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Abstract
The purpose of this paper is to study the existence of sign-changing solution to the
following fourth-order equation:

�2u –
(
a + b

∫

RN
|∇u|2 dx

)
�u + V(x)u = K (x)f (u) in R

N , (0.1)

where 5 ≤ N ≤ 7, �2 denotes the biharmonic operator, K (x),V(x) are positive
continuous functions which vanish at infinity, and f (u) is only a continuous function.
We prove that the equation has a least energy sign-changing solution by the
minimization argument on the sign-changing Nehari manifold. If, additionally, f is an
odd function, we obtain that equation has infinitely many nontrivial solutions.

Keywords: Biharmonic operator; Sign-changing solution; Nonlocal term; Variational
methods

1 Introduction and main results
This article is concerned with the following fourth-order Kirchhoff-type equation:

�2u –
(

a + b
∫

RN
|∇u|2 dx

)
�u + V (x)u = K(x)f (u), x ∈R

N , (1.1)

where 5 ≤ N ≤ 7, �2 denotes the biharmonic operator, and a, b are positive constants.
When a = 1, b = 0, equation (1.1) becomes the following fourth-order equation (replace

R
N with �):

�2u – �u + V (x)u = f (x, u), x ∈ �, (1.2)

where � is an open subset of RN . There are many results focused on the existence, multi-
plicity, and concentration of solutions to problem (1.2), see for instance [12, 13, 45, 48, 53–
55, 58, 59] and the references therein.
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Problem (1.1) stems from the following Kirchhoff equation:

�2u –
(

a + b
∫

�

|∇u|2 dx
)

�u = f (x, u), x ∈ �, (1.3)

where � ⊂R
N is a bounded domain, a, b > 0.

Problem (1.3) comes from the following equation:

utt – �2u –
(

a + b
∫

�

|∇u|2 dx
)

�u = f (x, u), x ∈ �. (1.4)

Because equation (1.4) is regarded as a good approximation for describing nonlinear vi-
brations of beams or plates, it is used to describe some phenomena that appear in different
physical, engineering, and other sciences [5, 9].

Since it involves (
∫
RN |∇u|2 dx)�u or (

∫
�

|∇u|2 dx)�u, problem (1.1) or (1.3) has become
particularly interesting. By means of the fixed point theorems or variational approach, Ma
[26–28] discussed positive solutions (or solutions) for problems similar to problem (1.3)
whenN = 1. WhenN ≥ 2, there have been many papers about solutions to problem (1.1) or
(1.3), see, for example, [4, 29, 36, 44, 46, 50–52]. However, except [21, 57], there are very few
papers considering sign-changing solutions. By combining constraint variation methods
and deformation lemma, Zhang et al. [57] studied sign-changing solution to problem (1.1)
when K(x) ≡ 1. When K(x) ≡ 1 and f (u) = |u|p–2u, 4 < p < 2∗ (2∗ defined below), by the
minimization argument on the sign-changing Nehari manifold, Khoutir and Chen [21]
discussed sign-changing solution to problem (1.1).

It is noticed that in the past decades many mathematicians have paid much of their
attention to nonlocal problems. The appearance of nonlocal terms in the equations not
only marks their importance in many physical applications but also causes some difficul-
ties and challenges from a mathematical point of view. Certainly, this fact makes the study
of nonlocal problems particularly interesting. In addition to the equations of Kirchhoff
type, there are also some nonlocal problems, such as Schrödinger–Poisson systems, equa-
tions with the fractional Laplacian operator, and so on. Especially, these days there is a
good trend of existence of solutions for fractional-order differential equations which are
definitely the generalized study [1, 2, 15–20, 22, 32, 33].

Throughout this paper, as in [3], we say that (V , K) ∈ K if continuous functions V , K :
R

N →R satisfy the following conditions:
(VK0) V (x), K(x) > 0 for all x ∈R

N and K ∈ L∞(RN ).
(VK1) If {An}n ⊂ R

N is a sequence of Borel sets such that |An| ≤ R for all n ∈N and some
R > 0, then

lim
r→+∞

∫

An∩Bc
r (0)

K(x) = 0 uniformly in n ∈N.

One of the following conditions occurs:
(VK2) K/V ∈ L∞(RN );
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or
(VK3) There is p ∈ (2, 2∗) such that

K(x)

|V (x)| 2∗–p
2∗–2

→ 0 as |x| → ∞,

where 2∗ = 2N
N–4 is the critical Sobolev exponent.

As for the function f , we assume f ∈ C(R,R) and satisfies the following condi-
tions:

(f1)

f (t) = o
(|t|3) as t → 0 if (VK2) holds.

(f2)

lim sup
t→0

f (t)
|t|p–1 < +∞, if (VK3) holds.

(f3) f has a “quasicritical growth”, that is,

lim sup
t→+∞

f (t)
|t|2∗–1 = 0.

(f4) limt→∞ F(t)
t4 = +∞, where F(t) =

∫ t
0 f (s) ds.

(f5) f (t)
|t|3 is an increasing function of t ∈R\{0}.

Let

A :=
{

u ∈ D1,2(
R

N)
:
∫

RN
V (x)u2 dx < ∞

}

be a Banach space endowed with the norm ‖u‖A := (
∫
RN (|∇u|2 + V (x)u2) dx) 1

2 .
It follows from (V , K) ∈K that the space B given by

B :=
{

u ∈ D2,2(
R

N)
:
∫

RN
V (x)u2 dx < ∞

}

with

‖u‖B :=
(∫

RN

(|�u|2 + V (x)u2)dx
) 1

2

is compactly embedded into the weighted Lebesgue space Lq
K (RN ) for some q ∈ (2, 2∗) (see

Proposition 2.2), where Lq
K (RN ) given by

Lq
K
(
R

N)
:=

{
u : RN →R | u is measurable and

∫

RN
K(x)|u|q dx < ∞

}

with

‖u‖K :=
(∫

RN
K(x)|u|q dx

)1/q

.
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In this paper, we discuss our problem on the space

E :=
{

u ∈ D1,2(
R

N) ∩ D2,2(
R

N)
:
∫

RN
V (x)u2 dx < ∞

}
.

So, it is easy to see that E is a Hilbert space. Furthermore,

(u, v) =
∫

RN

(
�u�v + a∇u · ∇v + V (x)uv

)
dx, ‖u‖ = (u, u)

1
2 .

