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Abstract
This article is devoted to the study of the source function for the Caputo–Fabrizio
time fractional diffusion equation. This new definition of the fractional derivative has
no singularity. In other words, the new derivative has a smooth kernel. Here, we
investigate the existence of the source term. Through an example, we show that this
problem is ill-posed (in the sense of Hadamard), and the fractional Landweber
method and the modified quasi-boundary value method are used to deal with this
inverse problem and the regularized solution is also obtained. The convergence
estimates are addressed for the regularized solution to the exact solution by using an
a priori regularization parameter choice rule and an a posteriori parameter choice
rule. In addition, we give a numerical example to illustrate the proposed method.
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1 Introduction
In recent times, the fractional calculus has been extensively studied. There are many defi-
nitions for the fractional derivative operator. The Riemann–Liouville fractional derivative
and the Caputo fractional derivative are two of the most often used definitions of the frac-
tional derivatives. Recently, in the case the kernel has no singularities, Caputo and Fabrizio
have introduced a new definition of the fractional derivatives [1]. Fractional calculus is a
subject with a long history and has gained great interest in different fields of applied sci-
ence, and many authors considered this topic [2–12]. For example, Alrefai and Abdeljawad
in [13] studied the analysis for fractional diffusion equations with fractional derivative with
non-singular kernel.

In this work, we restore the space source term problem for a fractional diffusion equation
with a Caputo–Fabrizio derivative. The fractional diffusion equation is discussed in this
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paper as follows:

⎧
⎪⎪⎨

⎪⎪⎩

CF
0 D

α
t u + Bu = F (x, t), in � × (0, T),

u(x, t) = 0, on ∂� × (0, T),

u(x, 0) = g(x), in �,

(1.1)

where 0 < α < 1, T > 0 is a fixed value and � ∈ R
d is a bounded domain with sufficient

smooth boundary ∂�. CF
0 D

α
t is the Caputo–Fabrizio operator for fractional derivatives of

order α. From [14], we have the following formula:

CF
0 D

α
t v(t) =

A(α)
1 – α

(
v(1) ∗ f̃

)
(t), f̃ (t) = exp

(

–
α

1 – α
t
)

, t ∈ (0,∞),

with ∗ defines the convolution and A(α) is a normalization function such that A(0) =
A(1) = 1.

For the spatial-fractional and temporal-fractional derivatives, there are a lot of new def-
initions to be presented. In [15–18], we can see more properties and applications of this
new fractional derivative. In [19], the authors proved uniqueness of the solution to an ini-
tial value problem for linear fractional differential equation with 1 < α ≤ 2.

The problem (1.1) is associated to anomalous diffusion phenomenon in physical mo-
tivations. In the case 0 < α < 1, the model (1.1) is used for the super-diffusive model in
heterogeneous media. Some physical background is found. For example, as regards the
physical application of fractional calculus, the authors in [20] have shown that the frac-
tional calculus is effective to account for the damping controllers which are compared
to the classical derivative. The authors in [21] considered the separation and stability of
solutions to nonlinear systems involving Caputo–Fabrizio derivatives.

Our purpose in this paper is to find an inversion source problem for (1.1). Assume that
the source term F (x, t) of the problem (1.1) is a forward problem, which can be split into
F (x)Q(t) where Q(t) is known in advance. Hence, we want to identify the space source
term F (x) by using the value of the final time T as follows:

u(x, T) = H(x), x ∈ �. (1.2)

In fact, the measurements are noised, instead of receiving the exact data H , we have the
approximation data Hε that satisfies

∥
∥Hε – H

∥
∥

L2(�) ≤ ε, (1.3)

where ε > 0 is the noise level. A small error between the given observation Hε and the
exact data Hε leads to a large error in the solution in output data. This is a reason why we
propose some regularization methods in order to recover stable approximations for the
unknown space source function.

In this paper, we apply the fractional Landweber method and modified quasi-boundary
value method to restore the unknown space source function F . The idea of the mod-
ified quasi-boundary value method mainly comes from Denche and Bessila’s paper [22],
where they solved the following backward heat conduction problem. For references to this
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method, the reader can see [23–25]. In [26], Klann and Ramlau introduced the fractional
Landweber method for a linear ill-posed problem. We give an a posteriori choice of the
regularization parameter based on an a priori bound of the exact solution that cannot be
known exactly in practice. Here, the regularization parameter by the a priori rule is easier
than an a posteriori rule. For references to this method, the reader can see [27]. According
to this work, we can compare which method is the more optimal for the space source term
problem for the fractional diffusion equation with the Caputo–Fabrizio derivative.

The paper is organized as follows. In Sect. 2, we recall some preliminary results. The
exact solution, the ill-posedness of the inverse problem and the conditional stability are
also discussed in Sect. 2. In Sects. 3 and 4, we present a modified quasi-boundary value
method and the fractional Landweber regularization method. The convergence estimate
under an a priori assumption for the exact solution and the a posteriori regularization
parameter choice rule are considered in here. In Sect. 5, we show a numerical example to
illustrate the proposed method.

2 The solution and some notations
2.1 Some basic results
In this section, we recall some useful results. Let us consider the operator B on the domain
D(–B) := H1

0(�)∩H2(�). We assume that –B has eigenvalues λk with the corresponding
eigenfunction wk ∈D(–B).

Note 0 < λ1 ≤ λ2 ≤ λ3 ≤ · · · ≤ λk ≤ · · · and λk → ∞ as k → ∞. The negative Laplacian
operator –� on X is the most popular case of B. We have

⎧
⎨

⎩

Bwk(x) = –λkwk(x), x ∈ �,

wk(x) = 0, x ∈ ∂�.

