-st limk ηk = s.

Remark 1.1 If I = Ifin = {E ⊆N : E is finite}, then I-statistical convergence coincides with
the statistical convergence due to Fast [10].

Recently, Edely [7] also introduced the notion of statistically AI and statistically AI∗ -
summable and gave some relations.

Definition 1.3 ([7]) Let A = (ajk) ∈ �. A sequence η = (ηk) is statistically AI-summable
to s if ∀ε > 0 and every ν > 0,

{

n ∈ N :
1
n

∣
∣
{

j ≤ n : |yj – s| ≥ ε
}∣
∣ ≥ ν

}

∈ I,

where yj = Aj(η). Thus η is statistically AI-summable to s iff the sequence (yj) is I-
statistically convergent to s, then we write (AI)st-limη = I-st lim Aη.

Remark 1.2 (a) If I = Ifin, then statistical AI-summable coincides with the statistical A-
summable due to Edely and Mursaleen [9].

(b) If A = I the identity matrix, then statistical AI-summable coincides with the I-
statistical convergence due to Savas et al. [28]. If I = Iδ and A = (C, 1) the Cesàro matrix
of order 1, then it reduces to statistical summability (C, 1) due to Móricz [20].

Definition 1.4 ([7]) Let A = (ajk) ∈ �. A sequence η = (ηk) is statistically AI∗ -summable
to s if there is a set M = {mi}, where m1 < m2 < · · · and M ∈FI, δ(M) = 1, such that

st – lim
i
Amiη = st – lim

i
ymi = s,
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where ymi =
∑

k amikηk i.e. (Amiη) is statistically convergent to s, and we write (AI∗ )st-
limη = I∗-st limAη = s.

Remark 1.3 IfA = I , the identity matrix, then η is I∗-statistically convergent to the number
s, and we write I∗ – st limη = s.

Theorem 1.2 ([7]) (a) If (AI∗ )st-limηk = s then (AI)st-limηk = s.
(b) If I satisfies the condition (APO), then whenever (AI)st-limηk = s we have (AI∗ )st-

limk ηk = s.

Corollary 1.1 (a) If I∗-st limηk = s then I-st limηk = s.
(b) If I satisfies the condition (APO), then whenever I-st limηk = s we have I∗-st limηk =

s.

Recall that I satisfies the (APO) condition (cf. [2, 11]), if for every sequence (Cn) of (pair-
wise disjoint) sets from I such that δ(Cn) = 0 for each n, then there exist sets Dn ∈ I, n ∈N

such that the symmetric difference Cn�Dn is finite for every n,
⋃

n Dn ∈ I, δ(
⋃

n Dn) = 0.

Remark 1.4 In what follows, I will be a non-trivial admissible ideal in N.

In this paper we use a technique and introduce the notion of statistically AI-Cauchy and
statistically AI∗ -Cauchy summability via the notion of ideal. We obtain some relations be-
tween them and prove that under certain conditions statistical AI-Cauchy and statistical
AI∗ -Cauchy summability are equivalent. Moreover, we give some Tauberian theorems for
statistical AI-summability.

2 Some related concepts
The concept of I-limit superior and inferior of a real sequence was given in [3], see also
[17]. In this section we define and study some relations of statistically AI-limit superior
and statistically AI-limit inferior of a real number sequence η = (ηk).

Definition 2.1 Let A = (ajk) ∈ � and η = (ηk) be a real sequence. Let us write Gη and Fη ,
for some υ > 0, as

Gη =
{

g ∈R :
{

n ∈N :
1
n

∣
∣{j ≤ n : yj > g}∣∣ > υ

}

/∈ I

}

and

Fη =
{

f ∈R :
{

n ∈N :
1
n

∣
∣{j ≤ n : yj < f }∣∣ > υ

}

/∈ I

}

.

Then we define

(
A

I
)

st – lim supη = I – st lim supAη =

⎧
⎨

⎩

sup Gη if Gη �= ∅,

–∞ if Gη = ∅,



Edely and Mursaleen Journal of Inequalities and Applications         (2021) 2021:34 Page 4 of 11

and

(
A

I
)

st – lim infη = I – st lim infAη =

⎧
⎨

⎩

inf Fη if Fη �= ∅,

∞ if Fη = ∅.

