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1 Introduction

In this paper, we study distribution functions with the ranges in a class of matrix algebras
[1-3] and introduce the concept of a matrix Menger normed algebra using the general-
ized triangular norm which is a generalization of an MB-algebra [4], i.e., a Menger normed
space with algebraic structures [5-8]. This concept helps us to study intuitionistic spaces
and their generalization, i.e., neutrosophic spaces introduced by Smarandache [9, 10]. We
define a stochastic matrix control function and stabilize pseudo-stochastic x -random op-
erator inequalities, and this process leads to best approximation of a x -random operator
inequality.

2 Preliminaries
Let

h
diag M, ([0,1]) = =diag(ty,...,tnl, t1,.. ., tn € [0,1]

Ly

We denote t := diag[t,...,t,] < s:=diag[si,...,s,] ifand only if t; <s; foralli=1,...,n,
also 1 = diag([1,...,1] and 0 = diag[0,...,0].
Now, we extend the concept of triangular norms [11, 12] on diag M, ([0, 1]).

Definition 2.1 A generalized triangular norm (GTN) on diag M,([0, 1]) is an operation
® : diag M, ([0, 1]) x diag M, ([0, 1]) — diag M,,([0, 1]) satisfying the following conditions:
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(a) (VtediagM,([0,1]))(t® 1 =t) (boundary condition);

(b) (Y(t,s) € (diag M,([0,1]))})(t® s = s ® t) (commutativity);

(©) (Y(ts,p) € (diag M, ([0, 1])*)(t ® (s ® p)) = ((t® ) ® p) (associativity);

(d) (V(tt,s,s) € (diagM,([0,1]H)(t <t ands <’ = t @ s < ' ® ') (monotonicity).

If for every t,s € diag M, ([0, 1]) and every sequences {ti} and {ss} converging to t and s

we have
lilgn(tk ®s)=t®s,

then & on diag M,,([0,1]) will be continuous (in short, CGTN). Now we present some
examples of CGTN.
(1) Define ®p : diag M,,([0, 1]) x diag M,,([0, 1]) — diag M,,([0, 1]) such that

t®p s =diaglty,...,t,] ®pdiag[ss,...,s,] = diagt; - s1,..., ;- Sul,

then & is CGTN (product CGTN);
(2) Define ®),, : diag M, ([0, 1]) x diag M,,([0, 1]) — diag M,,([0, 1]) such that

t®p s =diag[ty,...,t,] ®pdiag[si,...,s,] = diag[min{tl,sl}, . ..,min{tn,sn}],

then ®,; is CGTN (minimum CGTN);
(3) Define ®; : diag M,([0,1]) x diag M,,([0, 1]) — diag M,,([0, 1]) such that

t®, s =diag[ty,...,t,] ®, diag[si,...,s,]

= diag[max{t1 +s1—1,0},...,max{t, +s, — 1,0}],

then ®; is CGTN (Lukasiewicz CGTN).
Now, we present some numerical examples:

12 15
i _7_;1 i PR
d1ag|:3 z }@Mdlag[4 - 0}

1 1 1
3 1 1 s
= : ®m 2 = 5 =d1ag|:1,§,0},
1 i 0 0
ding] 1. 2.1] @, diag L. .0
14, PN ] 1a, ]
8305 | Pr g 7
1 1 1
3 4 12 ) 1 2
= z ®p 5 = 2 =d1ag|:ﬁ,§,01|,
1 0 0

1 1 0

3 4
— 2 5 4 =di Oio
= z 1 @L > 3= = diag 3570 |

0 0
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Also, since

. 15 . 1 2 . 4
diag| -, -=,0| > diag| —, =,0 | > diag| 0, —,0|,
4" 7 127 35
we get
di 1 2 1| @, di 15 0
i i
|35 |Pm g o
12 15
>d _7_)1 d Rl
> 1ag|:3 z i|@P 1ag|:4 > O]

2 15
> d1ag|: :| ®; d1ag[— O]

We consider the set of matrix distribution functions (MDF) E* which are left-continuous
and increasing maps ® : R U {—o0, 0o} — diag M,,([0,1]) such that ®; = 0 and O, = 1.