From [28], we see that ak ≥ Ck
2
d for C is a constant and k ∈N.

For all p ≥ 0, let us define the Hilbert scale spaces and fractional powers of B as follows:

Bpv :=

⎧
⎨

⎩

∑∞
k=1 ap

k〈v, wk〉wk , if p �= 0,
∑∞

k=1〈v, wk〉wk , if p = 0,
(2.1)

and v ∈D
(
(–B)p) :=

{

v ∈ L2(�) :
∞∑

k=1

a2p
k

∣
∣〈v, wk〉

∣
∣2 < ∞

}

. (2.2)

And we have the following norm in the Banach space D((–B)p):

‖z‖D((–B)p) :=

( ∞∑

k=1

a2p
k

∣
∣〈z, wk〉

∣
∣2

) 1
2

, z ∈D
(
(–B)p).

It is easy to see that ‖v‖D((–B)p) = ‖(–B)pv‖L2(�). Its domain is a Hilbert space endowed
D((–B)–p) with the dual inner product 〈·, ·〉–p,p taken between D((–B)–p) and D((–B)p).
This generates the norm ‖v‖D((–B)–p) = (

∑∞
k=1 a–2p

k |〈v, wk〉–p,p|2) 1
2 . Now, we begin with the

following two lemmas.
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Lemma 2.1 ([29, 30]) For 0 < k < 1, q > 0 and m ∈ N, we obtain

(1 – k)mkq ≤ qq(m + 1)–q < qqm–q.

Lemma 2.2 For p, γ , λ1 be positive constant. Let G be a function defined by

G(z) =
γ z2–p

γ z2 + β
, z > 0, (2.3)

in which Z1 = Z1(p,β) and Z2 = Z2(p,β ,λ1). Then we have the estimate

G(z) ≤
⎧
⎨

⎩

Z1γ
p
2 , if 0 < p < 2,

Z2γ , if p ≥ 2, z ≥ λ1.
(2.4)

Proof See [23], Lemma 2.7. �

By taking the inner product of the main equation of (1.1) with wk(x), we get the following
equality:

CF
0 D

α
t uk(t) – λkuk(t) = Fk(t), uk(0) = gk = 〈g, wk〉, Hk = 〈H , wk〉, (2.5)

where uk(t) = 〈u(·, t), wk(·)〉, Fk(t) = 〈F (·, t), wk(·)〉 = Q(τ )〈F , wk〉 stand for its Fourier co-
efficient.

Thanks to [1], the Laplace transform of the Caputo–Fabrizio derivative has the following
expression:

L
[CF

0 D
α
t u(t)

]
=

hL[u](h) – u(0)
h + α(1 – h)

, h > 0. (2.6)

We thus get hL[uk ](h)–uk (0)
h+α(1–h) = λkL[uk](h) + L[Fk](h). By λk > 0 and α ∈ (0, 1), we obtain

L[uk](h) =
1

1 + λk(1 – α)

[
1

h + λkα

1+λk (1–α)

gk +
λkα

1 + λk(1 – α)
L[Fk](h)

]

.

Thanks to [31], we get

uk(t) =
1

1 + λk(1 – α)
exp

(

–
αλkt

1 + λk(1 – α)

)

gk

+
1

1 + λk(1 – α)
exp

(

–
αλkt

1 + λk(1 – α)

)

Fk(t). (2.7)

This implies that the solution of Problem (1.1) is given by the Fourier series

u(x, t) =
∞∑

k=1

[
1

1 + λk(1 – α)
exp

(

–
αλkt

1 + λk(1 – α)

)

gk

+
1

1 + λk(1 – α)

∫ t

0
exp

(

–
αλk(t – s)

1 + λk(1 – α)

)

Fk(s) ds
]

wk(x). (2.8)
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By t = T in (2.7) and we get

Hk =
1

1 + λk(1 – α)
exp

(

–
αλkt

1 + λk(1 – α)

)

gk

+
Fk

1 + λk(1 – α)

∫ T

0
exp

(

–
αλk(t – s)

1 + λk(1 – α)

)

Q(s) ds, (2.9)

where Hk = 〈H , wk〉, with k ∈N.

Lemma 2.3 Let Q1 > 0, and let Q ∈ C([0, T];R) be a positive continuous function satisfy
inft∈[0,T] |Q(t)| = Q1. Suppose that ‖Q‖∞ = supt∈[0,T] |Q(t)|, then we have

K2,α(T ,λ1)
Q1

λk
≤ 1

1 + λk(1 – α)

∫ T

0
exp

(

–
αλk(T – s)

1 + λk(1 – α)

)

Q(s) ds

≤ K1,α(T)
‖Q‖∞

λk
, (2.10)

for all k ∈N.

Proof First, we obtain

1
1 + λk(1 – α)

∫ T

0
exp

(

–
αλk(T – s)

1 + λk(1 – α)

)

Q(s) ds ≤ K1,α(T)
‖Q‖∞

λk
, (2.11)

where we noted that exp(– αλk (T–s)
1+λk (1–α) ) ≤ 1 for ∀t ≥ 0, and K1,α(T) = T

1–α
. Otherwise, we also

get

1
1 + λk(1 – α)

∫ T

0
exp

(

–
αλk(T – s)

1 + λk(1 – α)

)

Q(s) ds

=
1

1 + λk(1 – α)
exp

(

–
αλkT

1 + λk(1 – α)

)∫ T

0
exp

(
αλks

1 + λk(1 – α)

)

Q(s) ds

≥ Q1

αλl
exp

(

–
αλkT

1 + λk(1 – α)

)(

exp

(
αλkT

1 + λl(1 – α)

)

– 1
)

.