Remark 2.1 If A = I , then the statistical AI-limit superior and statistical AI-limit infe-
rior of η reduced to I-statistical limit superior and inferior due to Mursaleen et al. [22].
Moreover if I = Ifin, then we have statistical limit superior and inferior cases due to [14].

The following result can be proved straightforward from Definition 2.1 and the least
upper bound argument.

Theorem 2.1 (a) If (AI)st-lim sup x = l1 is finite, then ∀ε > 0,

{

n ∈ N :
1
n

∣
∣{j ≤ n : yj > l1 – ε}∣∣ > υ

}

/∈ I (2.1)

for some υ > 0, and

{

n ∈ N :
1
n

∣
∣{j ≤ n : yj > l1 + ε}∣∣ > υ

}

∈ I, (2.2)

for all υ > 0. Conversely If (2.1) and (2.2) hold ∀ε > 0, then (AI)st-lim supη = l1.
(b) If (AI)st-lim infη = l2 is finite, then ∀ε > 0,

{

n ∈ N :
1
n

∣
∣{j ≤ n : yj < l2 + ε}∣∣ > υ

}

/∈ I (2.3)

for some υ > 0, and

{

n ∈ N :
1
n

∣
∣{j ≤ n : yj < l2 – ε}∣∣ > υ

}

∈ I (2.4)

for all υ > 0. Conversely If (2.3) and (2.4) hold for every ε > 0, then (AI)st-lim infη = l2.

Definition 2.2 Let A = (ajk) ∈ �. Then η = (ηk) is said to be statistically AI-bounded if
there is a number t ∈R such that, for any υ > 0,

{

n ∈ N :
1
n

∣
∣
{

j ≤ n : |yj| > t
}∣
∣ > υ

}

∈ I.

Remark 2.2 (a) If A = I , then the statistical AI-boundedness reduces to I-statistical
boundedness due to [22]. Moreover if I = Ifin, then we have the statistical bounded case
of η due to [14].

(b) Statistical AI-boundedness implies that (AI)st-lim infη and (AI)st-lim supη are fi-
nite.

(c) If η ∈ 	∞, then η is statistically AI-bounded.
(d) If η is statistically AI-summable then η is statistically AI-bounded.
The following theorems can be directly obtained from Theorem 3.2 and Theorem 3.4 of

[22].
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Theorem 2.2 Let A = (ajk) ∈ �. Then, for any real sequence η = (ηk),

(
A

I
)

st – lim infη ≤ (
A

I
)

st – lim supη.

Remark 2.3 From Definition 2.1 and Theorem 2.2, we have, for any real sequence η,

lim infη ≤ (
A

I
)

st – lim infη ≤ (
A

I
)

st – lim supη ≤ lim supη.

Theorem 2.3 Let A = (ajk) ∈ � and η = (ηk) be statistically AI-bounded. Then η is statis-
tically AI-convergent iff (AI)st-lim supη = (AI)st-lim infη.

Example 2.1 Let Bi be mutually disjoint infinite sets such that N =
⋃∞

i=1 Bi. Let I be the
class defined as

I = {B ⊂N : B intersects only finite numbers of Bi},

then I is a non-trivial admissible ideal in N. Define η = (ηk) as

ηk =

⎧
⎨

⎩

1 if k ∈ Bi, k is odd,

0 otherwise,

and let A = (ajk) be the identity matrix.
Since η is bounded, η is statistically AI-bounded. Since Gη = (–∞, 1) and Fη = (0,∞),

we have (AI)st-lim infη = 0, and (AI)st-lim supη = 1. Hence η is not statistically AI-
convergent.

Example 2.2 Let I and A be defined as in Example 2.1. Define η = (ηk) as

ηk =

⎧
⎨

⎩

k if k ∈ B1,

0 otherwise.

Then, for any υ > 0,

{

n ∈ N :
1
n

∣
∣
{

j ≤ n : |yj| > 1
}∣
∣ > υ

}

∈ I,

hence η is statistically AI-bounded. Since Gη = (–∞, 0) and Fη = (0,∞), we have (AI)st-
lim infη = 0, and (AI)st-lim supη = 0. Hence η is statistically AI-convergent to zero.

