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Abstract
Recent studies show that the filter method has good numerical performance for
nonlinear complementary problems (NCPs). Their approach is to reformulate an NCP
as a constrained optimization solved by filter algorithms. However, they can only
prove that the iterative sequence converges to the KKT point of the constrained
optimization. In this paper, we investigate the relation between the KKT point of the
constrained optimization and the solution of the NCP. First, we give several sufficient
conditions under which the KKT point of the constrained optimization is the solution
of the NCP; second, we define regular conditions and regular point which include and
generalize the previous results; third, we prove that the level sets of the objective
function of the constrained optimization are bounded for a strongly monotone
function or a uniform P-function; finally, we present some examples to verify the
previous results.
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1 Introduction
Consider the following nonlinear complementarity problem (NCP):

find x ∈R
n such that x ≥ 0, F(x) ≥ 0, and xT F(x) = 0, (1.1)

where F : Rn → R
n is continuously differentiable everywhere and the superscript T de-

notes the transpose operator. When F(x) = Mx + q, with M ∈ R
n×n and q ∈ R

n, the NCP
becomes a linear complementarity problem.

Nonlinear complementarity problems have many important applications in engineering
and equilibrium modeling [10, 12, 18, 28], and many numerical methods are developed to
solve NCPs [1, 6, 17, 29, 32, 38]. Based on NCP functions some researchers try to solve
NCPs by reformulating them as an unconstrained optimization [5, 9, 11, 14]. Under some
assumptions, the solutions of NCPs are obtained by solving these problems. Subsequently,
derivative-free algorithms for NCPs are presented [3–5, 11, 14, 17, 19, 23, 25, 37, 40].

In the last 18 years, the filter method [7, 8, 13, 15, 16, 30, 33–35] has been regarded
as an efficient constrained optimization method. The advantage of this method is that
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trial points are accepted if they improve the objective function or improve the constraint
violation instead of a combination of those two measures defined by a merit function.
Recently, some authors [21, 22, 27, 31, 36, 39] have naturally reformulated the NCP as an
inequality constrained optimization:

min �(x) =
1
2

n∑

i=1

[
Fi(x)xi

]2 (1.2a)

subject to Fj(x) ≥ 0, j ∈ {1, 2, . . . , n}, (1.2b)

xj ≥ 0, j ∈ {1, 2, . . . , n}, (1.2c)

and obtained good numerical performance by filter algorithms. However, they can only
prove that the iterative sequence converges to the KKT point of the constrained optimiza-
tion. The relation between the KKT point of constrained optimization (1.2a)–(1.2c) and
the solution of NCP (1.1) has not been studied. What are the conditions for the KKT point
of (1.2a)–(1.2c) to be the solution of (1.1)? This is an interesting question which should be
answered.

From the above discussion, we shall study the relation between the solution of the NCP
and the KKT point of (1.2a)–(1.2c) and propose several sufficient (and necessary) condi-
tions for the KKT point of (1.2a)–(1.2c) to be the solution of the NCP. This work explains
the relation between an optimization and an NCP and provides the theoretical basis of
filter algorithms for the NCP. The paper is outlined as follows. In Sect. 2, we recall some
definitions and basic facts; we give several sufficient conditions in Sect. 3; the definitions
of the regular point and regular conditions are proposed in Sect. 4; the boundedness of
level sets is discussed in Sect. 5; some numerical results are presented to verify previous
results in Sect. 6.

Notation: Given F : Rn → R
n, the ith component function is denoted by Fi(x). F ′(x) is

the Jacobian of F at x ∈ R
n. ∇F(x) = [∇F1(x), . . . ,∇Fn(x)] denotes the transpose Jacobian

of F at x. ei ∈R
n denotes the ith column of the identity matrix In. x ◦ y = (x1y1, . . . , xnyn)T .

2 Preliminaries
In this section, we recall some background concepts and materials.

Definition 1 ([14]) A function F : Rn →R
n is called

(1) monotone if, for all x, y ∈ R
n,

(x – y)T[
F(x) – F(y)

] ≥ 0;

(2) strictly monotone if, for all x, y ∈R
n with x �= y,

(x – y)T[
F(x) – F(y)

]
> 0;

(3) strongly monotone (with modulus ω > 0) if, for all x, y ∈R
n,

(x – y)T[
F(x) – F(y)

] ≥ ω‖x – y‖2.
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Obviously, strongly monotone functions are strictly monotone, and strictly monotone
functions are monotone.

Lemma 1 ([14]) For a continuously differentiable function F : Rn →R
n,

(1) F is monotone if and only if F ′(x) is positive semidefinite for all x ∈R
n;

(2) F is strictly monotone if F ′(x) is positive definite for all x ∈R
n;

(3) F is strongly monotone if F ′(x) is uniformly positive definite, i.e., dT F ′(x)d ≥ ω‖d‖2

for some ω > 0 and all x, d ∈R
n.

Note that the converse direction in Lemma 1(2) is not correct in general. A solution
x∗ ∈R

n of the NCP is said to be nondegenerate if x∗
i + Fi(x∗) > 0 for all i ∈ I , and degenerate

otherwise.

Lemma 2 ([14]) Assume that F : Rn →R
n is a continuous and strongly monotone function.

Then NCPs have at most one solution.

Definition 2 ([11]) A matrix M ∈R
n×n is said to be a P0-matrix if all its principal minors

are nonnegative.

Lemma 3 ([11]) A matrix M ∈R
n×n is a

(1) P0-matrix if every of its principal minors is nonnegative;
(2) P-matrix if every of its principal minors is positive;
(3) R0-matrix if the linear complementarity problem

Mx ≥ 0, x ≥ 0, xT Mx = 0

has 0 as its unique solution.

It is obvious that every P-matrix is also a P0-matrix, and it is known that every P-matrix
is an R0-matrix. We shall also need the following characterization of P0(P)-matrices.

Lemma 4 ([11]) A matrix M ∈ R
n×n is a P0(P)-matrix if and only if, for every nonzero

vector x, there exists an index i such that xi �= 0 and xi(Mx)i ≥ (>)0.

Lemma 5 ([11]) A function F : Rn →R
n is a

(1) P0-function if, for every x and y in R
n with x �= y, there is an index i such that

xi �= yi, (xi – yi)
[
Fi(x) – Fi(y)

] ≥ 0;

(2) P-function if, for every x and y in R
n with x �= y, there is an index i such that

(xi – yi)
[
Fi(x) – Fi(y)

]
> 0;

(3) uniform P-function if there exists a positive constant ω > 0 such that, for every x and y
in R

n, there is an index i such that

(xi – yi)
[
Fi(x) – Fi(y)

] ≥ ω‖x – y‖2.