This implies that

1
1 + λk(1 – α)

∫ T

0
exp

(

–
αλk(T – s)

1 + λk(1 – α)

)

Q(s) ds

≥ Q1

αλk

(

1 – exp

(

–
αλkT

1 + λk(1 – α)

))

≥ K2,α(T ,λ1)
Q1

λk
,

where K2,α(T ,λ1) = 1
α

(1 – exp(– αλ1T
1+λ1(1–α) )). �

2.2 Ill-posedness and stability estimates
For any v ∈ L2(�), let R : L2(�) → L2(�) be the following operator:

(Rv)(x) :=
∫

�

κ(y, x)v(y) dy
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=
∞∑

k=1

1
1 + λk(1 – α)

∫ T

0
exp

(

–
αλk(T – s)

1 + λk(1 – α)

)

Q(s) ds
〈
v, wk(·)〉wk(x),

where the kernel κ(·, ·) satisfies

κ(y, x) :=
∞∑

k=1

1
1 + λk(1 – α)

∫ T

0
exp

(

–
αλk(T – s)

1 + λk(1 – α)

)

Q(s) dswk(y)wk(x).

Since our problem is of finding F which can be transform into RF = P where P =
∑∞

k=1 Pkwk , with Pk := Hk – 1
1+λk (1–α) exp(– αλk t

1+λk (1–α) )gk , we write

Fk =
Pk

1
1+λk (1–α)

∫ T
0 exp(– αλk (T–s)

1+λk (1–α) )Q(s) ds
. (2.12)

It is easy to see that R : L2(�) → L2(�) is compact operator. It leads to the Problem (1.1) to
be ill-posed. To show the ill-posedness of this problem, we propose an illustrative example.
Assume that g = 0, we choose the final data Hm(x) = wm(x)√

λm
then the corresponding source

terms are

F m =
∞∑

k=1

Pkwk(x)
1

1+λk (1–α)
∫ T

0 exp(– αλk (T–s)
1+λk (1–α) )Q(s) ds

=
1

√
λm

1+λm(1–α)
∫ T

0 exp(– αλm(T–s)
1+λm(1–α) )Q(s) ds

.

Hence, we get F m ≥
√

λm
‖Q‖∞K1,α (T) . This implies that limm→∞ ‖F m(·)‖L2(�) → ∞. But

‖Hm‖L2(�) = 1√
λm

, or limm→∞ ‖Hm(·)‖L2(�) → 0. Therefore, the problem (1.1) satisfying
(1.2) is ill-posed in the sense of Hadamard.

3 Modified quasi-boundary value method
In this section, we present a regularization method to solve our problem. Now, we study
a quasi-boundary value method to solve problem (1.1) and give two convergence esti-
mates under an a priori parameter choice rule, respectively. Applying the modified quasi-
boundary value method given by [23], we propose the following regularized solution with
exact data P:

Fn(ε)(x) =
∞∑

k=1

〈P, wk〉wk

λk[n(ε)] + 1
1+λk (1–α)

∫ T
0 exp(– αλk (T–s)

1+λk (1–α) )Q(s) ds
· (3.1)

We have the solution with the observation data Hε ,

F ε
n(ε)(x) =

∞∑

k=1

〈Pε , wk〉wk

λk[n(ε)] + 1
1+λk (1–α)

∫ T
0 exp(– αλk (T–s)

1+λk (1–α) )Q(s) ds
, (3.2)

here Pε := Hε –
∑∞

k=1( 1
1+λk (1–α) exp(– αλk T

1+λk (1–α) )gk)wk(x) and

F (x) =
∞∑

k=1

〈P, wk〉wk
1

1+λk (1–α)
∫ T

0 exp(– αλk (T–s)
1+λk (1–α) )Q(s) ds

· (3.3)
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Afterwards, we will give an error estimation for ‖F (·) – F ε
n(ε)(·)‖L2(�) and show the con-

vergence rate under a suitable choice for the regularization parameter.

Theorem 3.1 Let H ∈ L2(�) and Q : [0, T] →R for all t ∈ [0, T]. Assume that the a priori
bound condition ‖F‖D((–B)p) ≤M and the assumption (1.3) holds.

If we choose the regularization parameter

n(ε) =

⎧
⎨

⎩

�( ε
M )

2
p+1 �, 0 < p < 2,

�( ε
M ) 2

3 �, p ≥ 2,

then we get

∥
∥F ε

n(ε)(·) – F (·)∥∥L2(�)

≤
⎧
⎨

⎩

((2–1[K2,α(T ,λ1)Q1]– 1
2 ) + Z1)M

1
p+1 ε

p
p+1 , if 0 < p < 2,

((2–1[K2,α(T ,λ1)Q1]– 1
2 ) + Z2)M 1

3 ε
2
3 , if p ≥ 2.