Now O* C E* areall (proper) mappings © € E* for which¢ 0, =1(£" 0, =lim,_, - O,).

Note proper MDFs are the MDFs of real random variables (i.e., of those random variables
g that a.s. take real values (P(|g| = c0) = 0)).
In E*, we define “<” as follows:

<Y <+— 0.7, VrekR
Also

— 0, ifc<w,
s .
1, if¢c>w,

belongs to E*, and for every MDF ® we have ® < V° [11, 13-16]. For example,

0, ift <0,

Gl
diag[l —e”

5 1+r’e %], ift>0,
isan MDF in diag M5([0, 1]). Note that ®, = diag[6; ¢, ...,0,,.], in which 6; ; are distribution
functions, is an MDF.

Definition 2.2 Consider the CGTN ®), a linear space W, and MDF © : W — O". In this
case, we call a matrix Menger normed space (MMN-space) the triple (W, ®,®) if the
following conditions are satisfied:

(MMN1) ®Y =V forall t >0 if and only if w = 0;

(MMN2) 8¢ = @W forallwe W and @ € C with a #0;

(MMN3) @V > @W ® @Vg"/ for all w,w' € Wand 7,¢ > 0.

T+¢

For example, the MDF © given by

v 0, ifo <0,
¢ | diaglexp(-1), o exp(- L)), ifo >0,
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is a matrix Menger norm and (W, ®, ®,,) is an MMN-space; here (W, | - ||) is a normed
linear space.

Note that in neutrosophic set theory we need three norms to describe an object (prob-
ability, improbability, undecidability), while in intuitionistic random normed spaces we
need two norms to describe an object, so MDFs on diag M3([0, 1]) and diag M,([0, 1]) are

suitable for these theories, respectively.

Definition 2.3 Consider the CGTN’s %), ® and the MMN-space (W, ®, ®). If
(MMN-5) ©* > 0¥ ® 0" forallw,w € Wandall 7,5 >0,
we say that (V, ®,®, ®) is a matrix Menger normed algebra (in short, MMN-algebra).

If
[ww || < wll[w] + s |w] +zliwll - (w,w'e (W, 1I-1);7.5 >0),
then

o 0, if¢ <0,
Iwll

diag[exp(—T), ﬁﬁw” ], if¢>0,

is an MMN-algebra (W, ©®,®,,, ®p), and vice versa. A Menger Banach algebra (MMB-
algebra) is a complete MMN-algebra. Consider the complete MMN-spaces U and V. Con-
sider the probability measure space (I, I1, ®) with the Borel measurable spaces (U,B;)
and (V,By). A random operatorisamap A : " x U — V such that {y : A(y,u) e B} e Il
for all u in U and B € By. If

Aly,auy + Bus) =alA(y,u1) + BA(y,u), Vuij,uy el,a,BeR
then A is linear, and if we can find a H(y) > 0 such that

Ay, u)-A(y, —
O N > @4, Vuy,uy € U, >0,

then A is bounded.
In MMB-algebras, we study « -random operator inequalities

@i\(y,u+v,w—r)+A(y,u—v,w+r)—2A(y,u,w)+2A(y,v,r) (2 1)

K(2A(y, MTW w—r)+2A(y, %/ W) =2A(y,u,w)+2A(y,v,r))
t ®‘E )

2A(y, 252 w=r)+2A(y, 55 wAr) =2 A (y,u,w)+2 A (y,v,r)

(O (2.2)

- @)K(A(y,u+v,w—r)+A(y,u—v,w+r)—2A(V,u,w)+2A(y,v,r))
— Y )

where 0 # k¥ € C is fixed and |«| < 1. We stabilize the pseudo-stochastic biadditive «-
random operator in MMB-algebras by a stochastic control function. This process is said
to be Hyers—Ulam—Rassias (HUR) stable for additive x-random operator inequalities in
MMB-algebras.
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3 Best approximation of the «-random operator inequality (2.1)
We improve Park et al. results [17, 18] and [15, 19-23] to get a better approximation.