Wang et al. Journal of Inequalities and Applications         (2021) 2021:30 Page 4 of 22

It is obvious that every monotone function is a P0-function, every strictly mono-
tone function is a P-function, and every strongly monotone function is a uniform P-
function. Furthermore, it is known that the Jacobian of every continuously differentiable
P0-function is a P0-matrix and that if the Jacobian of a continuously differentiable func-
tion is a P-matrix for every x, then the function is a P-function. If F is affine (that is, if
F(x) = Mx + q), then F is a P0-function if M is a P0-matrix. F is a (uniform) P-function
if M is a P-matrix (note that in the affine case, the concepts of uniform P-function and
P-function coincide).

3 Sufficient conditions
In this paper, NCP (1.1) is transformed into the following equivalent inequality and non-
negative constrained optimization:

min �(x) =
1
2

n∑

i=1

[
Fi(x)xi

]2 (3.1a)

subject to Fj(x) ≥ 0, j ∈ {1, 2, . . . , n}, (3.1b)

xj ≥ 0, j ∈ {1, 2, . . . , n}. (3.1c)

The KKT conditions of (3.1a)–(3.1c) are

( n∑

i=1

Fi(x)∇Fi(x)x2
i + F2

i (x)xiei

)
– ∇F(x)μ – ν = 0, (3.2a)

F(x) ≥ 0, x ≥ 0, (3.2b)

μ ◦ F(x) = 0, ν ◦ x = 0, (3.2c)

μ ≥ 0, ν ≥ 0, (3.2d)

where μ,ν ∈R
n are the vectors of multipliers corresponding to inequalities.

Remark 1 Previous algorithms [21, 22, 27, 31, 36, 39] treat nonnegative constraints as
inequality constraints. In the following analysis we need to discuss inequality constraints
and nonnegative constraints, respectively.

Lemma 6 Suppose that the NCP has at least one solution. Then x∗ solves NCP (1.1) if and
only if x∗ is a global minima of constrained optimization (3.1a)–(3.1c).

The problem of finding a global minimum is quite difficult. It is therefore of interest
under which assumptions on the mapping F , the KKT point of (3.1a)–(3.1c) are global
minima. Because of the existence of multipliers in KKT conditions (3.2a)–(3.2d), it is com-
plex. First, using the relation between constraints and the objective function, we arrange
the KKT conditions of (3.1a)–(3.1c).
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Lemma 7 Suppose that x∗ is a KKT point of (3.1a)–(3.1c). Then there exist μ∗,ν∗ ≥ 0 such
that

∇F
(
x∗)

⎛

⎜⎜⎝

(x∗
1)2F1(x∗) – μ∗

1
...

(x∗
n)2Fn(x∗) – μ∗

n

⎞

⎟⎟⎠ +

⎛

⎜⎜⎝

x∗
1F2

1 (x∗) – ν∗
1

...
x∗

nF2
n(x∗) – ν∗

n

⎞

⎟⎟⎠ = 0. (3.3)

Proof From assumptions there exist μ∗,ν∗ ≥ 0 such that

( n∑

i=1

Fi
(
x∗)∇Fi

(
x∗)(x∗

i
)2 + F2

i
(
x∗)x∗

i ei

)
– ∇F

(
x∗)μ∗ – ν∗ = 0, (3.4a)

F
(
x∗) ≥ 0, x∗ ≥ 0, (3.4b)

μ∗ ◦ F
(
x∗) = 0, ν∗ ◦ x∗ = 0, (3.4c)

μ∗ ≥ 0, ν∗ ≥ 0. (3.4d)

Denote ∇F(x∗) = (∇F1(x∗), . . . ,∇Fn(x∗)), then we have

0 = ∇F
(
x∗)

⎛

⎜⎜⎝

(x∗
1)2F1(x∗)

...
(x∗

n)2Fn(x∗)

⎞

⎟⎟⎠ +

⎛

⎜⎜⎝

x∗
1F2

1 (x∗)
...

x∗
nF2

n(x∗)

⎞

⎟⎟⎠ – ∇F
(
x∗)

⎛

⎜⎜⎝

μ∗
1

...
μ∗

n

⎞

⎟⎟⎠ –

⎛

⎜⎜⎝

ν∗
1
...

ν∗
n

⎞

⎟⎟⎠

= ∇F
(
x∗)

⎛

⎜⎜⎝

(x∗
1)2F1(x∗) – μ∗

1
...

(x∗
n)2Fn(x∗) – μ∗

n

⎞

⎟⎟⎠ +

⎛

⎜⎜⎝

x∗
1F2

1 (x∗) – ν∗
1

...
x∗

nF2
n(x∗) – ν∗

n

⎞

⎟⎟⎠ .
�

Remark 2 The relation between the objective function and constraints is the key to anal-
ysis.

Next, we introduce some index sets:

C :=
{

i ∈ I|xi ≥ 0, Fi(x) ≥ 0, xiFi(x) = 0
}

,

R := I\C,

and further partition the index set C as follows:

C1 :=
{

i ∈ C|xi > 0, Fi(x) = 0
}

,

C2 :=
{

i ∈ C|xi = 0, Fi(x) > 0
}

,

C3 := C\(C1 ∪ C2) =
{

i ∈ C|xi = 0, Fi(x) = 0
}

.

Theorem 1 Suppose that the mapping F has a positive semidefinite Jacobian F ′(x∗), then
x∗ is a global minima of constrained optimization (3.1a)–(3.1c) if and only if it is a KKT
point of (3.1a)–(3.1c).
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Proof Suppose that x∗ is a KKT point of (3.1a)–(3.1c), which implies that (3.3) holds. Sup-
pose the contrary, i.e., �(x∗) �= 0. Premultiplying (3.3) by

⎛

⎜⎜⎝

(x∗
1)2F1(x∗) – μ∗

1
...

(x∗
n)2Fn(x∗) – μ∗

n

⎞

⎟⎟⎠

T

,

we get

0 =

⎛

⎜⎜⎝

(x∗
1)2F1(x∗) – μ∗

1
...

(x∗
n)2Fn(x∗) – μ∗

n

⎞

⎟⎟⎠

T

∇F
(
x∗)

⎛

⎜⎜⎝

(x∗
1)2F1(x∗) – μ∗

1
...

(x∗
n)2Fn(x∗) – μ∗

n

⎞

⎟⎟⎠

+

⎛

⎜⎜⎝

(x∗
1)2F1(x∗) – μ∗

1
...

(x∗
n)2Fn(x∗) – μ∗

n

⎞

⎟⎟⎠

T ⎛

⎜⎜⎝

x∗
1F2

1 (x∗) – ν∗
1

...
x∗

nF2
n(x∗) – ν∗

n

⎞

⎟⎟⎠ .

Since ∇F(x∗) is positive semidefinite, we obtain that

⎛

⎜⎜⎝

(x∗
1)2F1(x∗) – μ∗

1
...