Proof Using the triangle inequality, we get

∥
∥F ε

n(ε)(·) – F (·)∥∥L2(�) ≤ ∥
∥F ε

n(ε)(·) – Fn(ε)(·)
∥
∥

L2(�) +
∥
∥Fn(ε)(·) – F (·)∥∥L2(�). (3.4)

First, we give an estimate for the first term ‖F ε
n(ε)(·) – Fn(ε)(·)‖L2(�), then we get

∥
∥F ε

n(ε)(·) – Fn(ε)(·)
∥
∥2

L2(�)

=
∞∑

k=1

|〈Pε – P, wk〉|2
(λk[n(ε)] + 1

1+λk (1–α)
∫ T

0 exp(– αλk (T–s)
1+λk (1–α) )Q(s) ds)2

≤ sup
k≥1

(
1

λkn(ε) + K2,α(T ,λ1) Q1
λk

)2∥
∥Pε – P

∥
∥2

L2(�) ≤ sup
k≥1

(
A 2

k
)
ε2. (3.5)

From (3.5), applying Lemma 2.3 and the inequality (a + b) ≥ 2
√

ab, ∀a, b ≥ 0, then we
obtain

A 2
k =

(
1

λkn(ε) + K2,α(T ,λ1) Q1
λk

)2

≤ 1
4n(ε)K2,α(T ,λ1)Q1

· (3.6)

Substituting (3.6) into (3.5), we have

∥
∥F ε

n(ε)(·) – Fn(ε)(·)
∥
∥

L2(�) ≤ ε√
n(ε)

(
2–1[K2,α(T ,λ1)Q1

]– 1
2
)
. (3.7)

On the other hand, we estimate the second term ‖Fn(ε)(·) – F (·)‖L2(�), for brevity, we put
Vk,α(Q, T , s) = 1

1+λk (1–α)
∫ T

0 exp(– αλk (T–s)
1+λk (1–α) )Q(s) ds. From (3.3) and (3.1), we obtain

Fn(ε)(x) – F (x) =
∞∑

k=1

(
λkn(ε)

Vk,α(Q, T , s)(λkn(ε) + Vk,α(Q, T , s))

)

〈P, wk〉wk · (3.8)
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Using the a priori bound condition ‖F‖D((–B)p) ≤M, from (3.8), we show that

∥
∥Fn(ε)(·) – F (·)∥∥2

L2(�) =
∞∑

k=1

( | < P, wk > |
Vk,α(Q, T , s)

)2

λ
2p
k

(
λkn(ε)

λkn(ε) + Vk,α(Q, T , s)

)2

λ
–2p
k

≤M sup
k≥1

(Bk)2, (3.9)

in which

Bk =
λ

1–p
k n(ε)

λkn(ε) + Vk,α(Q, T , s)
≤ n(ε)λ2–p

k
n(ε)λ2

k + K2,α(T ,λ1)Q1
. (3.10)

From (3.10), applying the Lemma 2.2, by replacing β = K2,α(T ,λ1)Q1 and γ = n(ε), we can
find that

sup
k∈N

Bk ≤
⎧
⎨

⎩

Z1[n(ε)]
p
2 , if 0 < p < 2,

Z2[n(ε)], if p ≥ 2.
(3.11)

Combining (3.4) to (3.11), it gives

∥
∥F ε

n(ε)(·) – F (·)∥∥L2(�)

≤ ε√
n(ε)

(
2–1[K2,α(T ,λ1)Q1

]– 1
2
)

+

⎧
⎨

⎩

Z1[n(ε)]
p
2 , if 0 < p < 2,

Z2[n(ε)], if p ≥ 2.
(3.12)

By choosing the regularization parameter n(ε) as follows:

n(ε) =

⎧
⎨

⎩

( ε
M )

2
p+1 , if 0 < p < 2,

( ε
M ) 2

3 , if p ≥ 2,
(3.13)

we conclude that

∥
∥F ε

n(ε)(·) – F (·)∥∥L2(�)

≤
⎧
⎨

⎩

((2–1[K2,α(T ,λ1)Q1]– 1
2 ) + Z1)M

1
p+1 ε

p
p+1 , if 0 < p < 2,

((2–1[K2,α(T ,λ1)Q1]– 1
2 ) + Z2)M 1

3 ε
2
3 , if p ≥ 2.

(3.14)

The proof is finished. �

4 Fractional Landweber regularization method and convergence rate
In this section, we propose a fractional Landweber regularization method to solve the ill-
posed problem (1.1) satisfying (1.2). The convergence rates for the regularized solution
under two parameter choice rules are also considered.

From [32], RF = P is equivalent to

F =
(
I – cR∗R

)
F + cR∗P, for any c > 0, (4.1)

where 0 < c < ‖R‖–2 and R∗ is the adjoint operator of R.
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Applying the fractional Landweber method given by [26], we propose the regularized
solution with exact data H as follows:

Fn,χ (x)

=
∞∑

k=1

[1 – (1 – c[ 1
1+λk (1–α)

∫ T
0 exp(– αλk (T–s)

1+λk (1–α) )Q(s) ds]2)n]χ

1
1+λk (1–α)

∫ T
0 exp(– αλk (T–s)

1+λk (1–α) )Q(s) ds
〈P, wk〉wk .

We have the solution with the observation data noised Hε as follows:

F ε
n,χ (x)

=
∞∑

k=1

[1 – (1 – c[ 1
1+λk (1–α)

∫ T
0 exp(– αλk (T–s)

1+λk (1–α) )Q(s) ds]2)n]χ

1
1+λk (1–α)

∫ T
0 exp(– αλk (T–s)

1+λk (1–α) )Q(s) ds

〈
Pε , wk

〉
wk ,

here Pε := Hε –
∑∞

k=1( 1
1+λk (1–α) exp(– αλk T

1+λk (1–α) )gk)wk(x), χ ∈ ( 1
2 , 1] is the fractional order,

and n > 0 is the iterative step and is a regularization parameter. Here, we note that when
χ = 1, the fractional Landweber method becomes a standard Landweber regularization.