Lemma 3.1 Let A :T" x U? — V be a random operator satisfying (2.1) and A(y,0,w) =
A(y,u,0) =0 for each u,w,r e Uandy €T. Then A :T x U* — V is biadditive.

Proof Putting u = v and r = 0 in (2.1), we obtain (note A(y,0,w) = A(y,u,0) = 0)
A(y,2u,w) =2A(y,u,w) forall u,w € U and y € I'". Thus

@A(y,u+v,w—r)+A(y,u—v,w+r)—2A(y,u,w)+2A(y,v,r)
T

t-
> " K(2F(y, 55 p—r)+2F (v, 555 w+r)=2A(y,u,w)+2A(y v,1))

_ @K (v u+v,w—=r)+ Ay ,u—v,w+r)=2A(y,u,p)+2A(y,v,r))

and
Ay, u+v,w—r)+ Ay, u—v,w+r)=2A(y,u,w) + 2A(y,v,7) =0, (3.1)

forall u,v,w,reld,y €', 7 >0.

Puttingr = 0in (3.1), we have A(y, u+v,w)+ A(y,u—v,w) = 2A(y,u,w) and A(y, u1, w)+
Aly,vi,w) = 2A(y, 52, p) = Ay, u1 + v, p) for all uy := u +v, vy :=u—v, w € U, since
k] <1 and A(y,O,w) =0forallwe U. Thus A : T x U? — V is additive in the second
variable.

By a similar method, we can show that A : T x U? — V is additive in the last variable.
Then A : T x U? — V is a random biadditive operator. O

Theorem 3.2 Let (U, 0,®,, ®,,) be an MMB-algebra, let  : U* — O* be an MDF such
that there exists a B < 1 with 2% o > w’”w’ forall u,v,w,r € U and t >0, and

w,0
lim wzn o

n—00 o

=V°, (3.2)

for all u,v € U, t > 0. Suppose the random operator A : T x U? — V satisfies A(y,u,0) =
Aly,0,w)=0forallu,we U,y €l" and

@i\()/,u+v,w—r)+A(y,u—v,w+r)—2A(y,u,p)+2A(y,v,r) (33)

74+V u 14
- @ Kk QA(y, Y ,w—r)+2A(y, 552, w+r) =2 A(y,u,w)+2A(y,v,r))

®um

forallu,v,w,re U,y €T, and t > 0. Then we can find a unique biadditive random oper-
ator A:T x U? — V such that

@ﬁ\(y,u,W)—A()/ W) o 1/,'241’4‘;;?, (3.4)
B

foralluywe U,y €T, and t > 0.
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Proof Putting r =0 and v = u in (3.3), we get

@i\(y,Zu,w)—ZA(y,u,w) > w;t,u,w,o, (35)

forallu,we U, y €', and 7 > 0. Thus

Aly,uw)-2A(y, 5 w)

u
» 555 :W,0
O, 2=y

mm

> wuuwo (36)

forallu,we U, y €', and t > 0. Replacing u by 21,, in (3.6), we obtain

2N W) =2 Ay e W) 2 w0
72 7on+l? 7 o W)
0. 2 =y 3.7)
zn—lﬂ
u
on—179n-1
ZYa,
2 (53
z:.
u,u,w,0
=y .
5n+1

It follows from

n
S R S H )
k=1

and (3.7) that

Ay W) =AY u,w)
on u,u,w,0 u,u,w,0 _ 1 u,u,w,0
n gk E:¢%« ()Ad"' C)Aluyz = ¢% )
Yha T

forallu,we U,y €', t > 0. That is,

2" A, 57 W)~ A(y,u,w)

e, " >yl (3.8)

3
Sial

Replacing u with 5 in (3.8), we get

MM (), st W) =2 Ay, 57 W)
e, 7 S (3.9)

k
n+m
Zk m+1

Since y™* w0 tends to V? as m, n — o9, it follows that the sequence {2" A(y, 21,,, w)}is
Spim b

Cauchy forallu,w € U, y € I'. Since V is an MMB-algebra, {2" A(y, 57, w)} is a convergent

sequence. Now, we define a random operator A : T x U? — V by

Aly,u,w):= lim 2FA ad w
)/, ) = s )/, 2](’ ’
for all u,w € U, y € I'. Putting m = 0 and letting n — oo in (3.9), we conclude that
@A(y,u,w)—A(y,u,w) - u,u,w,0 (3 10)
T —_ .