(x∗
n)2Fn(x∗) – μ∗

n

⎞

⎟⎟⎠

T

∇F
(
x∗)

⎛

⎜⎜⎝

(x∗
1)2F1(x∗) – μ∗

1
...

(x∗
n)2Fn(x∗) – μ∗

n

⎞

⎟⎟⎠ ≥ 0.

Hence

0 ≥

⎛

⎜⎜⎝

(x∗
1)2F1(x∗) – μ∗

1
...

(x∗
n)2Fn(x∗) – μ∗

n

⎞

⎟⎟⎠

T ⎛

⎜⎜⎝

x∗
1F2

1 (x∗) – ν∗
1

...
x∗

nF2
n(x∗) – ν∗

n

⎞

⎟⎟⎠ =
n∑

i=1

[(
x∗

i
)2Fi

(
x∗) – μ∗

i
][

x∗
i F2

i
(
x∗) – ν∗

i
]
.

There are four cases for μ∗ and ν∗:
(1) μ∗

R = 0 and ν∗
R = 0;

(2) μ∗
C2

= 0 and ν∗
C2

≥ 0;
(3) μ∗

C1
≥ 0 and ν∗

C1
= 0;

(4) μ∗
C3

≥ 0 and ν∗
C3

≥ 0.
So we have

n∑

i=1

[(
x∗

i
)2Fi

(
x∗) – μ∗

i
][

x∗
i F2

i
(
x∗) – ν∗

i
]

=
∑

i∈R

(
x∗

i
)2Fi

(
x∗) · x∗

i F2
i
(
x∗) +

∑

i∈C2

0 · (–ν∗
i
)

+
∑

i∈C1

–μ∗
i · 0 +

∑

i∈C3

μ∗
i · ν∗

i

=
∑

i∈R

(
x∗

i
)2Fi

(
x∗) · x∗

i F2
i
(
x∗) +

∑

i∈C3

μ∗
i · ν∗

i

> 0.
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Because
∑n

i=1[(x∗
i )2Fi(x∗) – μ∗

i ][x∗
i F2

i (x∗) – ν∗
i ] ≤ 0, it is a contradiction. Thus, �(x∗) = 0,

i.e., x∗ is a global minima of constrained optimization (3.1a)–(3.1c).
The global minima of the constrained optimization is obviously a KKT point of (3.1a)–

(3.1c). �

Corollary 1 Suppose that the mapping F is a monotone function, then x∗ solves NCP (1.1)
if and only if it is a KKT point of (3.1a)–(3.1c).

Proof Since the mapping F is a monotone function, the Jacobian F ′(x∗) of the mapping F
is a positive semidefinite matrix. �

Theorem 2 Suppose that the Jacobian F ′(x∗) of the mapping F is a P-matrix, then x∗ is a
global minima of constrained optimization (3.1a)–(3.1c) if and only if it is a KKT point of
(3.1a)–(3.1c).

Proof Suppose that x∗ is a KKT point of (3.1a)–(3.1c), then we know from Lemma 7 that

∇F
(
x∗)

⎛

⎜⎜⎝

(x∗
1)2F1(x∗) – μ∗

1
...

(x∗
n)2Fn(x∗) – μ∗

n

⎞

⎟⎟⎠ +

⎛

⎜⎜⎝

x∗
1F2

1 (x∗) – ν∗
1

...
x∗

nF2
n(x∗) – ν∗

n

⎞

⎟⎟⎠ = 0. (3.5)

Suppose the contrary, i.e., that x∗ is not the solution of the NCF, then R �= ∅. There are four
cases for μ∗ and ν∗ which are the same as those in Theorem 1. Without loss of generality
we have that

∇F
(
x∗)

⎛

⎜⎜⎜⎝

(x∗
R)2 ◦ FR(x∗)

0
–μ∗

C1

–μ∗
C3

⎞

⎟⎟⎟⎠ +

⎛

⎜⎜⎜⎝

x∗
R ◦ F2

R(x∗)
–ν∗

C2

0
–ν∗

C3

⎞

⎟⎟⎟⎠ = 0.

Since ∇F(x∗) is a P-matrix, for every nonzero vector x, there exists an index i such that
xi �= 0 and xi(∇F(x∗)x)i > 0. Because (x∗

R)2 ◦ FR(x∗) > 0, we know that

⎛

⎜⎜⎜⎝

(x∗
R)2 ◦ FR(x∗)

0
–μ∗

C1

–μ∗
C3

⎞

⎟⎟⎟⎠

is a nonzero vector, and there exists an index i ∈ R ∪ C1 ∪ C3 such that

⎛

⎜⎜⎜⎝

(x∗
R)2 ◦ FR(x∗)

0
–μ∗

C1

–μ∗
C3

⎞

⎟⎟⎟⎠

i

�= 0
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and

⎛

⎜⎜⎜⎝

(x∗
R)2 ◦ FR(x∗)

0
–μ∗

C1

–μ∗
C3

⎞

⎟⎟⎟⎠

T

i

⎛

⎜⎜⎜⎝∇F
(
x∗)

⎛

⎜⎜⎜⎝

(x∗
R)2 ◦ FR(x∗)

0
–μ∗

C1

–μ∗
C3

⎞

⎟⎟⎟⎠

⎞

⎟⎟⎟⎠

i

> 0. (3.6)

At the same time

⎛

⎜⎜⎜⎝

(x∗
R)2 ◦ FR(x∗)

0
–μ∗

C1

–μ∗
C3

⎞

⎟⎟⎟⎠

T

i

⎛

⎜⎜⎜⎝

x∗
R ◦ F2

R(x∗)
–ν∗

C2

0
–ν∗

C3

⎞

⎟⎟⎟⎠

i

=

⎧
⎪⎪⎨

⎪⎪⎩

((x∗
R)3F3

R(x∗))i > 0 if i ∈ R,

(–μ∗
C1

· 0)i = 0 if i ∈ C1,

(μ∗
C3

ν∗
C3

)i ≥ 0 if i ∈ C3,

≥ 0. (3.7)

It follows from (3.6) and (3.7) that

⎛

⎜⎜⎜⎝

(x∗
R)2 ◦ FR(x∗)

0
–μ∗

C1

–μ∗
C3

⎞

⎟⎟⎟⎠

T

i

⎛

⎜⎜⎜⎝∇F
(
x∗)

⎛

⎜⎜⎜⎝

(x∗
R)2 ◦ FR(x∗)

0
–μ∗

C1

–μ∗
C3

⎞

⎟⎟⎟⎠

⎞

⎟⎟⎟⎠

i

+

⎛

⎜⎜⎜⎝

(x∗
R)2 ◦ FR(x∗)

0
–μ∗

C1

–μ∗
C3

⎞

⎟⎟⎟⎠

T

i

⎛

⎜⎜⎜⎝

x∗
R ◦ F2

R(x∗)
–ν∗

C2

0
–ν∗

C3

⎞

⎟⎟⎟⎠

i

> 0,

which contradicts (3.5).
The global minima of the constrained optimization is obviously a KKT point of (3.1a)–

(3.1c). �

Corollary 2 Suppose that the mapping F is a P-function, then x∗ solves NCP (1.1) if and
only if it is a KKT point of (3.1a)–(3.1c).

