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Abstract
There are a lot of papers dealing with applications of the so-called cyclic refinement
of the discrete Jensen’s inequality. A significant generalization of the cyclic
refinement, based on combinatorial considerations, has recently been discovered by
the author. In the present paper we give the integral versions of these results. On the
one hand, a new method to refine the integral Jensen’s inequality is developed. On
the other hand, the result contains some recent refinements of the integral Jensen’s
inequality as elementary cases. Finally some applications to the Fejér inequality
(especially the Hermite–Hadamard inequality), quasi-arithmetic means, and
f -divergences are presented.
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1 Introduction
The significance of convex functions is rightly due to Jensen’s inequality. A real function f
defined on an interval C ⊂R is called convex if it satisfies

f
(
αt1 + (1 – α)t2

) ≤ αf (t1) + (1 – α)f (t2)

for all t1, t2 ∈ C and all α ∈ [0, 1].
Let the set I denote either {1, . . . , n} for some n ≥ 1 or N+. We say that the numbers

(pi)i∈I represent a discrete probability distribution if pi ≥ 0 (i ∈ I) and
∑

i∈I pi = 1. It is
called positive if pi > 0 (i ∈ I). A permutation π of I refers to a bijection from I onto itself.

The following discrete and integral versions of Jensen’s inequality are well known.

Theorem 1 (discrete Jensen’s inequalities, see [16] and [17]) (a) Let C be a convex subset
of a real vector space V , and let f : C → R be a convex function. If p1, . . . , pn represent a
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discrete probability distribution and v1, . . . , vn ∈ C, then

f

( n∑

i=1

pivi

)

≤
n∑

i=1

pif (vi). (1)

(b) Let C be a closed convex subset of a real Banach space V , and let f : C → R be a
convex function. If p1, p2, . . . represent a discrete probability distribution and v1, v2, . . . ∈ C
such that the series

∑∞
i=1 pivi and

∑∞
i=1 pif (vi) are absolutely convergent, then

f

( ∞∑

i=1

pivi

)

≤
∞∑

i=1

pif (vi). (2)

Theorem 2 (integral Jensen’s inequality, see [16]) Let ϕ be an integrable function on a
probability space (X,A,μ) taking values in an interval C ⊂ R. Then

∫
Xϕ dμ lies in C. If f

is a convex function on C such that f ◦ ϕ is μ-integrable, then

f
(∫

X
ϕ dμ

)
≤

∫

X
f ◦ ϕ dμ. (3)

Remark 3 It follows that Theorem 1 (b) can be generalized in case of V = R: if C ⊂ R is
an interval (not necessarily closed) and the other conditions of the statement are satisfied,
then

∑∞
i=1 pivi lies in C and (2) holds.

There are many papers dealing with refinements of discrete and integral Jensen’s in-
equalities (see the book [12] and the references therein).

In papers [2] and [13] there are special refinements of the discrete Jensen’s inequality of
the form in Theorem 1 (a) (so-called cyclic refinements). These led the author to the fol-
lowing refinement of the discrete Jensen’s inequality which is a significant generalization
of the previously mentioned results.

Theorem 4 (see [11]) (a) Let k, n ≥ 2 be integers, and let p1, . . . , pn and λ1, . . . ,λk represent
positive probability distributions. For each j = 1, . . . , k, let πj be a permutation of the set
{1, . . . , n}. If C is a convex subset of a real vector space V , f : C → R is a convex function,
and v1, . . . , vn ∈ C, then

f

( n∑

i=1

pivi

)

≤ Cper = Cper(f , v, p,λ,π )

:=
n∑

i=1

( k∑

j=1

λjpπj(i)

)

f
(∑k

j=1 λjpπj(i)vπj(i)
∑k

j=1 λjpπj(i)

)
≤

n∑

i=1

pif (vi).