2(1-p)r?
B

forallu,we U,y €T',and 7 > 0.

Page 6 of 14
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Now, (3.3) implies that

@A(y,u+v,w—r)+A(y,u—v,w+r)—2A(y,u,w)+2A(y,v,r)
T

~ lim @2”(A(V,%YW—V)+A(%%,Ww) 208V 57 W)+2A (V> 57.1))
n—oo "
2" (A (y, 2 w—r)+2A(y, £ n+1 WAr)=2A(Y, 577, W)+2A (Y, 577,7))
. ) ) ) 17T
> lim ® 2
~nsoo ¢
u
7 W,0
’Zn’w’
@y lim ¢ 3
n—soo | o7

KAy, Y w=r)+2A(y, 555 w+r)=2A(y ,u,w)+2A(y v,r))

CH )

u
;Eﬁ,who

2l

forall u,v,w,re T,y €', T >0, since tends to V? as 1 — 0o. Thus

@A(y,u+v,w—r)+A(y,u—v,w+r)—2A(y,u,w)+2A(y,v,r)
T

K(2A(y ”*V,w— V+2A(y, ,w+r) —2A(y,u,p)+2A(y,v,r))

> O} )

forall u,v,w,r e U,y €T, T > 0. From Lemma 3.1, the random operator A : " x U? — V
is stochastic biadditive.
Now, to show that the random operator A is unique, assume that there exists a stochastic
biadditive random operator : " x L/?> — V which satisfies (3.4). Thus,
@tA(%ulw)_Q(y’M’w) - lim @f”A(y,z%,W)—ﬂQ(y,z%,w),
n—o0

@2”A(y,2ln,w)—2”9(y,zi,,,w)
T
Z"A(y, w)=2" Ay, 2,, W) Z”Q(y s W)= 2" A(y L W)

®

1Y

®um

T
2
u

4t 0
(1-p)t

Y

12

BN

7B

u,u,w,0
= Valpre-
ﬂ”*l

Since lim,,_, oo % = 00, we get that 47"? tends to V0 as n — oc.

n+l1
L)1y,
Therefore, it follows that @T Alygn W22y 5mw) =1,forallu,we U,y €T, 7 >0. Thus

we can conclude that A(y,u, w) = Q(y,u,w), forallu,we U and y €T. O

Corollary 3.3 Let (T,0,®,, ®,) be an MMB-algebra. Assume that > 1, ¢ is a non-
negative real number, and A : T x U* — V is a random operator satisfying A(y,u,0) =
A(y,0,w) =0 and

@i\()/,u+v,w—r)+A(y,u—v,w+r)—2A(y,u,w)+2A(y,v,r) (3 1 1)

KAy, 552 w=r)+2A(y, %5 w+r)=2A(y,u,w)+2A(y ,v,r))

5@

Slell” + V) Alwll* + 11711°) T ]
T

diag| exp(— ,
®u g[ P =+ <l + VAW + 1719

Page 7 of 14
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forallu,v,w,re U,y €T, and t > 0. Then we can find a unique biadditive random oper-
ator A: T x T?> — S such that

@ﬁ\(y,u,W)—A(%u,W) (3.12)

4 242 ¢ || ]| 202 - 2)7
1a €X — y 3
= TP\ "0 Do S 2@ — )+ 22 ful wll

foralluywe l,y €T, and t > 0.