Proof Since the mapping F is a P-function, the Jacobian F ′(x∗) of the mapping F is a P-
matrix. �

4 Regular conditions
In this section, we give some sufficient (and necessary) conditions for the KKT point of
(3.1a)–(3.1c) to be the solution of the NCP. We call these conditions regular conditions
which can be considered as a generalization of previous conclusions. First, we give the
definitions of regular point and regular conditions.

Definition 3 A point x ∈ R
n is called regular if, for every vector z ∈ R

n (z ≤ 0 does not
hold) with

zC ≤ 0, zR > 0, (4.1)
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there exists a vector y ∈R
n such that

yC2 ≤ 0, yC3 ≤ 0, yR ≥ 0, yR �= 0 or yC3 �= 0, (4.2)

and

yT∇F(x)z ≥ 0. (4.3)

Moreover, a point x ∈ R
n is called strictly regular if, for every vector z ∈ R

n (z ≤ 0 does
not hold) with

zC ≤ 0, zR > 0,

there exists a vector y ∈R
n such that

yC2 ≤ 0, yC3 ≤ 0, yR ≥ 0, (4.4)

and

yT∇F(x)z > 0. (4.5)

Theorem 3 Let x∗ ∈ R
n be a KKT point of (3.1a)–(3.1c). Then x∗ solves the NCP if and

only if x∗ is regular (or strictly regular).

Proof If x∗ ∈ R
n is a solution of the NCP, then R = ∅ and z = zC , and hence there is no

vector z (z ≤ 0 does not hold).
Suppose that x∗ is regular and a KKT point of (3.1a)–(3.1c). From Lemma 7 we obtain

that

∇F
(
x∗)

⎛

⎜⎜⎝

(x∗
1)2F1(x∗) – μ∗

1
...

(x∗
n)2Fn(x∗) – μ∗

n

⎞

⎟⎟⎠ +

⎛

⎜⎜⎝

x∗
1F2

1 (x∗) – ν∗
1

...
x∗

nF2
n(x∗) – ν∗

n

⎞

⎟⎟⎠ = 0.

Without loss of generality we have that

∇F
(
x∗)

⎛

⎜⎜⎜⎝

(x∗
R)2 ◦ FR(x∗)

0
–μ∗

C1

–μ∗
C3

⎞

⎟⎟⎟⎠ +

⎛

⎜⎜⎜⎝

x∗
R ◦ F2

R(x∗)
–ν∗

C2

0
–ν∗

C3

⎞

⎟⎟⎟⎠ = 0.

Consequently, we have

yT∇F
(
x∗)

⎛

⎜⎜⎜⎝

(x∗
R)2 ◦ FR(x∗)

0
–μ∗

C1

–μ∗
C3

⎞

⎟⎟⎟⎠ + yT

⎛

⎜⎜⎜⎝

x∗
R ◦ F2

R(x∗)
–ν∗

C2

0
–ν∗

C3

⎞

⎟⎟⎟⎠ = 0 (4.6)
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for any y ∈R
n. Assume that x is not a solution of the NCF. Then R �= ∅ and choose

z =

⎛

⎜⎜⎜⎝

(x∗
R)2 ◦ FR(x∗)

0
–μ∗

C1

–μ∗
C3

⎞

⎟⎟⎟⎠ ,

which satisfies (4.1). Since x∗ is regular, there exists a vector y ∈ R
n such that (4.2) and

(4.3) hold. With some computation, we obtain that

yT

⎛

⎜⎜⎜⎝

x∗
R ◦ F2

R(x∗)
–ν∗

C2

0
–ν∗

C3

⎞

⎟⎟⎟⎠ = yT
R
(
x∗

R ◦ F2
R
(
x∗)) + yT

C2

(
–ν∗

C2

)
+ yT

C1 · 0 + yT
C3

(
–ν∗

C3

)
> 0 (4.7)

and

yT∇F
(
x∗)

⎛

⎜⎜⎜⎝

(x∗
R)2 ◦ FR(x∗)

0
–μ∗

C1

–μ∗
C3

⎞

⎟⎟⎟⎠ = yT∇F
(
x∗)z ≥ 0,

which contradicts (4.6). Hence, x∗ must be a solution of the NCP.
Suppose that x∗ is strictly regular and a KKT point of (3.1a)–(3.1c). Similar to the above

proof, we obtain that

yT

⎛

⎜⎜⎜⎝

x∗
R ◦ F2

R(x∗)
–ν∗

C2

0
–ν∗

C3

⎞

⎟⎟⎟⎠ = yT
R
(
x∗

R ◦ F2
R
(
x∗)) + yT

C2

(
–ν∗

C2

)
+ yT

C1 · 0 + yT
C3

(
–ν∗

C3

) ≥ 0 (4.8)

and

yT∇F
(
x∗)

⎛

⎜⎜⎜⎝

(x∗
R)2 ◦ FR(x∗)

0
–μ∗

C1

–μ∗
C3

⎞

⎟⎟⎟⎠ = yT∇F
(
x∗)z > 0,

which contradicts (4.6). Hence, x∗ must be a solution of the NCP. �

Remark 3 Theorem 1 is the corollary of Theorem 3. Assume that x∗ is a KKT point of
(3.1a)–(3.1c) and is not a solution of the NCP, i.e., R �= ∅. Since ∇F(x∗) is positive semidef-
inite, for the nonzero vector

z =

⎛

⎜⎜⎜⎝

(x∗
R)2 ◦ FR(x∗)

0
–μ∗

C1

–μ∗
C3

⎞

⎟⎟⎟⎠ ,
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zT∇F(x∗)z ≥ 0 holds. Choose y = z, and it is easy to see that y satisfies (4.2), (4.7), and (4.3),
i.e.,

yC2 ≤ 0, yC3 ≤ 0, yR ≥ 0, yR �= 0,

yT

⎛

⎜⎜⎜⎝

x∗
R ◦ F2

R(x∗)
–ν∗

C2

0
–ν∗

C3

⎞

⎟⎟⎟⎠ = yT
R
(
x∗

R ◦ F2
R
(
x∗)) + yT

C2

(
–ν∗

C2

)
+ yT

C1 · 0 + yT
C3

(
–ν∗

C3

)
> 0,

and yT∇F(x∗)z = zT∇F(x∗)z ≥ 0. By Theorem 3, x∗ is a regular point and must be a solution
of the NCP.