(b) Let the set J denote either {1, . . . , k} for some k ≥ 2 or N+. Let p1, p2, . . . and (λj)j∈J

represent positive probability distributions. For each j ∈ J , let πj be a permutation of the set
N+. If C is a closed convex subset of a real Banach space (V ,‖ · ‖), f : C → R is a convex
function, and v1, v2, . . . ∈ C such that the series

∑∞
i=1 pivi and

∑∞
i=1 pif (vi) are absolutely
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convergent, then

f

( ∞∑

i=1

pivi

)

≤ Cper = Cper(f , v, p,λ,π )

:=
∞∑

i=1

(∑

j∈J

λjpπj(i)

)
f
(∑

j∈J λjpπj(i)vπj(i)∑
j∈J λjpπj(i)

)
≤

∞∑

i=1

pif (vi).

In the paper [13] we obtain refinements of the integral Jensen’s inequality by using cyclic
refinements of the discrete Jensen’s inequality, but these results are not natural obverses
of the discrete one’s.

In this paper we give the integral version of Theorem 4 when V = R. On the one hand,
a new method to refine the integral Jensen’s inequality is developed (totally different from
earlier techniques, see e.g. [10] and [19]) and our result contains Theorem 4 when V = R.
On the other hand, we can have from it some recent refinements of the integral Jensen’s
inequality (see [7], [5], [6]) as elementary cases. Finally, some applications to the Fejér
inequality (especially the Hermite–Hadamard inequality), quasi-arithmetic means, and
f -divergences are presented.

2 Preliminary result
We give an extension of Theorem 4 if V = R.

Proposition 5 Let the index set I denote either {1, . . . , n} for some n ≥ 1 or N+. Let the index
set J denote either {1, . . . , k} for some k ≥ 1 or N+. For each j ∈ J , let πj be a permutation of
the set I . Let (pi)i∈I and (λj)j∈J represent positive probability distributions. If C is an interval
in R, f : C → R is a convex function, and (vi)i∈I is a sequence from C such that the series
∑

i∈I pivi and
∑

i∈I pif (vi) are absolutely convergent, then

f
(∑

i∈I

pivi

)
≤ Cper = Cper(f , v, p,λ,π )

:=
∑

i∈I

(∑

j∈J

λjpπj(i)

)
f
(∑

j∈J λjpπj(i)vπj(i)∑
j∈J λjpπj(i)

)
≤

∑

i∈I

pif (vi).

Proof By using Remark 3, we can copy the proof of Theorem 4 in [11]. �

The positive part f + and the negative part f – of a real-valued function f are defined in
the usual way.

We need another result about integrability.

Lemma 6 Let ϕ be an integrable function on a probability space (X,A,μ) taking values in
an interval C ⊂R. If f is a convex function on C such that f ◦ ϕ is μ-integrable, then there
exists a convex function g on C such that |f | ≤ g and g ◦ ϕ is μ-integrable too.

Proof Along with the function f , the function f + is also convex. Since f ◦ϕ is μ-integrable,
f + ◦ ϕ is also μ-integrable.
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The convexity of f on C shows that there is an affine function l : C →R, l(t) = at + b for
which

f (t) ≥ at + b, t ∈ C.

Then

f –(t) = max
(
–f (t), 0

) ≤ max(–at – b, 0) = l–(t)

≤ |at + b| =
∣
∣l(t)

∣
∣, t ∈ C.

Since the function ϕ is a μ-integrable function, |l| ◦ ϕ is also μ-integrable.
Using that the function |l| is convex, |f | = f + + f –, and the sum of two convex functions

is also convex, it follows from the above that g := f + + |l| can be chosen.
The proof is complete. �

We shall use the following Fubini theorem for double series.

Theorem 7 (see [20]) Let a(i, j) ∈R ((i, j) ∈N+ ×N+). If any of the two sums

∞∑

i=1

( ∞∑

j=1

∣∣a(i, j)
∣∣
)

,
∞∑

j=1

( ∞∑

i=1

∣∣a(i, j)
∣∣
)

is finite, then both of the series

∞∑

i=1

( ∞∑

j=1

a(i, j)

)

,
∞∑

j=1

( ∞∑

i=1

a(i, j)

)

are absolutely convergent and both have the same sum.