3 Statistical AI-Cauchy and statistical AI∗
–Cauchy summability

Fridy [12], introduced the concept of Cauchy condition for statistical convergence for real
sequences. In [4, 19] and [26] the notion of I-Cauchy sequence was studied which is a gen-
eralization of Cauchy condition for statistical convergence. Nabiev et al. [26] introduced
the notion of a I∗-Cauchy sequence and proved that under certain conditions a I∗-Cauchy
sequence is equivalent to a I-Cauchy sequence.
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Definition 3.1 ([4, 26]) A real sequence η = (ηn) is a I-Cauchy sequence if ∀ε > 0 there
exists k = k(ε) ∈N such that

{
n : |ηn – ηk| ≥ ε

} ∈ I.

Definition 3.2 ([26]) A real sequence η = (ηn) is called an I∗-Cauchy sequence if there
exists a set M = {m1 < m2 < · · · < mk < · · · } ⊂ N, M ∈ FI such that the subsequence (ηmk )
is Cauchy in R.

We introduce the notion of statisticallyAI-Cauchy and statisticallyAI∗ -Cauchy summa-
bility.

Definition 3.3 Let A = (ajk) ∈ �. A real sequence η = (ηk) is statistically AI-Cauchy
summable if for any ε > 0 and ∀ν > 0 there is N = N(ε) ∈N such that

{

j ≤ n :
1
n

∣
∣
{|yj – yN | ≥ ε

}∣
∣ ≥ ν

}

∈ I.

Definition 3.4 Let A = (ajk) ∈ �. A real sequence η = (ηk) is statistically AI∗ -Cauchy
summable if there is a set M = {m1, m2, . . .}, where m1 < m2 < · · · , and M ∈F (I), δ(M) = 1,
such that the subsequence (ymi ) is statistically Cauchy in R.

Now, we give some relations between statistical AI (or statistical AI∗ )-summability and
statistical AI (or statistical AI∗ )-Cauchy summability.

Theorem 3.1 A real sequence η is statistically AI∗ -summable to s if and only if η is sta-
tistically AI∗ -Cauchy summable.

Proof The proof follows from Definition 1.4 and Definition 3.4 and using Theorem 1 of
[12]; statistical convergence is equivalent to the statistical Cauchy for R. �

Theorem 3.2 A real sequence η = (ηk) is statistically AI-summable to s iff η is statistically
AI-Cauchy summable.

Proof Let (AI)st-limηk = s, then, for any ε > 0 and ∀ν > 0, we have the set

B(ν) =
{

n :
1
n

∣
∣
∣
∣

{

j ≤ n : |yj – s| ≥ ε

2

}∣
∣
∣
∣ ≥ ν

}

∈ I.

Let us define B and C by

B =
{

j ≤ n : |yj – s| ≥ ε

2

}

and

C =
{

j ≤ n : |yj – yN | ≥ ε
}

,
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where N /∈ B, such N exists as I is an admissible ideal, otherwise the set B( 1
2 ) = N /∈ I. We

need first to show that C ⊆ B. Now for any c ∈ C, since

|yc – yN | ≤ |yc – s| + |yN – s|,

we have

|yc – s| + |yN – s| ≥ ε.

Since N /∈ B, we have

|yN – s| <
ε

2
,

therefore

|yc – s| >
ε

2
.

Hence c ∈ B. So we have C ⊆ B, therefore

1
n

|C| ≤ 1
n

|B|.

Hence for any ν > 0, we have

{

n :
1
n

|C| ≥ ν

}

⊆
{

n :
1
n

|B| ≥ ν

}

= B(ν) ∈ I.

Therefore {n : 1
n |{j ≤ n : |yj – yN | ≥ ε}| ≥ ν} ∈ I, hence η is statistically AI-Cauchy

summable.
Conversely, let η be statistically AI-Cauchy summable. Then, for any ε > 0 and ∀ν > 0,

there exists N = N(ε) ∈N such that

F(υ) =
{

n :
1
n

∣
∣
∣
∣

{

j ≤ n : |yj – yN | ≥ ε

2

}∣
∣
∣
∣ ≥ ν

}

∈ I,

therefore

G(ν) =
{

n :
1
n

∣
∣
∣
∣

{

j ≤ n : |yj – yN | ≥ ε

2

}∣
∣
∣
∣ < ν

}

∈FI.

First, let us show that η is statistically AI-bounded. Let us define F and G by

F =
{

j : |yj – yN | <
ε

2

}

and

G =
{

j : |yj| < ε + |yt|
}

,
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where t ∈ N satisfied |yt – yN | < ε
2 , such t exists as I is an admissible ideal, otherwise, the

set F( 1
2 ) = N /∈ I . We need first to show that F ⊆ G. Now for any a ∈ F , since

|ya – yt| ≤ |ya – yN | + |yN – yt| < ε.