Remark 4 Theorem 2 is the corollary of Theorem 3. Assume that x∗ is a KKT point of
(3.1a)–(3.1c) and is not a solution of the NCP, i.e., R �= ∅. Since the Jacobian F ′(x∗) of the
mapping F is a P-matrix, we have that, for the nonzero vector

z =

⎛

⎜⎜⎜⎝

(x∗
R)2 ◦ FR(x∗)

0
–μ∗

C1

–μ∗
C3

⎞

⎟⎟⎟⎠

, there exists an index i ∈ R ∪ C1 ∪ C3 such that zi �= 0 and zi(∇F(x∗)z)i > 0. If i ∈ C1 ∪ C3,
zi < 0, otherwise, zi > 0. Choose y to be the vector whose components are all 0 except for
its ith component, which is equal to zi. It is easy to see that y satisfies (4.4), (4.8), and (4.5),
i.e.,

yC2 ≤ 0, yC3 ≤ 0, yR ≥ 0,

yT

⎛

⎜⎜⎜⎝

x∗
R ◦ F2

R(x∗)
–ν∗

C2

0
–ν∗

C3

⎞

⎟⎟⎟⎠ = yT
R
(
x∗

R ◦ F2
R
(
x∗)) + yT

C2

(
–ν∗

C2

)
+ yT

C1 · 0 + yT
C3

(
–ν∗

C3

) ≥ 0,

and yT∇F(x∗)z = zi(∇F(x∗)z)i > 0. By Theorem 3, x∗ is a regular point and must be a solu-
tion of the NCP.

Corollary 3 Suppose that, for the nonzero vector t =

⎛

⎝
tR
0

tC1
tC3

⎞

⎠ with tR∪C3 �= 0, there exists an

index i ∈ R ∪ C3 such that ti �= 0 and ti(∇F(x∗)t)i ≥ 0, then x∗ solves NCP (1.1) if and only
if it is a KKT point of (3.1a)–(3.1c).

Proof Assume that x∗ is a KKT point of (3.1a)–(3.1c) and is not a solution of the NCP, i.e.,
R �= ∅. By assumptions we have that, for the nonzero vector

z =

⎛

⎜⎜⎜⎝

(x∗
R)2 ◦ FR(x∗)

0
–μ∗

C1

–μ∗
C3

⎞

⎟⎟⎟⎠
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, there exists an index i ∈ R ∪ C3 such that zi �= 0 and zi(∇F(x∗)z)i ≥ 0. If i ∈ C3, zi < 0,
otherwise, zi > 0. Choose y to be the vector whose components are all 0 except for its ith
component, which is equal to zi. It is easy to see that y satisfies (4.2), (4.7), and (4.3), i.e.,

yC2 ≤ 0, yC3 ≤ 0, yR ≥ 0, yR �= 0 or yC3 �= 0,

yT

⎛

⎜⎜⎜⎝

x∗
R ◦ F2

R(x∗)
–ν∗

C2

0
–ν∗

C3

⎞

⎟⎟⎟⎠ = yT
R
(
x∗

R ◦ F2
R
(
x∗)) + yT

C2

(
–ν∗

C2

)
+ yT

C1 · 0 + yT
C3

(
–ν∗

C3

)

≥ yT
R
(
x∗

R ◦ F2
R
(
x∗)) + yT

C3

(
–ν∗

C3

)
> 0,

and yT∇F(x∗)z = zi(∇F(x∗)z)i ≥ 0. By Theorem 3, x∗ is a regular point and must be a so-
lution of the NCP.

If x∗ solves NCP (1.1), it is a KKT point of (3.1a)–(3.1c). �

Corollary 4 Suppose that the Jacobian F ′(x∗) of the mapping F is a P0-matrix and μ∗
C1

= 0,
then x∗ solves NCP (1.1) if and only if it is a KKT point of (3.1a)–(3.1c).

Proof Assume that x∗ is a KKT point of (3.1a)–(3.1c) and is not a solution of the NCP, i.e.,
R �= ∅. Since the Jacobian F ′(x∗) of the mapping F is a P0-matrix and μ∗

C1
= 0, we have that,

for the nonzero vector

z =

⎛

⎜⎜⎜⎝

(x∗
R)2 ◦ FR(x∗)

0
0

–μ∗
C3

⎞

⎟⎟⎟⎠ ,

there exists an index i ∈ R ∪ C3 such that zi �= 0 and zi(∇F(x∗)z)i ≥ 0. If i ∈ C3, zi < 0,
otherwise, zi > 0. The rest of the proof is the same as that of Corollary 3. By Theorem 3,
x∗ is a regular point and must be a solution of the NCP.

If x∗ solves NCP (1.1), it is a KKT point of (3.1a)–(3.1c). �

5 Boundedness of level sets
In this section, we prove that the level sets of the objective function of (3.1a)–(3.1c) are
bounded for a strongly monotone function or a uniform P-function.

Theorem 4 Suppose that the mapping F is a strongly monotone function or a uniform
P-function. Let x0 be any given vector, and let L(x0) = {x ∈ R

n|�(x) ≤ �(x0)} be the corre-
sponding level set. Then L(x0) is bounded.

Proof Assume that there is a sequence {xk} ⊆ L(x0) such that limk→∞ ‖xk‖ = ∞. Define
the index set

J =
{

i|{xk
i
}

is unbounded,i = 1, 2, . . . , n
} �= ∅.
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Let

yk
i =

⎧
⎨

⎩
0 if i ∈ J ,

xk
i if i /∈ J .

There are two cases to be considered.
(1) If F is a strongly monotone function, we get

ω
∑

i∈J

(
xk

i
)2 = ω‖xk – yk‖2 ≤

n∑

i=1

(
xk

i – yk
i
)(

Fi(xk) – Fi(yk)
)

=
∑

i∈J

xk
i
(
Fi(xk) – Fi(yk)

)

≤
√∑

i∈J

(
xk

i
)2 ∑

i∈J

∣∣Fi(xk) – Fi(yk)
∣∣.

Since
∑

i∈J (x
k
i )2 �= 0, we obtain

ω

√∑

i∈J

(
xk

i
)2 ≤

∑

i∈J

∣∣Fi(xk) – Fi(yk)
∣∣.

Due to the boundedness of the sequence yk and the continuity of Fi(x)(i ∈ J), the se-
quence {Fi(yk)} remains bounded. Therefore, there exists an index i0 ∈ J such that
limk→∞ |Fi0 (xk)| = ∞. It follows from limk→∞ |xk

i0 | = ∞ that

lim
k→∞

(
Fi0 (xk)xk

i0

)2 = ∞.