3 Main results
We need the following hypotheses.

(H1) Let (X,A,μ) be a probability space.
(H2) Let the index set I denote either {1, . . . , n} for some n ≥ 1 or N+. Let the index set J

denote either {1, . . . , k} for some k ≥ 1 or N+.
(H3) Let (λj)j∈J represent a positive probability distribution. For each j ∈ J , let πj be a

permutation of the set I .
(H4) Suppose that we are given a sequence MI = (μi)i∈I of measures on A with μi(X) > 0

for all i ∈ I and
∑

i∈I μi = μ.
(H5) Suppose that we are given a sequence SI = (Ai)i∈I of pairwise disjoint sets Ai ∈ A

with μ(Ai) > 0 for all i ∈ I and
⋃

i∈I Ai = X .

Theorem 8 Assume (H1–H3) and (H4). Let C ⊂ R be an interval, and f : C → R be a
convex function. Let ϕ be a μ-integrable function on X taking values in C such that f ◦ ϕ is
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also μ-integrable on X. Then

f
(∫

X
ϕ dμ

)
≤ Cmes = Cmes(f ,ϕ,λ,π ,MI)

:=
∑

i∈I

(∑

j∈J

λjμπj(i)(X)
)

f
(∑

j∈J λj
∫

X ϕ dμπj(i)∑
j∈J λjμπj(i)(X)

)
≤

∫

X
f ◦ ϕ dμ.

Proof This can be obtained by an application of Proposition 5 to the parameters

pi := μi(X) and vi :=
1

μi(X)

∫

X
ϕ dμi, i ∈ I.

Really, (pi)i∈I represents a positive probability distribution, and by the integral Jensen’s
inequality, vi ∈ C (i ∈ I).

Next we show that the series
∑

i∈I pivi and
∑

i∈I pif (vi) are absolutely convergent.
Since ϕ is a μ-integrable function on X and

∑
i∈I μi = μ,

∑

i∈I

pi|vi| =
∑

i∈I

∣
∣∣∣

∫

X
ϕ dμi

∣
∣∣∣ ≤

∑

i∈I

∫

X
|ϕ|dμi =

∫

X
|ϕ|dμ < ∞.

By Lemma 6, there exists a convex function g on C such that

|f | ≤ g and g ◦ ϕ is μ-integrable. (4)

Another application of the integral Jensen’s inequality and
∑

i∈I μi = μ now show that

∑

i∈I

pi
∣
∣f (vi)

∣
∣ =

∑

i∈I

μi(X)
∣∣
∣∣f

(
1

μi(X)

∫

X
ϕ dμi

)∣∣
∣∣

≤
∑

i∈I

μi(X)g
(

1
μi(X)

∫

X
ϕ dμi

)
≤

∑

i∈I

∫

X
g ◦ ϕ dμi =

∫

X
g ◦ ϕ dμ < ∞.

We can see that the conditions of Proposition 5 hold, and therefore, by applying it, we
obtain

f
(∫

X
ϕ dμ

)
= f

(∑

i∈I

pif (vi)
)

≤
∑

i∈I

(∑

j∈J

λjpπj(i)

)
f
(∑

j∈J λjpπj(i)vπj(i)∑
j∈J λjpπj(i)

)

=
∑

i∈I

(∑

j∈J

λjμπj(i)(X)
)

f
(∑

j∈J λj
∫

X ϕ dμπj(i)∑
j∈J λjμπj(i)(X)

)
≤

∑

i∈I

pif (vi)

=
∑

i∈I

μi(X)f
(

1
μi(X)

∫

X
ϕ dμi

)
. (5)

As a final step, we can apply the integral Jensen’s inequality in (5).
The proof is complete. �

A useful consequence of the previous theorem is the next result.
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Corollary 9 Assume (H1–H3) and (H5). Let C ⊂ R be an interval and f : C → R be a
convex function. Let ϕ be a μ-integrable function on X taking values in C such that f ◦ ϕ is
also μ-integrable on X. Then

f
(∫

X
ϕ dμ

)
≤ Cset = Cset(f ,ϕ,λ,π ,SI)

:=
∑

i∈I

(∑

j∈J

λjμ(Aπj(i))
)

f
(∑

j∈J λj
∫

Aπj(i)
ϕ dμ

∑
j∈J λjμ(Aπj(i))

)
≤

∫

X
f ◦ ϕ dμ. (6)

Proof Let the measure μi (i ∈ I) be defined on A by

μi(A) := μ(A ∩ Ai), A ∈A,

and then apply Theorem 8.
The proof is complete. �

4 Discussion
First we study the relationship between Theorem 8 and Proposition 5.

Assume (H2) and (H3), and let (pi)i∈I represent a positive probability distribution. Define
the measure μ on the power set P(I) of I by

μ :=
∑

i∈I

piεi,

where εi (i ∈ I) is the unit mass at i on P(I), and use the measure space (I, P(I),μ) in (H1).
Let C ⊂ R be an interval, f : C → R be a convex function, and (vi)i∈I be a sequence in R

such that the series
∑

i∈I pivi and
∑

i∈I pif (vi) are absolutely convergent. Define the func-
tion ϕ on I by

ϕ(i) := vi.

Finally, choose Ai := {i} (i ∈ I).
It is easy to check that under these conditions Corollary 9 is equivalent to Proposition 5.
Now we compare our main result with some recent refinement of the integral Jensen’s

inequality.
Let (X,A,ν) be a measure space with ν(X) ∈ ]0,∞]. For the ν-integrable positive ν-a.e.

weight w, consider the Lebesgue space

Lw(X,ν) :=
{
ϕ : X →R,ϕ is ν-measurable and

∫

X
|ϕ|w dν < ∞

}
.

For the ν-integrable positive ν-a.e. weight w and given n ≥ 2, we consider the set Bk(w)
of all possible n-tuples of ν-integrable positive ν-a.e. weights w = (w1, . . . , wn) with the
property that

∑n
i=1 wj = w.

The next result can be found in [5].
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Theorem 10 (see [5], Theorem 2.1) Let f : [m, M] → R be a convex function, ϕ : X →
[m, M] be a ν-measurable function such that ϕ, f ◦ ϕ ∈ Lw(X,ν). Then, for any w ∈Bk(w),
we have

f
(∫

X ϕw dν
∫

X w dν

)
≤ 1

∫
X w dν

n∑

i=1

f
(∫

X ϕwi dν
∫

X wi dν

)∫

X
wi dν ≤

∫
X(f ◦ ϕ)w dν

∫
X w dν

,

where n ≥ 2.

Remark 11 Let the measure μi (i ∈ I) and μ be defined on A by

μi(A) :=
1

∫
X w dν

∫

A
wi dν, A ∈A,

and by

μ(A) :=
1

∫
X w dν

∫

A
w dν, A ∈A. (7)

Then μi(X) > 0 (i ∈ I) and μ =
∑n

i=1 μi. By choosing k = 1 (thus λ1 = 1), we can see that
Theorem 10 is a simple consequence of Theorem 8.

We say that the family of measurable sets Fn(X) = {Ai}i=1,...,n is an n-division for X if
X =

⋃n
i=1 Ai, Ai ∩ Aj = ∅ for any i, j ∈ {1, . . . , n} with i �= j and ν(Ai) > 0 for any i ∈ {1, . . . , n}.

For given n ≥ 2, we denote by Dn(X) the set of all n-divisions of X.
The following result appears in [6].