Lemma 4.1 Let λk > 0, χ ∈ ( 1
2 , 1], n > 0 and 0 < c[ 1

1+λk (1–α)
∫ T

0 exp(– αλk (T–s)
1+λk (1–α) )Q(s) ds]2 < 1,

we obtain

sup
k≥1

[1 – (1 – c[ 1
1+λk (1–α)

∫ T
0 exp(– αλk (T–s)

1+λk (1–α) )Q(s) ds]2)n]χ

1
1+λk (1–α)

∫ T
0 exp(– αλk (T–s)

1+λk (1–α) )Q(s) ds
≤ c

1
2 n

1
2 . (4.2)

Proof First, we define ϑ(z) := z–2[1 – (1 – z2)n]2χ , where

z2 := c
[

1
1 + λk(1 – α)

∫ T

0
exp

(

–
αλk(T – s)

1 + λk(1 – α)

)

Q(s) ds
]2

.

It is easy to see that the function ϑ(z) is continuous in [0, +∞) when z ∈ (0, 1) and

[1 – (1 – c[ 1
1+λk (1–α)

∫ T
0 exp(– αλk (T–s)

1+λk (1–α) )Q(s) ds]2)n]χ

1
1+λk (1–α)

∫ T
0 exp(– αλk (T–s)

1+λk (1–α) )Q(s) ds
= c

1
2 ϑ2(z).

For χ ∈ ( 1
2 , 1] and z ∈ (0, 1), applying Lemma 3.3 of [26] we get ϑ(z) ≤ n. That infers the

inequality (4.2) is correct. �

4.1 A priori parameter choice rule and convergence estimate
Let us choose n := n(ε) such that ‖F ε

n,χ (·) – F (·)‖L2(�) → 0 as ε → 0. Using an a priori
regularization parameter choice rule, we propose the convergent rate for the fractional
Landweber regularized solution F ε

n,χ to the exact solution F . In order to give an error
estimate, we assume that ‖F‖D((–B)p) ≤ M. Our result holds for any p ≥ 0, where M is
a positive constant and F is recalled in (2.12).

Theorem 4.2 Let H ∈ L2(�) and Q : [0, T] →R for all t ∈ [0, T]. Assume that the a priori
bound condition ‖F‖D((–B)p) ≤M and the assumption (1.3) holds.
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If we choose the regularization parameter

n =

⎧
⎨

⎩

�(M
ε

)
2

p+1 �, 0 < p < 2,

�(M
ε

) 2
3 �, p ≥ 2,

then we get

∥
∥F ε

n,χ (·) – F (·)∥∥L2(�)

≤
⎧
⎨

⎩

(c + (c[K2,α(T ,λ1)Q1]2)– p
2 ( p

2 )
p
2 )M

1
p+1 ε

p
p+1 , 0 < p < 2,

(c + c[K2,α(T ,λ1)Q1]2)M 1
3 ε

2
3 , p ≥ 2.

Proof From the triangle inequality, we obtain

∥
∥F ε

n,χ (·) – F (·)∥∥L2(�) ≤ ∥
∥F ε

n,χ (·) – Fn,χ (·)∥∥L2(�) +
∥
∥Fn,χ (·) – F (·)∥∥L2(�). (4.3)

Firstly, we give an estimate for the first term ‖F ε
n,χ (·) –Fn,χ (·)‖L2(�). Applying Lemma 4.1,

then we get

∥
∥F ε

n,χ (·) – Fn,χ (·)∥∥L2(�)

=

( ∞∑

k=1

[1 – (1 – c[ 1
1+λk (1–α)

∫ T
0 exp(– αλk (T–s)

1+λk (1–α) )Q(s) ds]2)n]2χ

( 1
1+λk (1–α)

∫ T
0 exp(– αλk (T–s)

1+λk (1–α) )Q(s) ds)2

∣
∣
〈
Pε – P, wk

〉∣
∣

) 1
2

≤ sup
k≥1

[1 – (1 – c[ 1
1+λk (1–α)

∫ T
0 exp(– αλk (T–s)

1+λk (1–α) )Q(s) ds]2)n]χ

1
1+λk (1–α)

∫ T
0 exp(– αλk (T–s)

1+λk (1–α) )Q(s) ds

∥
∥Pε – P

∥
∥

L2(�)

≤ c
1
2 n

1
2 ε. (4.4)

Next, we estimate the second term,

∥
∥Fn,χ (·) – F (·)∥∥L2(�)

=

∥
∥
∥
∥
∥

∞∑

k=1

1 – [1 – (1 – c[ 1
1+λk (1–α)

∫ T
0 exp(– αλk (T–s)

1+λk (1–α) )Q(s) ds]2)n]χ

1
1+λk (1–α)

∫ T
0 exp(– αλk (T–s)

1+λk (1–α) )Q(s) ds
〈P, wk〉wk

∥
∥
∥
∥
∥

L2(�)

.

(4.5)

Because χ ∈ ( 1
2 , 1], we thus get

∥
∥Fn,χ (·) – F (·)∥∥L2(�)

≤
∥
∥
∥
∥
∥

∞∑

k=1

(

1 – c
[

1
1 + λk(1 – α)

∫ T

0
exp

(

–
αλk(T – s)

1 + λk(1 – α)

)

Q(s) ds
]2)n

〈F , wk〉wk

∥
∥
∥
∥
∥

L2(�)

.

Lemma 2.3 now shows that

∥
∥Fn,χ (·) – F (·)∥∥L2(�) ≤

∥
∥
∥
∥
∥

∞∑

k=1

(

1 – c
[

K2,α(T ,λ1)
Q1

λk

]2)n

〈F , wk〉wk

∥
∥
∥
∥
∥

L2(�)
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≤
( ∞∑

k=1

(

1 – c
[

K2,α(T ,λ1)
Q1

λk

]2)2n

λ
2p
k λ

–2p
k

∣
∣〈F , wk〉

∣
∣2

) 1
2

≤ sup
k≥1

((

1 – c
[

K2,α(T ,λ1)
Q1

λk

]2)n

λ
–p
k

)( ∞∑

k=1

λ
2p
k

∣
∣〈F , wk〉

∣
∣2

) 1
2

.