However, 1
2 (Fi0 (xk)xk

i0 )2 ≤ �(xk) ≤ �(x0), which is a contradiction.
(2) If F is a uniform P-function, there exists an index i0 ∈ {1, 2, . . . , n} such that

ω
∑

i∈J

(
xk

i
)2 = ω‖xk – yk‖2 ≤ (

xk
i0 – yk

i0

)(
Fi0 (xk) – Fi0 (yk)

)

=

⎧
⎨

⎩
xk

i0 (Fi0 (xk) – Fi0 (yk)) if i0 ∈ J ,

0 if i /∈ J .

The second case is impossible because the left-hand side of the inequality is positive. Thus,

ω
∑

i∈J

(
xk

i
)2 ≤ xk

i0

(
Fi0 (xk) – Fi0 (yk)

)
, i0 ∈ J

≤ ∣∣xk
i0

∣∣∣∣(Fi0 (xk) – Fi0 (yk)
)∣∣, i0 ∈ J

≤
√∑

i∈J

(
xk

i
)2 · ∣∣(Fi0 (xk) – Fi0 (yk)

)∣∣, i0 ∈ J .

Since
∑

i∈J (x
k
i )2 �= 0, we obtain

ω

√∑

i∈J

(
xk

i
)2 ≤ ∣∣(Fi0 (xk) – Fi0 (yk)

)∣∣, i0 ∈ J .
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Similar to the proof of case (1), we get that limk→∞ |Fi0 (xk)| = ∞, i0 ∈ J , i.e.,

lim
k→∞

(
Fi0 (xk)xk

i0

)2 = ∞,

which contradicts 1
2 (Fi0 (xk)xk

i0 )2 ≤ �(xk) ≤ �(x0). �

Remark 5 Theorem 4 implies that there exists at least one accumulation point of a se-
quence remaining in L(x0).

6 Some examples
In this section, we present several examples which are tested by a filter algorithm to verify
the previous results. We intend to modify a globally convergent filter algorithm [16] to
solve the NCP. Consider the following optimization:

min �(x) =
1
2

n∑

i=1

[
Fi(x)xi

]2 (6.1a)

subject to – Fj(x) ≤ 0, j ∈ {1, 2, . . . , n}, (6.1b)

– xj ≤ 0, j ∈ {1, 2, . . . , n}. (6.1c)

Define c(x) = [–F1(x), . . . , –Fn(x), –x1, . . . , –xn]T . There are two merit functions in the new
algorithm

�(x) =
1
2

n∑

i=1

[
Fi(x)xi

]2, (6.2a)

θ (x) =
∥∥max

{
c(x), 0

}∥∥
1 =

n∑

i=1

(
max

{
–Fi(x), 0

}
+ max{–xi, 0}). (6.2b)

In order to prevent the algorithm from cycling, the algorithm maintains a filter

F =
{

(θ ,�) ∈R
2 : θ ≥ θ (x0)

}
.

The search direction dk is obtained by the QP subproblem:

min ∇�T
k d +

1
2

dT Bkd (6.3a)

subject to – F(xk) – J ′(xk)d ≤ 0, (6.3b)

– xk – d ≤ 0, (6.3c)

where Bk denotes the approximation of the Hessian ∇2
xx�(xk) of the Lagrangian function

P(x) = �(x) – μT F(x) – νT x. (6.4)

After a search direction dk has been computed, a step size αk is determined in order to
obtain the next iterate xk+1 = xk + αkdk . We say that a trial point xk(αk,l) = xk + αk,ldk is
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acceptable to the filter if and only if

θ
(
xk(αk,l)

) ≤ θ (xj) – φ(αk,l)γθθ (xj) or (6.5a)

�
(
xk(αk,l)

) ≤ �(xj) – φ(αk,l)γ�θ (xj) (6.5b)

for all (θ (xj),�(xj)) ∈ Fk , where φ(α) is a dwindling function. We say that a trial point
xk(αk,l) provides sufficient reduction if

θ
(
xk(αk,l)

) ≤ θ (xk) – φ(αk,l)γθθ (xk) or (6.6a)

�
(
xk(αk,l)

) ≤ �(xk) – φ(αk,l)γ�θI(xk), (6.6b)

where γθ , γ� ∈ (0, 1). But this could result in convergence to a feasible but non-optimal
point. In order to prevent this, we change to a different sufficient reduction criterion

mk(1) < 0 and
(
–mk(αk,l)

)s� (αk,l)1–s� > δθ (xk)sθ , (6.7)

where

mk(α) = α∇�T
k dk – α

(
μT

k F(xk) + νT
k xk

)
+ α

((∇μT
k dk

)T F(xk) +
(∇νT

k dk
)T xk

)
,

δ > 0, s� > 1, sθ ≥ 1. If condition (6.7) holds, the trial point xk(αk,l) is required to satisfy the
Armijo condition

�
(
xk(αk,l)

) ≤ �(xk) + η�mk(αk,l), (6.8)

where η� ∈ (0, 1
2 ). If condition (6.7) for αk does not hold, the filter is augmented for a new

iteration using the updated formula

Fk+1 = Fk ∪ {
(θ ,�) ∈R

2 : θ ≥ θ (xk) – φ(αk)γθθ (xk),

� ≥ �(xk) – φ(αk)γ�θ (xk)
}

. (6.9)

We now formally state the new filter algorithm for the NCP.

Algorithm 1
Given: Starting point x0; F0 = {(θ ,�) ∈ R

2 : θ > θ (x0)}; γθ ,γ� ∈ (0, 1); δ > 0, s� > 1, sθ ≥ 1;
η� ∈ (0, 1

2 ); 0 < τ1 ≤ τ2 < 1; φ(α); ε > 0.
1. Compute �(xk), ∇�(xk), F(xk), J ′(xk), θ (xk).
2. Compute dk from the QP subproblem QP(xk).
3. If ‖dk‖ + θ (xk) ≤ ε, stop.
4. Line search.

4.1. Set αk,0 = 1 and l ← 0. Compute xk(αk,l) = xk + αk,ldk .
4.2. If xk(αk,l) ∈Fk , go to Step 4.4.
4.3. Check sufficient decrease with respect to the current iterate.

4.3.1. Case 1. (6.7) holds: If (6.8) holds, set xk+1 = xk(αk,l), Fk+1 = Fk and go to
Step 5. Otherwise, go to Step 4.4.
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Table 1 Numerical results of Example 1

n = 8 n = 32 n = 100 n = 400 n = 500

NIT/NF 2/2 2/2 2/2 2/2 3/3
Gap 3.6339e-012 1.5633e-011 7.2883e-010 3.0773e-006 6.668e-013

Table 2 Numerical results of Example 2

n = 8 n = 32 n = 100 n = 400 n = 500 n = 1000

NIT/NF 2/2 5/5 2/2 2/2 3/3 3/3
Gap 3.4578e-010 9.8173e-010 2.2257e-009 0.00028711 6.5102e-006 0.0035349

4.3.2. Case 2. (6.7) is not satisfied: If (6.6a)–(6.6b) holds, set xk+1 = xk(αk,l),
augment the filter using (6.9), and go to Step 5. Otherwise, go to Step 4.4.