For problem (1.1), the energy functional is given by

Ib(u) =
1
2

∫

RN

(|�u|2 + a|∇u|2 + V (x)u2)dx +
b
4

(∫

RN
|∇u|2 dx

)2

–
∫

RN
K(x)F(u) dx, u ∈ E,

where F(u) =
∫ u

0 f (t) dt.
It follows from the conditions of this paper that Ib(u) belongs to C1 and

〈
I ′

b(u), v
〉

=
∫

RN

(
�u�v + a∇u · ∇v + V (x)uv

)
dx

+ b
(∫

RN
|∇u|2 dx

)(∫

RN
∇u · ∇v dx

)
–

∫

RN
K(x)f (u)v dx

for any u, v ∈ E.
The solution of problem (1.1) is the critical point of the functional Ib(u). Furthermore,

we say that u is a sign-changing solution if u ∈ E is a solution to problem (1.1) and u± �= 0,
where u+ = max{u(x), 0}, u– = min{u(x), 0}.

As pointed out in the article, since the nonlocal term (
∫
RN |∇u|2 dx)�u is involved, there

is an essential difference between problem (1.1) and problem (1.2) when we discussed the
existence of sign-changing solutions, see [6–8, 10, 25, 37, 61].

Therefore, to study sign-changing solutions for problem (1.1), as in [6, 7, 10], we first
obtain a minimizer of Ib over the constraint

M =
{

u ∈ E, u± �= 0 and
〈
I ′

b(u), u+〉
=

〈
I ′

b(u), u–〉
= 0

}
.

The rest is to prove that the minimizer is a sign-changing solution of problem (1.1). It
is noticed that there are some interesting results, for example, [11, 14, 23, 24, 30, 31, 34,
35, 38–43, 47, 56, 60], which considered sign-changing solutions for other nonlocal prob-
lems.

The main result can be stated as follows.

Theorem 1.1 Suppose that (V , K) ∈ K and (f1)–(f5) are satisfied. Then problem (1.1) has
a least energy sign-changing solution u in E. If, additionally, f is an odd function, then
problem (1.1) has infinitely many nontrivial solutions.
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Remark 1.1 In this paper, the potential V vanishing at infinity means

lim|x|→+∞ V (x) = 0,

which is also used to characterize one problem as zero mass.

The rest of this paper proceeds as follows. Sections 2 and 3 are devoted to our variational
setting, and necessary lemmas are shown and proved, which shall be used in the proof of
our main results in Sect. 4.

2 The variational framework and preliminary results
Proposition 2.1 ([13]) Assume (V , K) ∈ K. If (VK2) holds, then B is continuously embed-
ded in Lq

K (RN ) for every q ∈ [2, 2∗]; if (VK3) holds, then B is continuously embedded in
Lp

K (RN ).

Proposition 2.2 ([13]) Assume (V , K) ∈K. If (VK2) holds, then B is compactly embedded
in Lq

K (RN ) for every q ∈ (2, 2∗); if (VK3) holds, then B is compactly embedded in Lp
K (RN ).

Remark 2.1 Since E is continuously embedded in B, it is easy to see that Proposition 2.1
and Proposition 2.2 also hold if B is replaced with E.

Lemma 2.1 ([13]) Suppose that (V , K) ∈ K and (f1)–(f2) are satisfied. Let {vn} be a se-
quence such that vn ⇀ v in E. Then

∫

RN
KF(vn) dx →

∫

RN
KF(v) dx,

∫

RN
Kf (vn)vn dx →

∫

RN
Kf (v)v dx.

Lemma 2.2 Assume that (V , K) ∈K and (f1)–(f5) hold. Then, for any u ∈ E\{0},

lim|t|→∞

∫

RN

Kf (tu)u
t3 = ∞.

Proof The proof is similar to that of Lemma 2.4 in [24], so we omit it here. �

Similarly, we have the following results.

Lemma 2.3 Assume that (V , K) ∈K and (f1)–(f5) hold. Then, for any u ∈ E\{0},

lim|t|→∞

∫

RN

KF(tu)
t4 = ∞.

Lemma 2.4 Assume that (V , K) ∈K and (f1)–(f5) hold. Then, for any u ∈ E\{0},

lim
t→0

∫

RN

Kf (tu)u
t

= 0.

Let

N :=
{

u ∈ E\{0} :
〈
I ′

b(u), u
〉

= 0
}

.
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The following results are very important, because they allow us to overcome the non-
differentiability of N (see Lemma 2.5(iii)).

Lemma 2.5 Assume that (V , K) ∈K and (f1)–(f5) hold. If u ∈ E with u± �= 0, then
(i) For each u ∈ E\{0}, let hu : R+ → R be defined by hu(t) = Ib(tu). Then there is unique

tu > 0 such that h′
u(t) > 0 in (0, tu) and h′

u(t) < 0 in (tu,∞).
(ii) There is τ > 0 independent of u such that tu ≥ τ for all u ∈ S , which is the unit

sphere on E. Moreover, for each compact set Q ⊂ S , there is CQ > 0 such that tu ≤ CQ

for all u ∈ Q.
(iii) The map m̂ : E\{0} →N given by m̂(u) = tuu is continuous and m := m̂|S is a

homeomorphism between S and N . Moreover, m–1(u) = u/‖u‖.

Proof If (VK2) holds. From (f1) and (f3), for any ε > 0, there exists Cε > 0 such that

∣∣f (s)
∣∣ ≤ ε|s| + Cε|s|2∗–1, s ∈R. (2.1)

So,

Ib(tu) =
1
2
‖tu‖2 +

bt4

4

(∫

RN
|∇u|2 dx

)2

–
∫

RN
K(x)F(tu) dx

≥ t2

2
‖u‖2 +

bt4

4

(∫

RN
|∇u|2 dx

)2

– ε

∫

RN
K(x)t2u2 dx – Cε

∫

RN
K(x)t2∗u2∗ dx

≥
(

1
2

– ε|K/V |∞
)

t2‖u‖2 +
bt4

4

(∫

RN
|∇u|2 dx

)2

– Cε|K |∞t2∗‖u‖2∗ . (2.2)

Let ε < 1
2 /|K/V |∞, there is t0 > 0 sufficiently small such that

hu(t) = Ib(tu) > 0, ∀t < t0. (2.3)

If (VK3) holds. According to arguments in [13], there is Cp > 0 such that, for given ε ∈
(0, Cp), there exists L > 0 satisfying

∫

{x:|x|≥L}
K |u|p dx ≤ ε

∫

{x:|x|≥L}

[
V |u|2 + |u|2∗]dx, u ∈ E. (2.4)

So, it follows from (f2) and (f3) that

Ib(tu) ≥ t2

2
‖u‖2 +

bt4

4

(∫

RN
|∇u|2 dx

)2

– C1tp
∫

RN
K(x)up dx – C2t2∗

∫

RN
K(x)|u|2∗ dx.