Hence, we see that

∥
∥F ε

n,χ (·) – F (·)∥∥L2(�) ≤ c
1
2 n

1
2 ε +

(
c
[
K2,α(T ,λ1)Q1

]2)– p
2

(
p
2

) p
2

n– p
2 M.

Choose the regularization parameter

n =

⎧
⎨

⎩

�(M
ε

)
2

p+1 �, 0 < p < 2,

�(M
ε

) 2
3 �, p ≥ 2,

then we get

∥
∥F ε

n,χ (·) – F (·)∥∥L2(�)

≤
⎧
⎨

⎩

(c + (c[K2,α(T ,λ1)Q1]2)– p
2 ( p

2 )
p
2 )M

1
p+1 ε

p
p+1 , 0 < p < 2,

(c + c[K2,α(T ,λ1)Q1]2)M 1
3 ε

2
3 , p ≥ 2.

This ends the proof. �

4.2 A posteriori parameter choice rule and convergence estimate
Now, based on Morozov’s discrepancy principle [33], we consider the choice of the a pos-
terior regularization. Let us choose the regularization parameter n such that

∥
∥RF ε

n,χ – Pε
∥
∥

L2(�) ≤ με ≤ ∥
∥RF ε

n–1,χ – Pε
∥
∥

L2(�), (4.6)

where ‖Pε‖L2(�) ≥ με > 0. Choosing μ > 1 and the bound for n is given and depends on ε

and M.

Theorem 4.3 If n satisfies (4.6), we can get the following inequality:

n ≤ p + 1
2cK2

2,α(T ,λ1)Q2
1

(MK1,α(T)‖Q‖∞
(μ – 1)ε

) 2
p+1

. (4.7)

Then we have the following estimations
• If 0 < p < 1 then

∥
∥F ε

n,χ (·) – F (·)∥∥L2(�) ≤
[(

p + 1
2K2

2,α(T ,λ1)Q2
1

) 1
2
(

K1,α(T)‖Q‖∞
(μ – 1)

) 1
p+1

+
(

1 + μ

Q1K2,α(T ,λ1)

) p
p+1

]

M
1

p+1 ε
p

p+1 . (4.8)
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• If p ≥ 1 then

∥
∥F ε

n,χ (·) – F (·)∥∥L2(�)

≤
[(

(p + 1)K1,α(T)‖Q‖∞
2(μ – 1)K2

2,α(T ,λ1)Q2
1
Mε

) 1
2

+
(

1 + μ

Q1K2,α(T ,λ1)

) 1
2
]

M 1
2 ε

1
2 . (4.9)

Proof From (4.6), we have

με ≤ ∥
∥KF ε

n–1,χ – Pε
∥
∥

L2(�)

=

∥
∥
∥
∥
∥

∞∑

k=1

([

1 –
(

1 – c
[

1
1 + λk(1 – α)

×
∫ T

0
exp

(

–
αλk(T – s)

1 + λk(1 – α)

)

Q(s) ds
]2)n–1]χ

– 1
)

〈
Pε , wk

〉
wk

∥
∥
∥
∥
∥

L2(�)

.

By χ ∈ ( 1
2 ; 1] and 0 < c[ 1

1+λk (1–α)
∫ T

0 exp(– αλk (T–s)
1+λk (1–α) )Q(s) ds]2 < 1, we obtain

με ≤ ∥
∥KF ε

n–1,χ – Pε
∥
∥

L2(�) =
∥
∥Pε – P

∥
∥

L2(�) + O,

whereby

O =

∥
∥
∥
∥
∥

∞∑

k=1

(

1 – c
[

1
1 + λk(1 – α)

∫ T

0
exp

(

–
αλk(T – s)

1 + λk(1 – α)

)

Q(s) ds
]2)n–1

× 〈
Pε , wk

〉
wk

∥
∥
∥
∥
∥

L2(�)

.

In view of Lemma 2.3 and (2.12), we get

O ≤
∥
∥
∥
∥
∥

∞∑

k=1

(

1 – c
[

K2,α(T ,λ1)
Q1

λk

]2)n–1〈
Pε , wk

〉
wk

∥
∥
∥
∥
∥

L2(�)

≤
∥
∥
∥
∥
∥

∞∑

k=1

(

1 – c
[

K2,α(T ,λ1)
Q1

λk

]2)n–1〈
Pε , wk

〉
wk

∥
∥
∥
∥
∥

L2(�)

≤
( ∞∑

k=1

(

1 – c
[

K2,α(T ,λ1)
Q1

λk

]2)2(n–1)

λ
2p
k λ

–2p
k

∣
∣
〈
Pε , wk

〉∣
∣2

) 1
2

≤ sup
k≥1

((

1 – c
[

K2,α(T ,λ1)
Q1

λk

]2)n–1

λ
–p–1
k K1,α(T)‖Q‖∞

)( ∞∑

k=1

λ
2p
k

∣
∣〈F , wk〉

∣
∣2

) 1
2

.