4.4. Choose αk,l+1 ∈ [τ1αk,l, τ2αk,l], set l ← l + 1, and go back to Step 4.2.
5. Update Bk by a BFGS updating and go back to Step 1.

Remark 6 The global convergence of Algorithm 1 is similar to that in [16]. For details, see
[16].

In the following, some numerical results are given on an HP i5 personal computer with
4G memory. The selected parameter values are: ε = 10–6, γθ = 0.5, γ� = 0.5, δ = 1, s� = 3.2,
sθ = 1.5, η� = 0.3, τ1 = τ2 = 0.5, and φ(α) = α

4
3 . The computation terminates when the

stopping criterion ‖dk‖ + θ (xk) ≤ ε is satisfied. We use the Matlab function quadprog to
solve the QP(xk) subproblem. NIT and NF stand for the numbers of iterations and function
evaluations, respectively. Gap stands for the absolute value of xT F(x) at the final iteration.

Example 1 ([14, 27]) Let F(x) = Mx + q, where

M =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

4 –1 0 · · · 0
–1 4 –1 · · · 0

0 –1 4
. . .

...
...

. . . . . . . . . –1
0 0 0 –1 4

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

, q = (–1, –1, . . . , –1)T .

The starting point is x0 = (0, 0, . . . , 0)T . The results of Example 1 are given in Table 1.
Algorithm 1 can compete with Nie’s filter algorithm [27]. Because the Jacobian F ′(x) = M

of F(x) is positive definite, F is strictly monotone. By Theorem 1 or Corollary 1, x∗ is a
solution of the NCP (a regular point).

Example 2 ([14, 31]) Let F(x) = Mx + q, where

M = diag
(

1
n

,
2
n

, . . . , 1
)

, q = (–1, –1, . . . , –1)T .

The starting point is x0 = (0, 0, . . . , 0)T . The results of Example 2 are given in Table 2.
Algorithm 1 can compete with Su’s filter algorithm [31]. Because the Jacobian F ′(x) = M

of F(x) is approximately positive semidefinite as n → ∞, F is approximately monotone.
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Table 3 Numerical results of Example 3

n = 8 n = 32 n = 100 n = 400 n = 500

NIT/NF 16/17 20/21 24/25 30/31 33/34
Gap 1.0832e-008 2.7224e-006 3.1788e-006 6.2564e-007 3.4667e-006

Table 4 Experimental results of Example 3

k 1 2 3 4 5 6

‖xk – x∗‖ 2.6458 1.3229 1.0981 0.74982 0.54165 0.36926
‖xk+1–x∗‖
‖xk–x∗‖ 0.5 0.83011 0.68282 0.72237 0.68174 0.36926

k 7 8 9 10 11 12

‖xk – x∗‖ 0.24552 0.15539 0.095411 0.056644 0.027859 0.0081106
‖xk+1–x∗‖
‖xk–x∗‖ 0.63289 0.61402 0.59368 0.49182 0.29113 0.16557

k 13 14 15 16

‖xk – x∗‖ 0.0013429 0.00013784 3.8132e-006 7.1593e-009
‖xk+1–x∗‖
‖xk–x∗‖ 0.10264 0.027664 0.0018775

By Theorem 1 or Corollary 1, x∗ is a solution of the NCP (a regular point). Note that the
condition number of M increases with the dimension n, but numerical results are not
affected by it.

Example 3 (Murty problem [2]) Let F(x) = Mx + q, where

M =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 2 · · · 2
0 1 2 · · · 2

0 0 1
. . . 2

...
. . . . . . . . .

...
0 0 0 · · · 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

, q = (–1, –1, . . . , –1)T .

The starting point is x0 = (1, 1, . . . , 1)T and the solution is x∗ = (0, 0, . . . , 1)T . The results of
Example 3 are given in Table 3.

Because the Jacobian F ′(x) = M of F(x) is a P-matrix, F is a P-function. By Theorem
2 or Corollary 2, x∗ is a solution of the NCP (a regular point). Data and images on the
convergence rate of Algorithm 1 (Example 3, n = 8) are shown in Table 4 and Fig. 1, where
data1 and data2 denote ‖xk – x∗‖ and ‖xk+1–x∗‖

‖xk –x∗‖ , respectively. From Table 4 and Fig. 1 we
see that

lim
k→∞

‖xk+1 – x∗‖
‖xk – x∗‖ = 0,

which means that Algorithm 1 converges Q-superlinearly.

Example 4 ([26, 27]) Let

F1(x) = 3x2
1 + 2x1x2 + 2x2

2 + x3 + 3x4 – 6,

F2(x) = 2x2
1 + x1 + x2

2 + 10x3 + 2x4 – 2,
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Figure 1 The convergence rate of Algorithm 1

Table 5 Numerical results of Example 4

x0 NIT/NF x∗ F(x∗) Gap

(0, 0, 0, 0) 4/4 (1.0605e-015,0,2.1511e-013,2) (–9.5515e – 012, 2, 9, 3) 6
(1, 0, 0, 1) 10/10 (1.2247,0,1.8409e-008,0.5) (9.53e-010,3.2248,8.1672e-005,3.0154e-005) 4.4624e-005
(2, 0, 1, 0) 22/25 (1.2247,0,0,0.5) (3.3953e-008,3.2247,3.8668e-006,1.2889e-006) 6.8605e-007
(2, 1, 2, 1) 25/25 (1.2247,0,6.8024e-012,0.5) (2.9138e-008,3.2247,7.2617e-012,1.149e-011) 3.5692e-008
(3, 1, 2, 2) 18/18 (1.2247,0,0,0.5) (1.215e-008,3.2247,2.1238e-007,7.0792e-008) 5.0276e-008
(1, 0, 4, 0) 13/14 (1.2247,0,0,0.5) (2.9052e-011,3.2247,2.2696e-006,7.5654e-007) 3.783e-007
(1, 0, 2, 0) 16/25 (1,4.2606e-007,3,0) (3.7647e-009,31,3.7661e-009,4) 1.3223e-005

F3(x) = 3x2
1 + x1x2 + 2x2

2 + 2x3 + 9x4 – 9,

F4(x) = x2
1 + 3x2

2 + 2x3 + 3x4 – 3.

This example has one degenerate solution (
√

6
2 , 0, 0, 1

2 ) and one nondegenerate solution
(1, 0, 3, 0). The Jacobian of F is

F ′(x) =

⎛

⎜⎜⎜⎝

6x1 + 2x2 2x1 + 4x2 1 3
4x1 + 1 2x2 10 2
6x1 + x2 x1 + 4x2 2 9

2x1 6x2 2 3

⎞

⎟⎟⎟⎠ .