According to (2.4), Hölder’s inequality, and (VK0), one has that

Ib(tu) ≥ t2

2
‖u‖2 +

bt4

4

(∫

RN
|∇u|2 dx

)2

– C1εtp
∫

Bc
r(0)

C
(
V (x)u2 + |u|2∗)dx

– C1tp|K | 2∗
2∗–p (Br(0))

(∫

Br (0)
u2∗ dx

) p
2∗

– C2|K |∞t2∗
∫

RN
u2∗ dx
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≥ t2

2
‖u‖2 +

bt4

4

(∫

RN
|∇u|2 dx

)2

– C2|K |∞t2∗C– 2∗
2

2∗ ‖u‖2∗

– C1
(
ε‖u‖2 + εC– 2∗

2
2∗ ‖u‖2∗ + C– p

2
2∗ |K | 2∗

2∗–p (Br (0))‖u‖2∗)tp. (2.5)

Since p > 2 and 2∗ > 2, we have that (2.3) also holds.
On the other hand, thanks to F(s) ≥ 0,∀s ∈R, we get

Ib(tu) ≤ 1
2
‖tu‖2 +

bt4

4

(∫

RN
|∇u|2 dx

)2

–
∫

D
K(x)F(tu) dx,

where D ⊂ suppu is a measurable set with finite and positive measures.
Hence, by combining Fatou’s lemma and (f4), one has

lim sup
t→∞

Ib(tu)
‖tu‖4 ≤ lim sup

t→∞
1

2‖tu‖2 +
b

4‖tu‖2

– lim inf
t→∞

{∫

D
K(x)

[
F(tu)
‖tu‖4

](
u

‖u‖
)4}

→ –∞. (2.6)

So, there is t̃0 > 0 sufficiently large so that

hu(t) = Ib(tu) > 0, ∀t > t̃0. (2.7)

Therefore, by the continuity of hu and (f5), there is tu > 0 which is a maximum global
point of hu with tuu ∈N .

We assert that tu is the unique critical point of hu. In fact, suppose, by contradiction,
that there are t1 > t2 > 0 such that h′

u(t1) = h′
u(t2) = 0. Then

0 >
1

‖t1u‖2 –
1

‖t2u‖2 =
1

‖u‖4

∫

RN
K(x)

[
f (t1u)
‖t1u‖3 –

f (t2u)
‖t2u‖3

]
u4 dx ≥ 0, (2.8)

which is absurd.
Next, we prove (ii).
For any u ∈ S , according to (i), there exists tu > 0 such that

t2
u‖u‖2 + bt4

u

(∫

RN
|∇u|2 dx

)2

=
∫

RN
K(x)f (tuu)tuu dx.

By (2.1), we have that

t2
u‖u‖2 ≤ t2

u‖u‖2 + bt4
u

(∫

RN
|∇u|2 dx

)2

=
∫

RN
K(x)f (tuu)tuu dx

≤
∫

RN
K(x)

[
ε|tuu|2 + Cε|tuu|2∗]dx

≤ εt2
u
∥∥KV –1∥∥∞‖u‖2 + t2∗

u Cε‖K‖∞‖u‖2∗ . (2.9)

So, there exists τ > 0, independent of u, such that tu ≥ τ .
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On the other hand, let Q ⊂ S be compact. Suppose that there exist {un} ⊂ Q, u ∈ Q such
that tn := tun → ∞, un → u in E. So, it follows from (2.6) that

Ib(tnun) → –∞ in R. (2.10)

According to (f5), we obtain that

f (t)t – 4F(t) ≥ 0 (2.11)

is increasing when t > 0 and decreasing when t < 0. Hence we have, for each u ∈N , that

Ib(u) = Ib(u) –
1
4
〈
I ′

b(u), u
〉

=
1
4
‖u‖2 +

1
4

∫

RN
K(x)

(
f (u)u – 4F(u)

)
dx ≥ 0. (2.12)

Thanks to {tun un} ⊂N , replaced u with tun un in (2.12), from (2.10) we have a contradic-
tion. Therefore, (ii) holds.

Finally, we prove (iii). We assert that m, m̂, m–1 are well defined. Indeed, for each u ∈
E\{0}, by (i), there is unique m(u) ∈N . If u ∈N , then u �= 0, it is easy to see that m–1(u) =
u/‖u‖ ∈ S . So, m–1 is well defined. Furthermore, we have that

m–1(m(u)
)

= m(tuu) =
tuu

tu‖u‖ = u, ∀u ∈ S ,

m
(
m–1(u)

)
= m

(
u

‖u‖
)

= t( u
‖u‖ )

u
‖u‖ = u, ∀u ∈N .

Hence, m is bijective and m–1 is continuous.
In what follows, we prove m̂ : E\{0} → N is continuous. Suppose {un} ⊂ E\{0} and u ∈

E\{0} such that un → u in E. According to (ii), there is t0 > 0 such that ‖un‖tun = t( un‖un‖ ) →
t0. So, we have tun → t0

‖u‖ =: t̃0. Thanks to tun un ∈N , one has that

t2
un‖un‖2 + bt4

un

(∫

RN
|∇un|2 dx

)2

=
∫

RN
K(x)f (tun un)tun un dx.

From the above equality, let n → ∞, one has that

t̃2
0‖u‖2 + b̃t4

0

(∫

RN
|∇u|2 dx

)2

=
∫

RN
K(x)f (̃t0u)̃t0u dx,

which indicates that (t0/‖u‖)u ∈ N and tu = t0/‖u‖. Therefore, m̂(un) → m̂(u). So, the
proof is completed. �

Define �̂ : E →R and � : S →R by

�̂(u) = Ib
(
m̂(u)

)
and � := �̂|S .

By Lemma 2.5 and the result from [37], one has the following.
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Proposition 2.3 Assume that (V , K) ∈K and (f1)–(f5) hold, then
(i) �̂ ∈ C1(E \ {0},R) and

〈
�̂

′(u), v
〉

=
‖m̂(u)‖

‖u‖
〈
I ′

b
(
m̂(u)

)
, v

〉
, ∀u ∈ E \ {0} and ∀v ∈ E.

(ii) � ∈ C1(S ,R) and

〈
� ′(u), v

〉
=

∥∥m(u)
∥∥〈

I ′
b
(
m(u)

)
, v

〉
, ∀v ∈ TuS .

(iii) If un is a (PS)d sequence for � , then m(un) is a (PS)d sequence for Ib. If un ⊂ N is a
bounded (PS)d sequence for Ib, then m–1(un) is a (PS)d sequence for � .

(iv) u is a critical point of � if, and only if, m(u) is a nontrivial critical point of Ib. More-
over, corresponding critical values coincide and

inf
S

� = inf
N

Ib.