By Lemma 2.1, we conclude that

O ≤ sup
k≥1

((

1 – c
[

K2,α(T ,λ1)
Q1

λk

]2)n–1

λ
–p–1
k K1,α(T)‖Q‖∞

)( ∞∑

k=1

λ
2p
k

∣
∣〈F , wk〉

∣
∣2

) 1
2
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≤ K1,α(T)‖Q‖∞
(c 1

2 K2,α(T ,λ1)Q1)p+1

(
p + 1

2

) p+1
2 M

n
p+1

2
.

We have (μ – 1)ε ≤ K1,α (T)‖Q‖∞
(c

1
2 K2,α (T ,λ1)Q1)p+1

( p+1
2 )

p+1
2 M

n
p+1

2
. This implies that

n ≤

⎧
⎪⎨

⎪⎩

p+1
2cK2

2,α (T ,λ1)Q2
1

(MK1,α (T)‖Q‖∞
(μ–1)ε )

2
p+1 , 0 < p < 1,

M(p+1)K1,α (T)‖Q‖∞
2εc(μ–1)K2

2,α (T ,λ1)Q2
1

, p ≥ 1.
(4.10)

In view of (4.4) and (4.10), we get

∥
∥F ε

n,χ (·) – Fn,χ (·)∥∥L2(�)

≤

⎧
⎪⎨

⎪⎩

( p+1
2K2

2,α (T ,λ1)Q2
1

) 1
2 ( K1,α (T)‖Q‖∞

(μ–1) )
1

p+1 M
1

p+1 ε
p

p+1 , 0 < p < 1,

( (p+1)K1,α (T)‖Q‖∞
2(μ–1)K2

2,α (T ,λ1)Q2
1
Mε) 1

2 , p ≥ 1.
(4.11)

From (4.5) and applying Hölder’s inequality, we deduce that

∥
∥Fn,χ (·) – F (·)∥∥L2(�)

= P
∥
∥
∥
∥
∥

∞∑

k=1

1 – [1 – (1 – c[ 1
1+λk (1–α)

∫ T
0 exp(– αλk (T–s)

1+λk (1–α) )Q(s) ds]2)n]χ

1
1+λk (1–α)

∫ T
0 exp(– αλk (T–s)

1+λk (1–α) )Q(s) ds
〈P, wk〉wk

∥
∥
∥
∥
∥

p
p+1

L2(�)

.

(4.12)

Here

P =

∥
∥
∥
∥
∥

∞∑

k=1

1 – [1 – (1 – c[ 1
1+λk (1–α)

∫ T
0 exp(– αλk (T–s)

1+λk (1–α) )Q(s) ds]2)n]χ

1
1+λk (1–α)

∫ T
0 exp(– αλk (T–s)

1+λk (1–α) )Q(s) ds
〈P, wk〉wk

∥
∥
∥
∥
∥

1
p+1

L2(�)

≤
∥
∥
∥
∥
∥

∞∑

k=1

〈F , wk〉wk

∥
∥
∥
∥
∥

1
p+1

L2(�)

≤ sup
k≥1

(
1
λk

) p
p+1 ‖F‖

1
p+1
D((–B)p), (4.13)

where we note that χ ∈ ( 1
2 , 1] and

0 < c
[

1
1 + λk(1 – α)

∫ T

0
exp

(

–
αλk(T – s)

1 + λk(1 – α)

)

Q(s) ds
]2

< 1.

Hence, we obtain

∥
∥Fn,χ (·) – F (·)∥∥L2(�)

≤ sup
k≥1

(
1

λk
1+λk (1–α)

∫ T
0 exp(– αλk (T–s)

1+λk (1–α) )Q(s) ds

) p
p+1

×M
1

p+1

(∥
∥
∥
∥
∥

∞∑

k=1

〈
P – Pε , wk

〉
wk

∥
∥
∥
∥
∥

L2(�)
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+

∥
∥
∥
∥
∥

∞∑

k=1

(

1 –
[

1 –
(

1 – c
[

1
1 + λk(1 – α)

×
∫ T

0
exp

(

–
αλk(T – s)

1 + λk(1 – α)

)

Q(s) ds
]2)n]χ)

〈
Pε , wk

〉
wk

∥
∥
∥
∥
∥

L2(�)

) p
p+1

.

In view of (4.6), ‖Fn,χ (·)–F (·)‖L2(�) ≤ ( 1+μ

Q1K2,α (T ,λ1) )
p

p+1 M
1

p+1 ε
p

p+1 . This implies the follow-
ing.

• If 0 < p < 1 then

∥
∥F ε

n,χ (·) – F (·)∥∥L2(�) ≤
[(

p + 1
2K2

2,α(T ,λ1)Q2
1

) 1
2
(

K1,α(T)‖Q‖∞
(μ – 1)

) 1
p+1

+
(

1 + μ

Q1K2,α(T ,λ1)

) p
p+1

]

M
1

p+1 ε
p

p+1 . (4.14)

• If p ≥ 1 then

∥
∥F ε

n,χ (·) – F (·)∥∥L2(�)

≤
[(

(p + 1)K1,α(T)‖Q‖∞
2(μ – 1)K2

2,α(T ,λ1)Q2
1
Mε

) 1
2

+
(

1 + μ

Q1K2,α(T ,λ1)

) 1
2
]

M 1
2 ε

1
2 . (4.15)

�

5 Numerical test
In this section, we show a numerical example to illustrate the proposed method. The
numerical test is constructed in the following way: Firstly, we set up some computa-
tions which support this example as follows: Let α ∈ (0, 1), T = 1 be a fixed value and
(x, t) ∈ (0,π ) × (0, 1). Then we have the eigenvalues λk = k2, k = 1, 2, . . . , with correspond-
ing eigenfunction wk(x) =

√
2
π

sin(kx) and the inner product 〈·, ·〉L2(0,π ) is given by

〈a, b〉L2(0,π ) =
∫ π

0
ab dx. (5.1)

In Mathlab software, to compute a integral, we use the code which made by Juan Camilo
Medina; see Juan Camilo Medina, Simpson’s Rule Integration, MATLAB Central File Ex-
change. Retrieved March 19, 2020.