Therefore

|ya| ≤ |ya – yt| + |yt| < ε + |yt|,

hence a ∈ G. So we have F ⊆ G, therefore

1
n

|F| ≤ 1
n

|G|.

Hence for any ν > 0, we have

{

n :
1
n

|F| > ν

}

⊆
{

n :
1
n

|G| > ν

}

.

Since G(ν) ∈FI, we have {n : 1
n |F| > ν} ∈FI, therefore {n : 1

n |G| > ν} ∈FI, so the set

{

n :
1
n

∣
∣
{

j ≤ n : |yj| < ε + |yt|
}∣
∣ > ν

}

∈FI,

i.e.
{

n :
1
n

∣
∣
{

j ≤ n : |yj| > ε + |yt|
}∣
∣ < ν

}

∈FI,

hence, the set

{

n :
1
n

∣
∣
{

j ≤ n : |yj| > ε + |yt|
}∣
∣ > ν

}

∈ I,

so η is statistically AI-bounded. We use that statistical AI-boundedness implies that
(AI)st-lim infη and (AI)st-lim supη are finite. Using Theorem 2.2, we have α = (AI)st-
lim infη ≤ (AI)st-lim supη = β . Given that η is statistically AI-Cauchy summable, then,
for any ε > 0 and ∀ν > 0, there exists N = N(ε) ∈N such that

{

n :
1
n

∣
∣
∣
∣

{

j ≤ n : |yj – yN( ε
2 )| ≥ ε

2

}∣
∣
∣
∣ ≥ ν

}

∈ I.

Therefore
{

n :
1
n

∣
∣
∣
∣

{

j ≤ n : yj > yN( ε
2 ) +

ε

2

}∣
∣
∣
∣ > ν

}

∈ I,

hence by Theorem 2.1(a), we have

β < yN( ε
2 ) +

ε

2
. (3.1)
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Also we have

{

n :
1
n

∣
∣
∣
∣

{

j ≤ n : yj < yN( ε
2 ) –

ε

2

}∣
∣
∣
∣ > ν

}

∈ I,

hence by Theorem 2.1(b), we have

yN( ε
2 ) < α +

ε

2
. (3.2)

Using (3.1) and (3.2), we have

β < α + ε.

Hence, for any ϑ > 0, we always have β < α + ϑ , therefore β ≤ α. Hence α = (AI)st-
lim infη = (AI)st-lim supη = β . Now by Theorem 2.3, η is statistically AI-convergent. �

Theorem 3.3 (a) If η = (ηk) is statistically AI∗ -Cauchy summable then η is statistically
AI-Cauchy summable.

(b) If I satisfies the condition (APO), then η is statistically AI∗ -Cauchy summable when-
ever η is statistically AI-Cauchy summable.

Proof (a) The proof follows from Theorem 3.1, Theorem 1.2(a) and Theorem 3.2.
(b) The proof follows from Theorem 3.2, Theorem 1.2(b) and Theorem 3.1. �

Remark 3.1 The converse of Theorem 3.3 (a) is not true in general.

Example 3.1 In [7] Example 2.9, the following example was given.
Let Bi = {2i–1(2k – 1) : k ∈N} be mutually disjoint infinite sets such that N =

⋃∞
i=1 Bi. Let

I be the class defined as

I =
{

B ⊂N : B intersects only finite numbers of B′
is
}

,

then I is a non-trivial admissible ideal in N. Define η = (ηk) by

ηk =
1
i

, k ∈ Bi,

and A = (ajk) by

ajk =

⎧
⎨

⎩

1 if k = j2,

0 otherwise.

It is shown that η is statistically AI-summable to zero but η is not statistically AI∗ -
summable to any number. Hence from Theorem 3.1 and Theorem 3.2 we conclude that η

is statistically AI-Cauchy summable but η is not statistically AI∗ -Cauchy summable.
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4 Some Tauberian theorems
In [12], a Tauberian theorem was given for statistical convergence. The next results are
Tauberian theorems for statistical AI-summability. Let τ denote the collection of lower
triangular nonnegative summability matrices A with (i)

∑n
k=1 ank = 1 and (ii) if K ⊆N such

that δ(K) = 0, then limn
∑

k∈K ank = 0, (cf. [13]). From these conditions any A ∈ τ is regular.
Let us denote �ηk = ηk – ηk+1.