Proposition 2.4 If (f1)–(f5) hold, then

cb := inf
u∈N

Ib(u) = inf
u∈E\{0} max

t>0
Ib(tu) = inf

u∈S
max

t>0
Ib(tu) > 0. (2.13)

3 Technical lemmas
For u ∈ E with u± �= 0, let ϕu(s, t) := Ib(su+ + tu–), s > 0, t > 0.

Lemma 3.1 Assume that (V , K) ∈K and (f1)–(f5) hold. If u ∈ E with u± �= 0, then
(i) the pair (s, t) of a critical point of ϕu(s, t) with s, t > 0 if and only if su+ + tu– ∈M,

(ii) the map ϕu(s, t) has a unique critical point (s+, t–), with s+ = s+(u) > 0 and
t– = t–(u) > 0, which is the unique maximum point of ϕu(s, t).

(iii) The maps α+(r) = ∂ϕu
∂s (r, t–)r and α–(r) = ∂ϕu

∂t (s+, r)r are such that α+(r) > 0 if
r ∈ (0, s+), α–(r) > 0 if r ∈ (0, t–), α+(r) < 0 if r ∈ (s+,∞), and α–(r) < 0 if r ∈ (t–,∞).

Proof It is easy to see that

∇ϕu(s, t) =
(〈

I ′
b
(
su+ + tu–)

, u+〉
,
〈
I ′

b
(
su+ + tu–)

, u–〉)

=
(

1
s
〈
I ′

b
(
su+ + tu–)

, su+〉
,

1
t
〈
I ′

b
(
su+ + tu–)

, tu–〉)

:=
(

1
s

gu(s, t),
1
t

hu(s, t)
)

,

where

gu(s, t) = s2∥∥u+∥∥2 + bs4
(∫

RN

∣∣∇u+∣∣2 dx
)2

+ bs2t2
(∫

RN

∣∣∇u+∣∣2 dx
)(∫

RN

∣∣∇u–∣∣2 dx
)

–
∫

RN
K(x)f

(
su+)

su+ dx, (3.1)

hu(s, t) = t2∥∥u–∥∥2 + bt4
(∫

RN

∣∣∇u–∣∣2 dx
)2

+ bs2t2
(∫

RN

∣∣∇u+∣∣2 dx
)(∫

RN

∣∣∇u–∣∣2 dx
)
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–
∫

RN
K(x)f

(
tu–)

tu– dx. (3.2)

Hence, item (i) is obvious.
In the following, we prove (ii). Firstly, we assert that M �= ∅. By (i), we only prove the

existence of a critical point of ϕu(s, t). Let u ∈ E with u± �= 0 and t0 ≥ 0 fixed, it follows
from (3.1) that

gu(s, t0) = s2
(∥∥u+∥∥2 + bs2

(∫

RN

∣∣∇u+∣∣2 dx
)2

+ bt2
0

(∫

RN

∣∣∇u+∣∣2 dx
)(∫

RN

∣∣∇u–∣∣2 dx
)

–
∫

RN

K(x)f (su+)u+

s
dx

)
,

gu(s, t0) = s4
(‖u+‖2

s2 + b
(∫

RN

∣∣∇u+∣∣2 dx
)2

+
bt2

0
s2

(∫

RN

∣∣∇u+∣∣2 dx
)(∫

RN

∣∣∇u–∣∣2 dx
)

–
∫

RN

K(x)f (su+)u+

s3 dx
)

.

Together with Lemma 2.4 and Lemma 2.2, one gets

gu(s, t0) > 0 for s small enough; gu(s, t0) < 0 for s large enough.

Since gu(s, t0) is continuous, there exists s0 > 0 such that gu(s0, t0) = 0. We assert that s0

is unique. In fact, supposing by contradiction, there exist 0 < s1 < s2 such that gu(s1, t0) =
gu(s2, t0) = 0, and then we have

s2
1
∥∥u+∥∥2 + bs4

1

(∫

RN

∣∣∇u+∣∣2 dx
)2

+ bs2
1t2

0

(∫

RN

∣∣∇u+∣∣2 dx
)(∫

RN

∣∣∇u–∣∣2 dx
)

=
∫

RN
K(x)f

(
s1u+)

s1u+ dx,

s2
2
∥∥u+∥∥2 + bs4

2

(∫

RN

∣∣∇u+∣∣2 dx
)2

+ bs2
2t2

0

(∫

RN

∣∣∇u+∣∣2 dx
)(∫

RN

∣∣∇u–∣∣2 dx
)

=
∫

RN
K(x)f

(
s1u+)

s1u+ dx.

So,
(

1
s2

1
–

1
s2

2

)[∥∥u+∥∥2 + bt2
0

(∫

RN

∣∣∇u+∣∣2 dx
)(∫

RN

∣∣∇u–∣∣2 dx
)]

=
∫

RN
K(x)

[
f (s1u+)
(s1u+)3 –

f (s2u+)
(s2u+)3

](
u+)4 dx.

Therefore, it follows from (f5) and 0 < s1 < s2 that we have a contradiction. That is, there
exists unique s0 > 0 such that gu(s0, t0) = 0.

Let φ1(t) := s(t), where s(t) satisfies the properties just mentioned previously, with t in
the place of t0. Then the map φ1 : R+ → (0,∞) is well defined.

By definition, one has that ∂ϕu
∂s (φ1(t), t) = 0t ≥ 0. Then

φ1(t)
∥∥u+∥∥2 + bφ1(t)3

(∫

RN

∣∣∇u+∣∣2 dx
)2

+ bφ1(t)t2
(∫

RN

∣∣∇u+∣∣2 dx
)(∫

RN

∣∣∇u–∣∣2 dx
)
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=
∫

RN
K(x)f

(
φ1(t)u+)

u+ dx, t ≥ 0. (3.3)

We assert that φ1(t) has some good properties.
(1) φ1(t) is continuous. To this end, let tn → t0 as n → ∞ and suppose, by contradiction,

that there is a subsequence, still denoted by tn, such that φ1(tn) → ∞.
Obviously, φ1(tn) ≥ tn for n large enough. According to (3.3), one has that

‖u+‖2

φ1(tn)2 + b
(∫

RN

∣∣∇u+∣∣2 dx
)2

+
bt2

n
φ1(tn)2

(∫

RN

∣∣∇u+∣∣2 dx
)(∫

RN

∣∣∇u–∣∣2 dx
)

=
∫

RN
K(x)

f (φ1(tn)u+)
(φ1(tn)u+)3

(
u+)4 dx. (3.4)

In view of Lemma 2.2, we have a contradiction. So φ1(tn) is bounded. Therefore, there
exists s0 ≥ 0 such that, passing to a subsequence,

φ1(tn) → s0. (3.5)

Combining (3.3) with (3.5), we have that

s0
∥∥u+∥∥2 + bs3

0

(∫

RN

∣∣∇u+∣∣2 dx
)2

+ bs0t2
0

(∫

RN

∣∣∇u+∣∣2 dx
)(∫

RN

∣∣∇u–∣∣2 dx
)

=
∫

RN
K(x)f

(
s0u+)

u+ dx,

that is,

∂ϕu

∂s
(s0, t0) = 0.