Proof The result follows from Theorem 3.2 by putting

e diag[exp(—g(”u” +lvID)Uwl + 17l ), T i|’
T T+ g(lull* + v AWl + 7]l
forallu,we U,y €T, 7 >0,and g = 2! O

Theorem 3.4 Let (U, 0, ®,,, ®,,) be an MMB -algebra, let  : U* — O* be an MDF such
that there exists a B < 1 with Y0 > wz ek Ofor all w,v,w e U, lim,_, « wZ”u 2w _

forall u,v,w e U, t > 0. Suppose that a mndom operator A : T x U* — V satisfies (3.3)
and A(y,u,0) = A(y,0,w) =0 forallu,ve Uandy €. Then, there is a unique biadditive
random operator A : T x U* — V such that

@ﬁw,u,w)—A(y,u W) 1#% M/; 01, (3.13)

foralluywe U,y €T, and t > 0.

Proof Putting r =0 and v = u in (3.3), we have
@r% Ay 2u,pw)-A(y,u,w) > w;;u,w,o, (314)

forallu,we U, y €T, and 7 > 0. Thus

N A(y,2u,
@2 (v u,w)=A(y,2u,w) > wrzz,zz,w > wu%u,w,o, (3‘15)

forallu,we U, y € T, and t > 0. Changing u by 2"« in (3.15), we have

a7 Ay 2" uw) - =Lp Ay 2L u,w) 1, on
CE 2 = o, (3.16)
0
.
[l
From
n-1 1
n +1 k
gA(y 2"u, w) (y,u,w) Z(zkﬂ u,w) - gA(y,Z u,w))
k=0
and (3.16), we get
Aly 2" u,w)=A(y u,w) w0
i wll:illw b

n-1 (Zﬁ)k
Zk 0 2k

Page 8 of 14
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forallu,we U,y €T, and t > 0. That is,

1 n _
@znw,z 4,W) = Ay i4,) g0 (3.17)

-1 28K
ZI0 90F

Replacing u# with 2”1 in (3.17), we get

A(y,Z”*mu,W)—%m Aly,2"uy

1
S )
0 =) (3.18)
nem 2B
s

Since y**"? tends to V2 as m, n — 00, it follows that {Z%A(y, 2"u, w)} is a Cauchy se-

nem 2K

Lkm 2k

quence for all u,w € U and y € I'. Since V is an MMB-algebra, the sequence
{ZinA(y, 2"u, w)} converges. Now, we define the random operator A : T x U? — V by

1
— 1 k
Ay, u,w) = khjgo ﬁA(y,Z u,w),

forall u,w € U and y € T'. Putting m = 0 and letting # — 00 in (3.18), we have

O N i (3.19)
forallu,w e U, y € I', and t > 0. The proof is finished by using Theorem 3.2. O

Corollary 3.5 Let (U,0,®,;, ®,,) be an MMB-algebra. Assume that 1 <1, ¢ > 0, and
A :T x U? = V is a random operator satisfying (3.11) and A(y,u,0) = A(y,0,w) =0
for all u,w € U and y € I'. Then we can find a unique biadditive random operator A :
I' x U? — V such that

@?(V,MYW)—A(V'MYW) (3.20)

+ diag| exp 25 [|ull llwll* (2-297
- 2-29t ) @2-29t + 25 |ultwll

foralluywe U,y €T, and t >0.

Proof The result follows from Theorem 3.4 by putting

. szl + v Awlls + 1irll*) T
U,V,w,r — d ’
Vs 1ag[exp(— .

"+ gl + IvIDAwl + NIl
forallu,we U,y €T, 7 >0,and g =21, O

4 Best approximation of the «-random operator inequality (2.2)
Lemma 4.1 Let the random operator A :T' x U* — V satisfy A(y,0,w) = A(y,u,0) =0
and

C

2A(y, 232 w=r)+2A(y, 55 wAr) =2 A (y,u,w)+2A (v, v,r)
T (4.1)

Kk (A(y,u+v,w—r)+A(y,u—v,w+r)=2A(y,u,w)+2A(y,v,r))
> O )

forallu,v,w,rel,y €el',and v >0. Then A :T" x U? — V is biadditive.
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Proof Puttingv =r=0in (4.1), we get4A(y, 5,w) = 2A(y,u,w) forallu,w e Uand y €T

Thus

@A(y,u+v,w—r)+A(y,u—v,w+r)—2A(y,u,w)+2A(y,v,r)
T

OZA(V,‘”V —1)+2A(y, 55 W) =2 A (y ,u,w)+2A(y,v,r)
- T

- @K(A(y,u+v,w—r)+A(y,u—v,w+r)—2A(y,u,w)+2A(y,v,r))
[

and
Ay, u+v,w—r)+ Ay, u—v,w+r)=2A(y,u,w) + 2A(y,v,7) =0,

forall u,v,w,re Uand y €T.