Theorem 12 (see [6], Theorem 2.1) Let f : [m, M] → R be a convex function, ϕ : X →
[m, M] be a ν-measurable function such that ϕ, f ◦ ϕ ∈ Lw(X,ν). Then, for any Fn(X) ∈
Dn(X), we have

f
(∫

X fw dν
∫

X w dν

)
≤ 1

∫
X w dν

n∑

i=1

f
(∫

Ai
fw dν

∫
Ai

w dν

)∫

Ai

w dν ≤
∫

X(f ◦ ϕ)w dν
∫

X w dν
,

where n ≥ 2.

Remark 13 (a) Define the measure μ on A by (7). By choosing k = 1 (thus λ1 = 1), we
can see that Theorem 12 is a simple consequence of Corollary 9. Moreover, it follows that
Theorem 12 is contained in Theorem 10.

(b) The main result Theorem 2.1 in [7] is the special case of Corollary 9 when n = 2 and
k = 1.

5 Applications
Let [a, b] ⊂ R (a < b). The σ -algebra of Lebesgue-measurable subsets of R is denoted by
L. λ means the Lebesgue measure on L. Assume that f : [a, b] → R is a convex function
and g : [a, b] → [0,∞[ is a Lebesgue-integrable function which is symmetric to a+b

2 . The
classical Fejér inequality (see [8]) says

f
(

a + b
2

)∫ b

a
g ≤

∫ b

a
fg ≤ f (a) + f (b)

2

∫ b

a
g. (8)
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This is a weighted generalization of the Hermite–Hadamard inequality (see [9]) which has
the form

f
(

a + b
2

)
≤ 1

b – a

∫ b

a
f ≤ f (a) + f (b)

2
. (9)

By applying our main result, we can obtain a refinement of the left-hand side of the Fejér
inequality. There are refinements of the Fejér inequality (see e.g. [21]), but the next result
provides a totally different refinement.

Proposition 14 Assume (H2–H3). Let [a, b] ⊂ R (a < b), and consider the measure space
([a, b],L,λ) in (H1). Let f : [a, b] → R be a convex function and g : [a, b] → [0,∞[ be a
Lebesgue-integrable function which is symmetric to a+b

2 .
(a) If μ := gλ, where gλ is the measure on L having density g with respect to λ, and μi

(i ∈ I) are measures on L such that μi([a, b]) > 0 for all i ∈ I and
∑

i∈I μi = μ, then

f
(

a + b
2

)∫ b

a
g ≤

∑

i∈I

(∑

j∈J

λjμπj(i)
(
[a, b]

))

· f
(∑

j∈J λj
∫

[a,b] t dμπj(i)(t)
∑

j∈J λjμπj(i)([a, b])

)
≤

∫ b

a
fg.

(b) If gi : [a, b] → [0,∞[ (i ∈ I) is a Lebesgue-integrable function which is symmetric to
a+b

2 , and
∑

i∈I gi = g , then

f
(

a + b
2

)∫ b

a
g ≤ f

(
a + b

2

)∑

i∈I

(∑

j∈J

λj

∫ b

a
gπj(i)

)
≤

∫ b

a
fg.

Proof (a) The result follows immediately from Theorem 8 by choosing ϕ : [a, b] → R,
ϕ(t) = t.

(b) It comes from (a) by some easy calculations.
The proof is complete. �

Remark 15 It is worth to mention that in part (a) the measures may not be symmetric to
a+b

2 .

By applying the previous result, we obtain refinements of the Hermite–Hadamard in-
equality.

Proposition 16 Assume (H2–H3). Let C := [a, b] ⊂ R (a < b), and consider the measure
space ([a, b],L,λ) in (H1). Let f : [a, b] →R be a convex function.