It is difficult for simple Newton-type methods, since the LCP formed by linearizing F
around x = 0 has no solution. The results of Example 4 are given in Table 5.

There are three cases:
(1) The sequence {xk} generated by Algorithm 1 converges to a KKT point (0, 0, 0, 2) of

(3.1a)–(3.1c) which is not a solution of the NCP. If x∗ = (0, 0, 0, 2), we have that

∇F
(
x∗) = F ′(x∗)T =

⎛

⎜⎜⎜⎝

0 1 0 0
0 0 8 0
1 10 2 2
3 2 9 3

⎞

⎟⎟⎟⎠ ,
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whose eigenvalues are 11.502, 0.12753, 1.9147, and –8.5447. This indicates that it is not a
positive semidefinite matrix. Because

D1,2 =

∣∣∣∣∣
0 1
0 0

∣∣∣∣∣ = –1 < 0,

F ′(x∗) is not a P0-matrix and F is not a P0-function.
(2) The sequence {xk} generated by Algorithm 1 converges to a degenerate solution

(
√

6
2 , 0, 0, 1

2 ) of the NCP. If x∗ = (
√

6
2 , 0, 0, 1

2 ), we have that

∇F
(
x∗) = F ′(x∗)T =

⎛

⎜⎜⎜⎝

3
√

6 2
√

6 + 1 3
√

6
√

6√
6 0

√
6/2 0

1 10 2 2
3 2 9 3

⎞

⎟⎟⎟⎠ ,

whose eigenvalues are 11.502, 0.12753, 1.9147, and –8.5447. This indicates that it is not a
positive semidefinite matrix. Because

D1,2 =

∣∣∣∣∣
3
√

6 2
√

6 + 1√
6 0

∣∣∣∣∣ = –12 –
√

6 < 0,

it is not a P0-matrix and F is not a P0-function. But x∗ is a solution of the NCP (a regular
point).

(3) The sequence {xk} generated by Algorithm 1 converges to a nondegenerate solution
(1, 0, 3, 0) of the NCP. If x∗ = (1, 0, 3, 0), we have that

∇F
(
x∗) = F ′(x∗)T =

⎛

⎜⎜⎜⎝

6 5 6 2
2 0 1 0
1 10 2 2
3 2 9 3

⎞

⎟⎟⎟⎠ ,

whose eigenvalues are 11.835, –2.6848, 0.84972, and 1. This indicates that it is not a pos-
itive semidefinite matrix. Because D1,2 =

∣∣ 6 5
2 0

∣∣ = –10 < 0, it is not a P0-matrix and F is not
a P0-function. But x∗ is a solution of the NCP (a regular point).

We note that most of the sequences converge to a degenerate solution. Although the
Jacobian of F is not a P0-matrix and F is not a P0-function in the last two cases, x∗ are still
the solutions of the NCP (regular points).

Example 5 (Modified Mathiesen problem [2]) Let

F1(x) = –x2 + x3 + x4,

F2(x) = x1 – (4.5x3 + 2.7x4)/(x2 + 1),

F3(x) = 5 – x1 – (0.5x3 + 0.3x4)/(x3 + 1),

F4(x) = 3 – x1.
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Table 6 Experimental results of Example 5

Algorithm 1 CM [2]

x0 NIT/NF x∗ Gap NIT x∗

(1, 0, 0, 0) 1/1 (1,0,0,0) 0 3 (0.9999,0,0,0)
(1, 1, 0, 0) 6/7 (0.57299,0,0,0) 2.9976e-015 13 (0.4668,0,0,0)
(1, 1, 1, 1) 7/8 (2.2511,0,0,0) 9.1244e-013 16 (1.2796,0,0,0)
(0.5, 0.5, 0.5, 0.5) 9/10 (2.0126,0,0,0) 1.0083e-017 20 (0.2590,0,0,0)

This example has infinitely many solutions x∗ = (, 0, 0, 0), where  ∈ [0, 3]. For  = 0 or
3, the solutions are degenerate, and for  ∈ (0, 3) nondegenerate. The Jacobian of F is

F ′(x∗) =

⎛

⎜⎜⎜⎜⎝

0 1 –1 –1
–1 4.5x3+2.7x4

(x2+1)2 0 0
1 – 4.5

x2+1 – 0.5–0.3x4
(x3+1)2 0

1 – 2.7
x2+1 – 0.3

x3+1 0

⎞

⎟⎟⎟⎟⎠

x=x∗

=

⎛

⎜⎜⎜⎝

0 1 –1 –1
–1 0 0 0
1 –4.5 –0.5 0
1 –2.7 –0.3 0

⎞

⎟⎟⎟⎠ ,

whose eigenvalues are 0.56541 + 2.1271i, 0.56541 – 2.1271i, –1.6308, and –2.5015e – 011.
This indicates that it is not a positive semidefinite matrix. Because

D1,2,3 =

∣∣∣∣∣∣∣

0 1 –1
–1 0 0
1 –4.5 –0.5

∣∣∣∣∣∣∣
= –1 × (–1)2+1

∣∣∣∣∣
1 –1

–4.5 –0.5

∣∣∣∣∣ = –5 < 0,

it is not a P0-matrix and F is not a P0-function. But x∗ is a solution of the NCP (a regular
point). The results of Example 5 are given in Table 6.

From Table 6 we see that Algorithm 1 performs better than Chen’s algorithm [2]. Differ-
ent algorithms with the same starting point converge to different solutions. The advantage
of the filter method is that it has two merit functions, which makes the requirements for
trial points more relaxed and easy to accept the superlinear steps.

Remark 7 Examples 4 and 5 tell us that there exist other cases for the mapping F such that
the KKT point of (3.1a)–(3.1c) is the solution of the NCP. The examples for Corollaries
3 and 4 are hard to be given, because the results of the experiments depend on both the
Jacobian F ′(x∗) and multipliers. Maybe Examples 4 and 5 are the examples of Corollaries
3 and 4.

7 Conclusion
In this paper, we analyze the relation between the constrained optimization reformulation
and the NCP which is not involved in filter algorithms [21, 22, 27, 31, 36, 39]. First, we give
several sufficient conditions under which the KKT point of the constrained optimization
is the solution of the NCP. Second, we define regular conditions and regular point which
include and generalize the previous results. Third, we prove that the level sets of the objec-
tive function of (3.1a)–(3.1c) are bounded for a strongly monotone function or a uniform
P-function. Finally, we present some examples to verify the previous results.

The above work explains the principle of the filter method for NCPs and promotes the
development of the theory and algorithm. In the future, we will consider the following
problems: the influence of different value functions [20, 24] on the algorithm and the pos-
sibility of other conditions.
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