The proof is completed by using a similar method as in Lemma 3.1. 0

Theorem 4.2 Let (U,0,®,;, ®,,) be an MMB-algebra. Assume that  : U* — O is an
MDEF in which thereisa B < 1 with y; 230 > w”"’w’ forallu,v,we U.Let A :T xU* -V

be a random operator satisfying A(y,u,0) = ()/, O,w)=0forallu,we U,y €T and

2A(y, G w=r)+2A(y, 552 w+r) =2 A (y u,w) +2A(y vor)

O (4.2)

> @K (v, u+v,w—r)+ A(y,u—v,w+r) -2 A(y,u,w)+2A(y,v,r))

@M wll:t,v,w,r,

forallu,v,w,re U,y €T, and t > 0. Then we can find a unique biadditive random oper-
ator A:T x U? — V such that

Ay u, ,0,w,0
@r()/uw) (v u,w) w;(l ‘4//3 ., (4.3)

foralluywe U,y €T, and T >0.

Proof Putting v =r =0 in (4.2), we have

4A(y, 5 W)-2A(y u,w)
. Vg W YW, E,('Z/TI,{,O,W,O’ (44)

forallu,we U, y €T, and 7 > 0. Thus
@A(y,u,W)—M(%%,W) 1,0,w,0

T =Yy, (4.5)

forallu,we U, y €T, and 7 > 0. Replacing u by 3; in (4.5), we get

YAy i W)-2" Ay ey W) 2.,0,w,0
rane 7on+l? i /W5
O =Y (4.6)
2n=
z quw,O
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It follows from

n-1
u u
20 (1) - A (2 (5] <28 (v )
0

and (4.6) that

@2”A(y,2n W)=A(y,uw)
%z é ﬁz T
forallu,we U, y €', and 7 > 0. That is,

2" A(y, 2 ,w)—- s
o (> 5 W)= Ay u,w) z1}[/,,,()‘41,,() ' (4.7)

Replacing u with 5 in (4.7), we get

2Ny s v W)=2" AV s i W)

O > 0o - (4.8)

n+m B
Zk:m 2

Since o0 ; tends to VY as m,n — 00, it follows that the sequence {2"A(y, 31 W)}
Zn+m ﬁ

is Cauchy for all u,w € U and y € I'. Since V' is an MMB-algebra, {2"A(y, 55, w)} is a
convergent sequence. Now, we define the random operator A : T x U? — V by

u
A(V; u, W) = k11>nolo 2kA <)’, ?; W);

for all u,w € U and y € I'. Putting m = 0 and letting n — oo in (4.8), we have

@A(y,u,w) (y,u,w) quwO
T 2(1-p)r?

forallu,w e U, y € T, and t > 0. The proof is completed by a similar method as in Theo-
rem 3.2. g

Corollary 4.3 Let (U,0,®,;, ®,,) be an MMB-algebra. Assume that 1 > 1, ¢ > 0, and
A:T x U* — V is a random operator satisfying A(y,u,0) = A(y,0,w) =0 and

20y, 555 w=r)+2A(y, 555 wAr) =2 A (y,u,w)+2A (v, v,r)

O (4.9)
- @K(A(y,u+v,w—r)+A(y,u—v,w+r)—2A(y,u,w)+2A(y,v,r))
—_ T
. sUlall' + i) UwI* + lirll*) 7
®) diag [eXP(— , ,
T T+ sl + iAWl + 1714

forallu,v,w,re U,y €T, and t > 0. Then we can find a unique biadditive random oper-
ator A :T x U? — V such that

(4.10)

-1 -1
@é\(y,u,w)*A(%u,w) zdiag[exp<—2L §||u”L||W||L) : 27t :|

(2t -2) - 2)T + g lulllwll |

foralluywe U,y eT.and t >0.
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Proof The result follows from Theorem 4.2 by putting

SUlzell* + v Iwll + lill) T

Y = diag [exp(—

forallu,we U,y €T, T >0,and g =2!".