(a) If μi (i ∈ I) is a measure on L such that μi([a, b]) > 0 for all i ∈ I and
∑

i∈I μi = λ, then

f
(

a + b
2

)
≤ 1

b – a
∑

i∈I

(∑

j∈J

λjμπj(i)
(
[a, b]

)
)

· f
(∑

j∈J λj
∫

[a,b] t dμπj(i)(t)
∑

j∈J λjμπj(i)([a, b])

)
≤ 1

b – a

∫ b

a
f .
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(b) Let (Ai)i∈I be a sequence of pairwise disjoint sets Ai ∈A with λ(Ai) > 0 for all i ∈ I and
⋃

i∈I Ai = [a, b]. Then

f
(

a + b
2

)
≤ 1

b – a
∑

i∈I

(∑

j∈J

λjλ(Aπj(i))
)

· f
(∑

j∈J λj
∫

Aπj(i)
t dt

∑
j∈J λjλ(Aπj(i))

)
≤ 1

b – a

∫ b

a
f .

(c) If a = x0 < x1 < · · · < xn = b is a partition of [a, b], then

f
(

a + b
2

)
≤ 1

b – a

n∑

i∈1

(∑

j∈J

λj(xπj(i) – xπj(i)–1)
)

· f
(

1
2

∑
j∈J λj(x2

πj(i) – x2
πj(i)–1)

∑
j∈J λj(xπj(i) – xπj(i)–1)

)
≤ 1

b – a

∫ b

a
f .

Proof (a) This is a special case of Proposition 14 (a).
(b) Let the measure μi (i ∈ I) be defined on L by

μi(A) := λ(A ∩ Ai), A ∈L,

and then apply (a).
(c) Let Ai := [xi–1, xi[ (i = 1, . . . , n – 1) and An := [xn–1, xn] in (b).
The proof is complete. �

The second application concerns quasi-arithmetic means.
Let C ⊂ R be an interval, and let q : C → R be a continuous and strictly monotone

function. If (X,A,μ) is a probability space, and ϕ : X → C is a function such that q ◦ ϕ is
μ-integrable on X, then

Mq(ϕ,μ) := q–1
(∫

X
q ◦ ϕ dμ

)

is called the quasi-arithmetic mean (integral q-mean) of ϕ.
Now we introduce some new quasi-arithmetic means related to the formula Cmes.

Definition 17 Assume (H1–H4). Let C ⊂R be an interval, let q, r : C →R be continuous
and strictly monotone functions, and ϕ : X → C be a μ-integrable function for which q◦ϕ

and r ◦ ϕ are also μ-integrable functions. Then we define the following quasi-arithmetic
mean of ϕ with respect to Cmes:

Mq,r(ϕ,μ,λ,π ,MI)

:= q–1
(∑

i∈I

(∑

j∈J

λjμπj(i)(X)
)

q ◦ r–1
(∑

j∈J λj
∫

X r ◦ ϕ dμπj(i)∑
j∈J λjμπj(i)(X)

))
.

In the next result the introduced means are compared.
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Proposition 18 Assume that the conditions in Definition 17 hold. If either q◦r–1 is convex
and q is strictly increasing, or q◦r–1 is concave and q is strictly decreasing, then

Mr(ϕ,μ) ≤ Mq,r(ϕ,μ,λ,π ,MI) ≤ Mq(ϕ,μ),

while if either r◦q–1 is convex and r is strictly decreasing, or r◦q–1 is concave and r is strictly
increasing, then

Mq(ϕ,μ) ≤ Mr,q(ϕ,μ,λ,π ,MI) ≤ Mr(ϕ,μ).

Proof We consider only the case when q◦r–1 is convex and q is strictly increasing. By
applying Theorem 8 with f := q ◦ r–1 and with r ◦ ϕ instead of ϕ, we obtain

q ◦ r–1
(∫

X
r ◦ ϕ dμ

)

≤
∑

i∈I

(∑

j∈J

λjμπj(i)(X)
)

q ◦ r–1
(∑

j∈J λj
∫

X r ◦ ϕ dμπj(i)∑
j∈J λjμπj(i)(X)

)
≤

∫

X
q ◦ ϕ dμ,

and this implies the result since q–1 is strictly increasing.
The proof is complete. �

Finally, some applications to information theory are presented.
Throughout the rest of the paper probability measures P and Q are defined on a fixed

measurable space (X,A). It is also assumed that P and Q are absolutely continuous with
respect to a σ -finite measure ν on A. The densities (or Radon–Nikodym derivatives) of P
and Q with respect to ν are denoted by p and q, respectively. These densities are ν-almost
everywhere uniquely determined.