Consequently, s0 = φ1(t0). That is, φ1 is continuous.
(2) φ1(t) > 0. Suppose, by contradiction, that there is a sequence {tn} such that φ1(tn) →

0+ as n → ∞. In view of (3.3) and Lemma 2.4, we have

∥∥u+∥∥2 ≤ lim
n→∞

∫

RN

K(x)f (φ1(tn)u+)u+

φ1(tn)
dx = 0,

which is absurd, and hence there is C > 0 such that φ1(t) ≥ C.
(3) φ1(t) < t for t large. Indeed, if there exists a sequence {tn} with tn → ∞ such that

φ1(tn) ≥ tn for all n ∈ N, then arguing as in (3.4), we have a contradiction. Thus, φ1(t) < t
for t large.

Similarly, according to definition of hu(s, t), we can define a map φ2 : R+ → (0,∞) by
φ2(s) = t(s) satisfying (1), (2), and (3).

By (3), there exists C1 > 0 such that φ1(t) ≤ t and φ2(s) ≤ s respectively when t, s > C1. Let
C2 = max{maxt∈[0,C1] φ1(t), maxs∈[0,C1] φ2(s)}, C = max{C1, C2}, define T : [0, C] × [0, C] →
R

2
+ by

T(s, t) =
(
φ1(t),φ2(s)

)
.
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It is easy to see that T(s, t) ∈ [0, C] × [0, C] for all (s, t) ∈ [0, C] × [0, C]. Since T is con-
tinuous, using the Brouwer fixed point theorem, there exists (s+, t–) ∈ [0, C] × [0, C] such
that

(
φ1(t–),φ2(s+)

)
= (s+, t–). (3.6)

It follows from φi > 0 that s+, t– > 0. According to the definition, we have

∂ϕu

∂s
(s+, t–) =

∂ϕu

∂t
(s+, t–) = 0.

We next shall prove the uniqueness of s+, t–. Suppose that ω ∈M, one has

∇ϕω(1, 1) =
(

∂ϕω

∂s
(1, 1),

∂ϕω

∂t
(1, 1)

)

=
(〈

I ′
b
(
ω+ + ω–)

,ω+〉
,
〈
I ′

b
(
ω+ + ω–)

,ω–〉)

= (0, 0),

which shows that (1, 1) is a critical point of ϕω . Now, we need to prove that (1, 1) is the
unique critical point of ϕω with positive coordinates. Let (s0, t0) be a critical point of ϕω

such that 0 < s0 ≤ t0. So, one has that

s2
0
∥∥ω+∥∥2 + bs4

0

(∫

RN

∣∣∇ω+∣∣2 dx
)2

+ bs2
0t2

0

(∫

RN

∣∣∇ω+∣∣2 dx
)(∫

RN

∣∣∇ω–∣∣2 dx
)

=
∫

RN
K(x)f

(
s0ω

+)
s0ω

+ dx (3.7)

and

t2
0
∥∥ω–∥∥2 + bt4

0

(∫

RN

∣∣∇ω–∣∣2 dx
)2

+ bs2
0t2

0

(∫

RN

∣∣∇ω+∣∣2 dx
)(∫

RN

∣∣∇ω–∣∣2 dx
)

=
∫

RN
K(x)f

(
t0ω

–)
t0ω

– dx. (3.8)

Thanks to 0 < s0 ≤ t0 and (3.8), we have that

‖ω–‖2

t2
0

+ b
(∫

RN

∣∣∇ω–∣∣2 dx
)2

+ b
(∫

RN

∣∣∇ω+∣∣2 dx
)(∫

RN

∣∣∇ω–∣∣2 dx
)

≥
∫

RN
K(x)

[
f (t0ω

–)
(t0ω–)3

](
ω–)4 dx. (3.9)

On the other hand, for ω ∈M, we have

∥∥ω–∥∥2 + b
(∫

RN

∣∣∇ω–∣∣2 dx
)2

+ b
(∫

RN

∣∣∇ω+∣∣2 dx
)(∫

RN

∣∣∇ω–∣∣2 dx
)

=
∫

RN
K(x)

[
f (ω–)
(ω–)3

](
ω–)4 dx. (3.10)
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Combining (3.9) with (3.10), one has that

(
1
t2
0

– 1
)∥∥ω–∥∥2 ≥

∫

RN
K(x)

[
f (t0ω

–)
(t0ω–)3 –

f (ω–)
(ω–)3

](
ω–)4 dx.

If t0 > 1, the left-hand side of the above inequality is negative, which is absurd because the
right-hand side is positive by condition (f5). Therefore, we obtain that 0 < s0 ≤ t0 ≤ 1.

Similarly, by (3.7) and 0 < s0 ≤ t0, we get

(
1
s2

0
– 1

)∥∥ω+∥∥2 ≤
∫

RN
K(x)

[
f (s0ω

+)
(s0ω+)3 –

f (ω+)
(ω+)3

](
ω+)4 dx,

and from (f5) this is absurd. Therefore, we have s0 ≥ 1. Consequently, s0 = t0 = 1, which
indicates that (1, 1) is the unique critical point of ϕω with positive coordinates.

Let u ∈ E, u± �= 0 and (s1, t1), (s2, t2) be the critical points of ϕu with positive coordinates.
In view of (i), one has that

ω1 = s1u+ + t1u– ∈M, ω2 = s2u+ + t2u– ∈M.

So,

ω2 =
(

s2

s1

)
s1u+ +

(
t2

t1

)
t1u– =

(
s2

s1

)
ω+

1 +
(

t2

t1

)
ω–

1 ∈M.

It follows from ω1 ∈ E and ω±
1 �= 0 that ( s2

s1
, t2

t1
) is a critical point of the map ϕω1 with positive

coordinates. Thanks to ω1 ∈M, one has that

s2

s1
=

t2

t1
= 1.

Hence, s1 = s2, t1 = t2.
Now, we prove that the unique critical point is the unique maximum point of ϕu. In fact,

using Lemma 2.3, we have that

ϕu(s, t) → –∞,
∣∣(s, t)

∣∣ → ∞.