T " sl + I wll + IIrII‘)}

O

Theorem 4.4 Let (U,0,®,;, ®,,) be an MMB-algebra. Assume that  : U* — O is an
MDEF such that there exists a B < 1 with V" > Y22 forall u,v,we U. Let A :T x
2

U? — V be a random operator satisfying (4.2) and A(y,u,0) = A(y,0,w) =0 for all u,w €

U and y € T. Then we can find a unique biadditive random operator A : T' x U? — V such

that

Ay ,u,w)=-A(y,u,w) quO
O =Y 20,
B

foralluywe U,y €T, and t > 0.

Proof Letting v=7r=0in (4.3), we have

4A(y, 5 w)-2A(y u,w) 1,0,w,0
T i 4 ’
T

forallu,we U, y €', and 7 > 0. Thus

Ay uw)-3 Aly,2u,w) 21,0,w,0 4,0,w,0
CH = Qi >¢, )

forallu,we U, y €', and t > 0. Replacing u by 2"u in (4.12), we get

i,, Ay,2"u,w)—

Ay, 2n+l w)
o7

2n+l u,0,w,0
— 1 2x27"

@7 BT
u,0,w,0

2 .
(ﬂ)ml T

From

n-1 1
ﬂA(V 2"u, w) (y,u,w) Z<2k+1 v, 2k+1u,w) - gA(y,Zku,w))
k=0

and (4.13), we conclude that

A(y 2" u,w)~F(y u,w)

i I/f;t,o,w,o,
Zk 1 2 T
forallu,we U, y €', and t > 0. That is,

Ay,2"uw)=A(y u,w)

®3

u,0,w,0
=y -
B
YT

(4.11)

(4.12)

(4.13)

(4.14)
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Replacing u# with 2”u in (4.14), we get

Ay, 2" y,w)— sz Ay, 2™ u,w)

1
e = yOm? (4.15)
ST
Since y %0 tends to V? as m,n — o0, it follows that the sequence {2% A(y,2"u,w)} is

k
AR
Cauchyforallu,w € U,y €I".Since V isan MMB-algebra, {zi,,F(y, 2"u,w)} is a convergent
sequence. Now, we define the random operator A : " x U? — V by

1
Ay, u,w) = hm ?A(yﬂku,w),

forall u,w € U and y € T'. Putting m = 0 and letting n — o0 in (4.15), we get

@ (= Blrien) -y 0 (4.16)

i
forallu,we U, y €T, and t > 0. The proof is completed by a similar method as in Theo-
rem 4.2. 0

Corollary 4.5 Let (U,0,®,;, ®,,) be an MMB-algebra. Assume that 1 <1, ¢ > 0, and
A :T x U? — V is a random operator satisfying (4.9) and A(y,u,0) = A(y,0,w) = 0 for all
u,we U and y €T. Then we can find a unique biadditive random operator A : T x U* —
V such that

A W) -Aly.uw) o diag| exp 2l§”u”L”V”l 22-2)r (4.17)
' - 22-29t ) 22 =297 + 2 flul vl |’ '

forallu,we T,y eTl',and T >0.

Proof The result follows from Theorem 4.4 by putting

s diag[exp(—g(”ullt +vID)Uwl + 7)) T :|
’ T

T (lul + I Awle+ 1

forallu,we U,y €', 7 >0,and 8 = 2", O

5 Conclusions

In this paper, we introduce distribution functions and a triangular norm with the ranges
in a class of matrix algebras, and we introduce the concept of a matrix Menger normed
algebra. We apply the HUR stability process to get best approximation of stochastic « -

random operator inequalities.
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