Introduce the set of functions

F :=
{

f : ]0,∞[ →R | f is convex
}

,

and define, for every f ∈ F , the function

f ∗ : ]0,∞[ →R, f ∗(t) := tf
(

1
t

)
.

If f ∈ F , then either f is monotonic or there exists a point t0 ∈ ]0,∞[ such that f is
decreasing on ]0, t0[. This implies that the limit

lim
t→0+

f (t)

exists in ]–∞,∞], and

f (0) := lim
t→0+

f (t)

extends f into a convex function on [0,∞[.
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It is well known that, for every f ∈ F , the function f ∗ also belongs to F , and therefore

f ∗(0) := lim
t→0+

f ∗(t) = lim
u→∞

f (u)
u

.

The important notions of f -divergence were introduced in [3], [4], and independently
in [1].

Definition 19 (a) For every f ∈ F , we define the f -divergence of P and Q by

Df (P, Q) :=
∫

X
q(ω)f

(
p(ω)
q(ω)

)
dν(ω),

where the following conventions are used:

0f
(

x
0

)
:= xf ∗(0) if x > 0, 0f

(
0
0

)
= 0f ∗(0) := 0. (10)

(b) Let f ∈ F be a positive convex function, and let p := (p1, . . . , pn) and q := (q1, . . . , qn)
represent positive discrete probability distributions. The f -divergence functional of p and
q is

If (p, q) :=
n∑

i=1

qif
(

pi

qi

)
.

It is possible to use nonnegative discrete probability distributions in the f -divergence
functional by defining

f (0) := lim
t→0+

f (t); 0f
(

0
0

)
:= 0; 0f

(
a
0

)
:= lim

t→0+
tf

(
a
t

)
, a > 0.

Remark 20 (a) For every f ∈ F , the perspective f̂ : ]0,∞[ × ]0,∞[ →R of f is defined by

f̂ (x, y) := yf
(

x
y

)
.

Then (see [18]) f̂ is also a convex function. Vajda [22] proved that (10) is the unique rule
leading to convex and lower semicontinuous extension of f̂ to the set

{
(x, y) ∈R

2 | x, y ≥ 0
}

.

(b) Since f ∗(0) ∈ ]–∞,∞], Lemma 2.8 in [14] shows that Df (P, Q) exists in ]–∞,∞] and

Df (P, Q) =
∫

(q>0)
f
(

p(ω)
q(ω)

)
dQ(ω) + f ∗(0)P(q = 0). (11)

It follows that if P is absolutely continuous with respect to Q, then

Df (P, Q) =
∫

(q>0)
f
(

p(ω)
q(ω)

)
dQ(ω).
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The basic inequality (see [15])

Df (P, Q) ≥ f (1) (12)

is one of the key properties of f -divergences. In the next result a refinement of this in-
equality is obtained.

Proposition 21 Assume (H2) and (H3). Suppose that we are given a sequence MI = (Qi)i∈I

of measures on A with Qi(X) > 0 for all i ∈ I and
∑

i∈I Qi = Q. Then

Df (P, Q) ≥
∑

i∈I

(∑

j∈J

λjQπj(i)(q > 0)
)

f
(∑

j∈J λj
∫

(q>0)
p
q dQπj(i)∑

j∈J λjQπj(i)(q > 0)

)
(13)

+ f ∗(0)P(q = 0) ≥ f
(∫

(q>0)
p dν

)
+ f ∗(0)P(q = 0) ≥ f (1).