Hence, the maximum point of ϕu(s, t) cannot be achieved on the boundary of (R+ ×R+).
Without loss of generality, we may assume that (0, t̄) is a maximum point of ϕu(s, t). But,
according to Lemma 2.4, it is obvious that

ϕu(s, t̄) =
s2

2
∥∥u+∥∥ +

bs4

4

(∫

RN

∣∣∇u+∣∣2 dx
)2

–
∫

RN
K(x)F

(
su+)

dx

+
t̄2

2
∥∥u–∥∥ +

bt̄4

4

(∫

RN

∣∣∇u–∣∣2 dx
)2

–
∫

RN
K(x)F

(
t̄u–)

dx

+
b
2

s2 t̄2
(∫

RN

∣∣∇u+∣∣2 dx
)(∫

RN

∣∣∇u–∣∣2 dx
)

is an increasing function with respect to s if s is small enough. Hence, (0, t̄) is not a maxi-
mum point of ϕ in R+ ×R+.
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Finally, we prove (iii). From (i) of Lemma 2.5, we get ∂ϕu
∂s (r, t–) > 0 if r ∈ (0, s+) and

∂ϕu
∂s (s+, t–) = 0 and ∂ϕ

∂s (r, t–) < 0 if r ∈ (t–,∞). Therefore, α+ and α– have the same behav-
ior. �

Lemma 3.2 If {un} ∈M and un ⇀ u in E, then u ∈ E±.

Proof For any v ∈M, we have that

∥∥v±∥∥2 ≤ ∥∥v±∥∥2 + b
(∫

RN

∣∣∇v±∣∣2 dx
)2

+ b
(∫

RN

∣∣∇v+∣∣2 dx
)(∫

RN

∣∣∇v–∣∣2 dx
)

=
∫

RN
K(x)f

(
v+)

v+ dx. (3.11)

Similar to (2.9), we obtain that there is τ > 0 such that

∥∥v±∥∥ ≥ τ , ∀v ∈M. (3.12)

So, if {un} ⊂M, we have

τ 2 ≤ ∥∥u±
n
∥∥2 ≤

∫

RN
K(x)f

(
u±

n
)
u±

n dx, ∀n ∈N. (3.13)

Combining un ⇀ u in E with Proposition 2.2, we have

τ 2 ≤
∫

RN
K(x)f

(
u±)

u± dx, (3.14)

which shows that u ∈ E±. �

Next, we consider the following minimization problem:

m := inf
{

Ib(u) : u ∈M
}

. (3.15)

We claim

m ≥ 2cb. (3.16)

In fact, sinceM⊂N , we have m ≥ cb. On the other hand, for any v ∈M, according to (i)
of Lemma 2.5, there exist positive constants s+ and t– such that s+v+, t–v– ∈N . Therefore,
from (i) and (ii) of Lemma 3.1, we have

Ib(v) ≥ Ib
(
s+v+ + t–v–)

≥ Ib
(
s+v+)

+ Ib
(
t–v–)

≥ 2cb,∀v ∈M.

Lemma 3.3 Assume that (V , K) ∈K and (f1)–(f5) hold, then m is achieved.



Guan and Zhang Journal of Inequalities and Applications         (2021) 2021:27 Page 15 of 22

Proof Let {un} be a sequence in M such that

Ib(un) → m. (3.17)

We will show that un is bounded in E. In fact, suppose that there exists a subsequence
that we still call un such that

‖un‖ → ∞. (3.18)

Now, we define vn := un/‖un‖ for all n ∈N. So, there exists v ∈ E such that

vn ⇀ v in E. (3.19)

From Proposition 2.2, we conclude that, up to a subsequence,

vn(x) → v(x) a.e. in R
N . (3.20)

Using (i) of Lemma 3.1, it follows from {un} ⊂M that s+(vn) = t–(vn) = ‖un‖. Therefore,
using (i) of Lemma 3.1 again, we obtain

I
(‖un‖vn

) ≥ I(tvn) =
t2

2
‖vn‖2 +

(bt)4

4

(∫

RN
|∇vn|2 dx

)2

–
∫

RN
K(x)F(tvn) dx, ∀t > 0, n ∈N. (3.21)

Let t ≥ 1 in (3.21), we have that

I(un) ≥ t2

2

(
‖vn‖2 +

b
2

(∫

RN
|∇vn|2 dx

)2)
–

∫

RN
K(x)F(tvn) dx, ∀n ∈N. (3.22)

Suppose that v = 0. Hence, from (3.19) and Lemma 2.1 we have

∫

RN
KF(tvn) dx → 0, ∀t > 0. (3.23)

By (3.17) and (3.23), passing to the limit as n → ∞ in (3.22), we have that

m ≥ t2

2
lim

n→∞

(
‖vn‖2 +

b
2

(∫

RN
|∇vn|2 dx

)2)
, ∀t ≥ 1. (3.24)

Thanks to ‖vn‖ = 1, there exists a constant α0 > 0 such that

m ≥ t2

2
α0, ∀t ≥ 1.

So, we have a contradiction. Hence, v �= 0.
On the other hand, we get

I(un)
‖un‖4 =

1
2‖un‖2 +

b
4‖un‖4

(∫

RN
|∇un|2 dx

)2

–
∫

RN
K(x)

F(un)
‖un‖4 dx
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≤ 1
2‖un‖2 +

b
4

–
∫

RN
K(x)

F(vn‖un‖)
(vn‖un‖)4 v4

n dx. (3.25)

Thanks to v �= 0, by using Lemma 2.3, we get

∫

RN
K(x)

F(vn‖un‖)
(vn‖un‖)4 v4

n dx → +∞. (3.26)

Therefore, by (3.17), (3.18), and (3.26), passing to the limit as n → ∞ in (3.25), we have
a contradiction.

Hence, we deduce that {un} is bounded in E. Therefore, there exists u ∈ E such that
un ⇀ u, u±

n ⇀ u±.
From Lemma 3.2, we have that u ∈ E±. So, according to Lemma 3.1, there exist s+, t– > 0

such that

s+u+ + t–u– ∈M. (3.27)

We assert that

0 < s+, t– ≤ 1. (3.28)

In fact, according to Lemma 2.1, one has that

∫

RN
Kf

(
u±

n
)
u±

n dx →
∫

RN
Kf

(
u±)

u± dx, (3.29)
∫

RN
KF

(
(un)±

)
dx →

∫

RN
KF

(
(u)±

)
dx. (3.30)

Since un ⇀ u in E, combining the continuous embedding E ↪→ D1,2(RN ) with the weak
semicontinuity of the norm ‖u‖D1,2 = (

∫
RN |∇u|2 dx) 1

2 , we have

lim inf
n→∞

(∫

RN
|∇un|2 dx

)
≥

∫

RN
|∇u|2 dx, (3.31)

lim inf
n→∞

(∫

RN

∣∣∇u±
n
∣∣2 dx

)
≥

∫

RN

∣∣∇u±∣∣2 dx. (3.32)

Thanks to {un} ⊂M, using (3.29), (3.32), and weak semicontinuity of the norm in E, we
have

〈
I ′

b(u), u±〉 ≤ lim inf
n→∞

〈
I ′

b(un), u±
n
〉

= 0. (3.33)