Secondly, we choose the exact data function g(x) and F(x, t) as follows:

g(x) =
√

2
π

sin(x), F(x, t) =
√

2
π

t2 sin(2x). (5.2)

A uniform Cartesian grid can be generated as follows (see Fig. 1 as an illustration):

xi = (i – 1)hx, i = 1, 2, . . . , M + 1, hx =
π

M
,

tj = (j – 1)ht , j = 1, 2, . . . , N + 1, ht =
1
N

.
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Figure 1 A uniform Cartesian grid on
(x, t) ∈ (0,π )× (0, 1)

Figure 2 The solution u(x, t) on (x, t) ∈ (0,π )× (0, 1)

Then we have the following exact solution:

u(x, t)

=
∞∑

k=1

[
1

1 + k2(1 – α)
exp

(

–
αk2t

1 + k2(1 – α)

)∫ π

0
g(x)

√
2
π

sin(kx) dx

+
1

1 + k2(1 – α)

∫ t

0
exp

(

–
αk2(t – s)

1 + k2(1 – α)

)∫ π

0
F(x, s)

√
2
π

sin(kx) dx ds
]

×
√

2
π

sin(kx). (5.3)

We can see the graph of u(x, t) on (x, t) ∈ (0,π ) × (0, 1) in Fig. 2.
From (5.3), we have the value of the final time as follows:

H(x) =
√

2π exp( α
α–2 )

π (2 – α)
sin(x) +

√
2π exp( 4α

4α–5 )
32π

×
[
(
16α2 – 24α + 13

)
exp

(
4

5 – 4α

)

+ (5 – 4α)2
]

sin(2x). (5.4)
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Thirdly, we consider the noise model satisfies

Hε = H + ε randn(·), (5.5)

where the noise level ε −→ 0+ and the function randn(·) generates arrays of random num-
bers whose elements are normally distributed with mean 0, variance σ 2 = 1; see Fig. 3.

Next, the source function with the exact data H as follows:

Fn,θ (x)

=
∞∑

k=1

[1 – (1 – c[ 1
1+k2(1–α)

∫ 1
0 exp(– αk2(1–s)

1+k2(1–α) )Q(s) ds]2)n]χ

1
1+k2(1–α)

∫ 1
0 exp(– αk2(1–s)

1+k2(1–α) )Q(s) ds
〈P , wk〉wk ,

where Pk := Hk – 1
1+k2(1–α) exp(– αk2

1+k2(1–α) )gk .
According to the fractional Landweber regularization method, we have the source func-

tion with noise data Hε as follows:

F ε
n,χ (x)

=
∞∑

k=1

[1 – (1 – c[ 1
1+k2(1–α)

∫ 1
0 exp(– αk2(1–s)

1+k2(1–α) )Q(s) ds]2)n]χ

1
1+k2(1–α)

∫ 1
0 exp(– αk2(1–s)

1+k2(1–α) )Q(s) ds

〈
Pε , wk

〉
wk .

Here Pε := Hε –
∑∞

k=1( 1
1+k2(1–α) exp(– αk2

1+k2(1–α) )gk)wk(x), χ ∈ ( 1
2 , 1] is the fractional order,

and n > 0 is a regularization parameter.
The absolute error estimation Eε

α between the exact source function Fn,θ and the regu-
larized source function F ε

n,χ is as follows:

Eε
α =

(
1

M + 1

M+1∑

i=1

∣
∣Fn,θ (xi) – F ε

n,χ (xi)
∣
∣2

)1/2

. (5.6)

The results of this example are shown in Table 1. In Fig. 4, we present the graph of the
exact and regularized source functions. From the error table and the figures above, we
can see that the smaller the ε, the better the computed approximation. In particular, the
regularized source function will gradually approach the exact source function as ε tends
to zero.

Table 1 The error estimation between the exact and regularized source functions for
α ∈ {0.1, 0.3, 0.5, 0.7, 0.9} and x ∈ (0,π )

α M = N = 50, N(k) = 10, n = 5, c = 1, χ = 3/4

ε 0.1 0.01 0.001

0.1 0.625292032114638 0.087100745983566 2.43525380437e–04
0.3 0.421470519953221 0.001482709063832 1.27369718370e–04
0.5 0.013836342900140 0.001320217219321 1.44739318526e–04
0.7 0.030298174314198 0.002973010099701 3.39046203147e–04
0.9 0.16883894823ee–04 0.015674145530483 8.98583008912e–04
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Figure 3 The graph of functions H and Hε
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Figure 4 The exact source function Fn,θ and the regularized source function F ε
n,χ for x ∈ (0,π )



Huynh et al. Journal of Inequalities and Applications         (2021) 2021:28 Page 19 of 20

6 Conclusions
In this paper, we study the source function for the Caputo–Fabrizio time fractional diffu-
sion equation with the new kernel. We show that the backward problem for this equation
is ill-posed (in the sense of Hadamard). Then the fractional Landweber and the modified
quasi-boundary value methods are used to deal with this inverse problem and the reg-
ularized solution is also obtained. We also give the convergence estimates between the
regularized solution and the exact solution by using the a priori regularization parame-
ter choice rule and the a posteriori parameter choice rule. Finally, we give a numerical
example to illustrate the proposed method.
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