Proof Since Q is absolutely continuous with respect to ν , it follows from
∑

i∈I Qi = Q that
Qi is also absolutely continuous with respect to ν for all i ∈ I . By denoting the density
(or Radon–Nikodym derivative) of Qi with respect to ν by qi (i ∈ I), we also obtain that
∑

i∈I qi = q ν-a.e.
If Df (P, Q) = ∞, then (13) is obvious.
If Df (P, Q) ∈R, then the integral

∫

(q>0)
f
(

p(ω)
q(ω)

)
dQ(ω) (14)

is finite, and therefore either Q(p = 0) = 0 or Q(p = 0) > 0 and f (0) is finite. It can be seen
that the integral Jensen’s inequality can be applied to this integral, and we have from The-
orem 8 that

Df (P, Q) ≥
∑

i∈I

(∑

j∈J

λjQπj(i)(q > 0)
)

f
(∑

j∈J λj
∫

(q>0)
p
q dQπj(i)∑

j∈J λjQπj(i)(q > 0)

)
(15)

+ f ∗(0)P(q = 0) ≥ f
(∫

(q>0)
p dν

)
+ f ∗(0)P(q = 0).

It follows from the proof of Theorem 2.12 (a) in [14] that

f
(∫

(q>0)
p dν

)
+ f ∗(0)P(q = 0) ≥ f (1).

The proof is complete. �

Remark 22 (a) By using density functions, (13) can be rewritten in the following form:

Df (P, Q) ≥
∑

i∈I

(∑

j∈J

λj

∫

(q>0)
qπj(i) dν

)
f
(∑

j∈J λj
∫

(q>0)
p
q qπj(i) dν

∑
j∈J λj

∫
(q>0) qπj(i) dν

)

+ f ∗(0)P(q = 0) ≥ f
(∫

(q>0)
p dν

)
+ f ∗(0)P(q = 0) ≥ f (1).



Horváth Journal of Inequalities and Applications         (2021) 2021:12 Page 13 of 14

(b) Define

qi :=
∑

j∈J

λjQπj(i)(q > 0), i ∈ I, q̂ := Q(q = 0),

and

pi :=
∑

j∈J

λj

∫

(q>0)

p
q

dQπj(i), i ∈ I, p̂ := P(q = 0).

By applying (H3), (H4), Theorem 7, and
∑

i∈I Qi = Q, we have

∑

i∈I

qi =
∑

i∈I

(∑

j∈J

λjQπj(i)(q > 0)
)

=
∑

j∈J

λj

(∑

i∈I

Qπj(i)(q > 0)
)

=

=
∑

j∈J

λj

(∑

i∈I

Qi(q > 0)
)

= Q(q > 0),

and hence (qi)i∈I and q̂ represent a discrete probability distribution q.
Similarly, it follows from (H3), (H4), Theorem 7, and

∑
i∈I Qi = Q, that

∑

i∈I

pi =
∑

i∈I

(∑

j∈J

λj

∫

(q>0)

p
q

dQπj(i)

)
=

∑

j∈J

λj

(∑

i∈I

∫

(q>0)

p
q

dQπj(i)

)

=
∑

j∈J

λj

(∑

i∈I

∫

(q>0)

p
q

dQi

)
=

∫

(q>0)

p
q

dQ = P(q > 0),

and therefore (pi)i∈I and p̂ also represent a discrete probability distribution p. Since

0f
(

p̂
0

)
:=

⎧
⎨

⎩
0 = f ∗(0)P(q = 0), p̂ = 0,

limt→0+ tf ( p̂
t ) = f ∗(0)P(q = 0), p̂ > 0,

we can see that the second term in (13) can be considered as the f -divergence functional of
p and q (if I = N+, then we can say that If (p, q) is a generalized f -divergence functional). It
is interesting that inequality (12) for “continuous” f -divergence can be refined by “discrete”
f -divergence.
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