Suppose that 0 < s+ ≤ t–, then from (3.27) we have that

‖u–‖2

t2
–

+ b
(

s+

t–

)2(∫

RN

∣∣∇u+∣∣2 dx
)(∫

RN

∣∣∇u–∣∣2 dx
)

+ b
(∫

RN

∣∣∇u–∣∣2 dx
)2

=
∫

RN
K(x)

[
f (t–u–)
(t–u–)3

](
u–)4 dx. (3.34)
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By (3.33), we have that

∥∥u–∥∥2 + b
(∫

RN

∣∣∇u–∣∣2 dx
)2

+ b
(∫

RN

∣∣∇u+∣∣2 dx
)(∫

RN

∣∣∇u–∣∣2 dx
)

≤
∫

RN
K(x)

[
f (u–)
(u–)3

](
u–)4 dx. (3.35)

Combining (3.34) with (3.35), we have that

(
1
t2
–

– 1
)∥∥u–∥∥2 + b

[(
s+

t–

)2

– 1
](∫

RN

∣∣∇u+∣∣2 dx
)(∫

RN

∣∣∇u–∣∣2 dx
)

≥
∫

RN
K(x)

[
t–f (u–)
(t–u–)3 –

f (u–)
(u–)3

](
u–)4 dx.

From the above inequality and (f5), we have that 0 < t– ≤ 1.
Now, we prove that Ib(s+u+ + t–u–) = m.
Denoting ū := su+ + tu–. So, from (2.11), (3.27), (3.29), (3.30), and Fatou’s lemma, we

have that

m ≤ Ib(ū) –
1
4
〈
I ′

b(ū), ū
〉

=
1
4
‖ū‖2 +

1
4

∫

RN
K(x)

[
f (ū)ū – 4F(ū)

]
dx

=
1
4
(∥∥s̄u+∥∥2 +

∥∥t̄u–∥∥2) +
1
4

∫

RN
K(x)

[
f
(
s̄u+)(

s̄u+)
– 4F(s̄u+]

dx

+
1
4

∫

RN
K(x)

[
f
(
t̄u–)(

t̄u–)
– 4F

(
t̄u–)]

dx

≤ 1
4
‖u‖2 +

1
4

∫

RN
K(x)

[
f (u)u – 4F(u)

]
dx

≤ lim inf
n→∞

[
Ib(un) –

1
4
〈
I ′

b(un), un
〉]

= m.

Consequently, s̄ = t̄ = 1. Thus, ū = u and Ib(u) = m. �

4 The proof of the main results
In this section, we prove Theorem 1.1.

Proof First, we prove that the minimizer u for (3.15) is indeed a sign-changing solution of
problem (1.1). If I ′

b(u) �= 0, then there exist δ > 0 and θ > 0 such that

∥∥I ′
b(v)

∥∥ ≥ θ for all ‖v – u‖ ≤ 3δ.

Choose σ ∈ (0, min{1/2, δ√
2‖u‖ }). Let � := (1 – σ , 1 + σ ) × (1 – σ , 1 + σ ) and γ (s, t) = su+ +

tu–, (s, t) ∈ �. It follows from Lemma 3.1 that

m̄ := max
∂�

Ib ◦ γ < m. (4.1)
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For ε := min{(m – m̄)/2, θδ/8} and Sδ := B(u, δ), according to Lemma 2.3 in [49], there is
a deformation η ∈ C([0, 1] × E, E) such that

(a) η(t, v) = v if v /∈ I–1
b ([m – 2ε, m + 2ε] ∩ S2δ);

(b) η(1, Im+ε
b ∩ Sδ) ⊂ Im–ε

b ;
(c) Ib(η(1, v)) ≤ Ib(v) for all v ∈ E;
(d) ‖η(t, v) – v‖ ≤ δ for all v ∈ E, t ∈ [0, 1].
Firstly, we need to prove that

max
(s,t)∈�̄

Ib
(
η
(
1,γ (s, t)

))
< m. (4.2)

In fact, it follows from Lemma 3.1 that Ib(γ (s, t)) ≤ m < m + ε. That is,

γ (s, t) ∈ Im+ε
b .

On the other hand, we have

∥∥γ (s, t) – u
∥∥2 =

∥∥(s – 1)u+ + (t – 1)u–∥∥

≤ 2
(
(s – 1)2∥∥u+∥∥2 + (t – 1)2∥∥u–∥∥2)

≤ 2σ‖u‖2 < δ2,

which shows that γ (s, t) ∈ Sδ for all (s, t) ∈ �̄.
Therefore, according to (b), we have Ib(η(1,γ (s, t))) < m – ε. Hence, (4.2) holds.
In the following, we prove that η(1,γ (�)) ∩M �= ∅, which contradicts the definition of

m.
Let ξ (s, t) := η(1,γ (s, t)) and

ϒ0(s, t) :=
(〈

I ′
b
(
γ (s, 1)

)
, su+〉

,
〈
I ′

b
(
γ (1, t)

)
, tu–〉)

=
(〈

I ′
b
(
su+ + u–)

, su+〉
,
〈
I ′

b
(
u+ + tu–)

, tu–〉)
,

ϒ1(s, t) :=
(

1
s
〈
I ′

b
(
ξ (s, 1)

)
,
(
ξ (s, 1)

)+〉
,

1
t
〈
I ′

b
(
ξ (1, t)

)
,
(
ξ (1, t)

)–〉)
.

According to (iii) of Lemma 3.1, the C1 function ϕ+(s) = ϕu(s, 1) has a unique global
maximum point s+ = 1 (note that sϕ′

+(s) = I ′(γ (s, 1))su+). According to density, given ε > 0
small enough, there exists ϕ+,ε ∈ C∞([1 – σ , 1 + σ ]) satisfying ‖ϕ+ – ϕ+,ε‖C∞([1–σ ,1+σ ]) < ε

with s+ = 1 being the unique maximum global point of ϕ+,ε in [1 – σ , 1 + σ ]. Hence, ‖ϕ+ –
ϕ+,ε‖C∞([1–σ ,1+σ ]) < ε, ϕ′

+,ε(1) = 0 and ϕ′′
+,ε(1) < 0. Similarly, there exists ϕ–,ε ∈ C∞([1 – σ , 1 +

σ ]) satisfying ‖ϕ– – ϕ–,ε‖C∞([1–σ ,1+σ ]) < ε, ϕ′
–,ε(1) = 0 and ϕ′′

–,ε(1) < 0, where ϕ–(t) = ϕu(1, t).
Let ϒε ∈ C∞(�) be defined by ϒε(s, t) = (sϕ′

+,ε(s), tϕ′
–,ε(t)). Then we get ‖ϒε – ϒ0‖C(�) <

3
√

2ε
2 , (0, 0) /∈ ϒε(∂�), and (0, 0) is a regular value of ϒε in �. On the other hand, (1, 1) is

the unique solution of equation ϒε(t, s) = (0, 0) in �. By using Brouwer’s degree, for ε small
enough, we have

deg
(
ϒ0,�, (0, 0)

)
= deg

(
ϒε ,�, (0, 0)

)
= sgnJac(ϒε)(1, 1).