Theorem 4.1 Let I be a non-trivial admissible ideal in N which satisfies the condition
(APO). Let A = (ajk) ∈ τ and η = (ηk) be a bounded sequence. If η is statistically AI-
summable to s and �Ami (η) = O( 1

mi
), where M = {mi} ∈ FI, then η is I-statistically con-

vergent to s.

Proof Let η be statistically AI-summable to s and I satisfy the condition (APO). From
Theorem 1.2(b), η is statistically AI∗ -summable to s. Since �Ami (η) = O( 1

mi
), so by Theo-

rem 3 of [12], η is AI∗ -summable to s. Since A = (ajk) ∈ τ , we have A = (amik) ∈ τ . There-
fore by Theorem 1 of Fridy and Miller [13], η is I∗-statistically convergent to s. Hence by
Corollary 1.1(a), η is I-statistically convergent to s. �

Corollary 4.1 Let I be a non-trivial admissible ideal in N which satisfies the condition
(APO). Let A = (ajk) ∈ τ and η = (ηk) be a bounded sequence. If η is statistically AI-
summable to s and �Ami (η) = O( 1

mi
), where M = {mi} ∈ FI, then η is AI-summable to

s.

Theorem 4.2 Let I be a non-trivial admissible ideal in N which satisfies the condition
(APO). Let η = (ηk) be a bounded sequence. If η is I-statistically convergent to s and �ηmi =
O( 1

mi
), where M = {mi} ∈F (I), then η is I-convergent to s.

Proof Let η be I-statistically convergent to s. Since I satisfies the condition (APO), from
Corollary 1.1(b), η is I∗-statistically convergent to s. Since �ηmi = O( 1

mi
), by Theorem 3

of [12], η is I∗-convergent to s. Now by Proposition 3.2 of [18], η is I-convergent to s. �
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18. Kostyrko, P., Šalát, T., Wilczyńki, W.: I-convergence. Real Anal. Exch. 26(2), 669–686 (2000)
19. Lahiri, B.K., Das, P.: Further results on I-limit superior and limit inferior. Math. Commun. 8(2), 151–156 (2003)
20. Moricz, F.: Tauberian conditions under which statistical convergence follows from statistical summability (C, 1).

J. Math. Anal. Appl. 275, 277–287 (2002)
21. Mursaleen, M., Alotaibi, A.: On I-convergence in random 2-normed spaces. Math. Slovaca 61(6), 933–940 (2011)
22. Mursaleen, M., Debnath, S., Rakshit, D.: I-statistical limit superior and I-statistical limit inferior. Filomat 31(7), 2103–2108

(2017)
23. Mursaleen, M., Edely, O.H.H.: Generalized statistical convergence. Inf. Sci. 162(3–4), 287–294 (2004)
24. Mursaleen, M., Mohiuddine, S.A.: On ideal convergence in probabilistic normed spaces. Math. Slovaca 62, 49–62

(2012)
25. Mursaleen, M., Mohiuddine, S.A., Edely, O.H.H.: On the ideal convergence of double sequences in intuitionistic fuzzy

normed spaces. Comput. Math. Appl. 59(2), 603–611 (2010)
26. Nabiev, A., Pehlivan, S., Gurdal, M.: On I-Cauchy sequences. Taiwan. J. Math. 11(2), 569–576 (2007)
27. Šalát, T.: On statistically convergent sequences of real numbers. Math. Slovaca 30, 139–150 (1980)
28. Savas, E., Das, P.: A generalized statistical convergence via ideals. Appl. Math. Lett. 24(6), 826–830 (2011)
29. Savas, E., Das, P., Dutta, S.: A note on some generalized summability methods. Acta Math. Univ. Comen. 82(2),

297–304 (2013)


	On statistical A-Cauchy and statistical A-summability via ideal
	Abstract
	MSC
	Keywords

	Introduction and preliminaries
	Some related concepts
	Statistical AI-Cauchy and statistical AI*-Cauchy summability
	Some Tauberian theorems
	Acknowledgements
	Funding
	Availability of data and materials
	Competing interests
	Authors' contributions
	Author details
	Publisher's Note
	References