From

Jac(ϒε)(1, 1) =
[
ϕ′

+,ε(1) + ϕ′′
+,ε(1)

] × [
ϕ′

–,ε(1) + ϕ′′
–,ε(1)

]
= ϕ′′

+,ε(1) × ϕ′′
–,ε(1) > 0,
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one has

deg
(
ϒ0,�, (0, 0)

)
= sgn

[
ϕ′′

+,ε(1) × ϕ′′
–,ε(1)

]
= 1, (4.3)

where Jac(ϒε) is the Jacobian determinant of ϒε and sgn denotes the sign function.
On the other hand, according to (4.2), one has

I
(
g(s, t)

) ≤ α <
α + m

2
≤ m – 2ε, ∀(t, s) ∈ ∂�. (4.4)

Combining (4.4) with item (a), we have that γ = ξ on ∂�. Therefore, ϒ1 = ϒ0 on ∂� and

deg
(
ϒ1,�, (0, 0)

)
= deg

(
ϒ0,�, (0, 0)

)
= 1. (4.5)

Therefore, we have ϒ1(s, t) = (0, 0) for some (t, s) ∈ �.
We claim that

ϒ1(1, 1) =
(〈

I ′
b
(
ξ (1, 1)

)
,
(
ξ (1, 1)

)+〉
,
〈
I ′

b
(
ξ (1, 1)

)
,
(
ξ (1, 1)

)–〉)
= (0, 0). (4.6)

If (4.6) holds, by (1, 1) ∈ �, we have that ξ (1, 1) = η(1,γ (1, 1)) ∈ M, this is η(1,γ (�)) ∩
M �= ∅.

In what follows, we prove (4.6). If the zero (t, s) of ϒ1 obtained above is equal to (1, 1),
there is nothing to do. If (s, t) �= (1, 1), let δ1 = max{|t – 1|, |s – 1|}, �1 = (1 – δ1/2, 1 + δ1/2) ×
(1 – δ1/2, 1 + δ1/2). So, (s, t) ∈ �\�1 and for getting (s1, t1) ∈ �1 such that ϒ1(s1, t1) = 0,
we just repeat for �1 as used in �. If (s1, t1) = (1, 1), there is nothing to do. Otherwise,
we can continue with the argument and find in the nth step that (4.6) holds, or produce a
sequence (sn, tn) which converges to (1, 1) such that ϒ1(sn, tn) and (sn, tn) ∈ �n–1\�n for all
n ∈ N with �0 = �. Let n → ∞ and, using the continuity of ϒ1, we have that (4.6) holds.
That is,

η
(
1,γ (1, 1)

)
= ξ (1, 1) ∈M.

So, we obtain that u := u+ + u– is a critical point of Ib, that is, a sign-changing solution
for problem (1.1).

Furthermore, if f is odd, the functional � is even. Now we prove that � satisfies the (PS)
condition. From (2.4) and (3.16), we have that � is bounded from below in S . Suppose that
{un} ⊂ S is a (PS)d sequence of � , according to (iii) of Lemma 2.3, we know {vn := m(un)} ⊂
N is a (PS)d sequence of Ib on N . Through the standard agrement at the beginning of this
section, we know that vn is bounded in E. So, there exists nonzero v ∈ E such that

vn ⇀ v in E, vn → v a.e. in R
N .

Therefore, we have that

〈
I ′(vn) – I ′(v), vn – v

〉
= ‖vn – v‖2 + b

(∫

RN
|∇vn|2 dx

)(∫

RN
∇vn · ∇(vn – v) dx

)

–
∫

RN
K(x)f (vn)(vn – v) dx +

∫

RN
K(x)f (v)(vn – v) dx
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= on(1). (4.7)

According to Lemma 2.1, we have that

∫

RN
Kf (vn)vn dx →

∫

RN
Kf (v)v dx.

We claim that
∫

RN
Kf (vn)v dx →

∫

RN
Kf (v)v dx. (4.8)

In fact, if (VK2) holds, since

∣∣√K(x)f (vn)χ{|vn≤1|}
∣∣2 ≤ CV (x)v2

n,

where χ is a character function. Hence {√K(x)f (vn)χ{|vn≤1|}} is bounded in L2(RN ).
Similarly, we have

√
K(x)v ∈ L2(RN ). So, from vn → va.e. in R

N , we can get

∫

RN
Kf (vn)χ{|vn≤1|}v dx →

∫

RN
Kf (v)χ{|v≤1|}v dx. (4.9)

On the other hand, since |Kf (vn)χ{|vn≥1|}| 2∗
2∗–1 ≤ Cv2∗

n and vn → v a.e. on R
N , we get

∫

RN
Kf (vn)χ{|vn≥1|}v dx →

∫

RN
Kf (v)χ{|v≥1|}v dx. (4.10)

If (VK3) holds, according to Proposition 2.2,
∫
RN K |vn|p dx < +∞ and

∣∣K p–1
p f (vn)χ{|vn≥1|}

∣∣ p
p–1 ≤ K |vn|p ≤ ψ(x) ∈ L

(
R

N)
.

Then, by similar discussion, we have that (4.9) and (4.10) hold.
Therefore, from the above discussion, we have that (4.8) holds. Similarly, we have

∫

RN
Kf (v)vn dx →

∫

RN
Kf (v)v dx.

Since vn ⇀ v in E and E ⊂ D1,2(RN ), we get vn ⇀ v in D1,2. Then, by weak semicontinuity
of the norm in D1,2(RN ), we have that b(

∫
RN |∇vn|2 dx)(

∫
RN ∇vn · ∇(vn – v) dx) ≥ 0. There-

fore, according to (4.7), we get vn → v in E. From Proposition 2.3, {un := m–1(vn)} ⊂ S
and un → u = m–1(v) ∈ S . That is, � satisfies the Palais–Smale condition on S . So,
from Lemma 2.5, Proposition 2.3, and [37], the functional Ib has infinitely many critical
points. �

5 Conclusions
In this paper, by the minimization argument on the sign-changing Nehari manifold and the
quantitative deformation lemma, we discussed the existence of least energy sign-changing
solution for a class of Schrödinger–Kirchhoff-type fourth-order equations with potential
vanishing at infinity. Our results improve and generalize some interesting known results.



Guan and Zhang Journal of Inequalities and Applications         (2021) 2021:27 Page 21 of 22

Since these days there is a good trend of existence of solutions for fractional-order differ-
ential equations which are definitely the generalized study, we will discuss some problems
about fractional-order differential equations in the follow-up work.
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