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Abstract
Let X be a uniformly convex and q-uniformly smooth Banach space with 1 < q ≤ 2. In
the framework of this space, we are concerned with a composite gradient-like implicit
rule for solving a hierarchical monotone variational inequality with the constraints of
a system of monotone variational inequalities, a variational inclusion and a common
fixed point problem of a countable family of nonlinear operators {Sn}∞n=0. Our rule is
based on the Korpelevich extragradient method, the perturbation mapping, and the
W-mappings constructed by {Sn}∞n=0.
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1 Introduction
Throughout this work, one always supposes that C is a nonempty convex set in a Banach
space X whose dual is denoted by X∗. One denotes by the same notation, ‖·‖, the norms of
X and X∗. A common problem in machine learning, automatic control, and utility-based
bandwidth allocation problems consists of finding a solution of some equation satisfying
some constraints. This common problem is called the convex feasibility problem, which
can be characterized via the following model: x ∈ ⋂

i∈I Ci, where I denotes some index set,
Ci is a convex set in X.

Next, one employs Jq : X → 2X∗ , where q > 1 is real number, to denote the duality
mapping, which is defined by Jq(x) := {φ ∈ X∗ : 〈x,φ〉 = ‖x‖q,‖x‖q–1 = ‖φ‖}, ∀x ∈ X. Let
A1, A2 : C → X be two nonlinear non-self mappings. Consider the problem of finding
(x∗, y∗) ∈ C × C such that

⎧
⎨

⎩

〈x∗ – y∗ + μ1A1y∗, J(x – x∗)〉 ≥ 0, ∀x ∈ C,

〈y∗ – x∗ + μ2A2x∗, J(x – y∗)〉 ≥ 0, ∀x ∈ C,
(1.1)
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with two positive real constants μ1 and μ2. This is called a system of generalized varia-
tional inequalities (SGVIs). This is a natural extension of the generalized variational in-
equality considered by Aoyama, Iiduka and Takahashi [1] in uniformly convex and 2-
uniformly smooth Banach spaces; see [1] for more details. In Hilbert spaces, the system
is reduced to the system of variational inequalities considered by Ceng et al. [2]. Prob-
lem (1.1) and its special cases are now under the spotlight of research because of their
connections to other real convex and set optimization problems; see, e.g., [3–8] and the
references therein. Recently, a fixed point method has been studied for solving convex
and non-convex optimization problems since the equivalence between fixed point prob-
lems and zero point problems; see, e.g., [9–13] and the references therein. Indeed, one
can transfer zero point problems (inclusion problems) to some fixed point problem of
nonexpansive operators. The core is the resolvent of original operators. For example, one
can show that the resolvent operator of m-accretive or maximally accretive operators is
nonexpansive. Hence, Mann-like algorithms are applicable, however, they are only weakly
convergent. Strong convergence is desirable in lots of situations, such as, image recovery,
optimal control and quantum physics since they are in infinite-dimensional spaces. In this
paper, we study, in the framework of Banach spaces, a convex feasibility problem with the
constraints of the generalized system of monotone variational inequalities, a variational
inclusion and a countable family of nonexpansive operators. Strong convergence theo-
rems are obtained without any compact assumption on operators. Our rule is based on
the Korpelevich extragradient method, the perturbation mapping, and the W -mappings
constructed by {Sn}∞n=0. The main results extend and improve some recent results in [14–
17].

2 Preliminaries
Next, one uses ρX : [0,∞) → [0,∞) to stand for the smoothness modulus of space X which
is defined by ρX(t) = sup{(‖x + y‖ + ‖x – y‖)/2 – 1 : x ∈ U ,‖y‖ ≤ t}. One says that X is uni-
formly smooth if limt→0+ ρX(t)/t = 0. Let q ∈ (1, 2] be a fixed real number. A Banach space
X is said to be q-uniformly smooth if ρX(t) ≤ tqd, ∀t > 0, where d is some constant. It is
well known that Hilbert spaces, Lp and �p are uniformly smooth where p > 1. More pre-
cisely, each Hilbert space is 2-uniformly smooth, while Lp and �p are min{p, 2}-uniformly
smooth for each p > 1.

Let A : C → 2X be a set-valued operator with Ax �= ∅, ∀x ∈ C. An operator A is said to
be accretive if, ∀x, y ∈ C, 〈u – v, jq(x – y)〉 ≥ 0, ∀u ∈ Ax, v ∈ Ay, where jq(x – y) ∈ Jq(x – y).
A single-valued accretive operator A is said to be α-inverse-strongly accretive of order q if,
∀x, y ∈ C, there exist α > 0 and jq(x – y) ∈ Jq(x – y) such that 〈u – v, jq(x – y)〉 ≥ α‖Ax – Ay‖q,
∀u ∈ Ax, v ∈ Ay. Back to Hilbert spaces, A is called the inverse-strongly monotone. This
class of mappings is a key component in projection-based approximation methods; see,
e.g., [18–22]. An accretive operator A is said to be m-accretive if and only if A is accretive
and satisfies the range condition: (I + λA)C = X for all λ > 0. For an accretive operator A,
we define the mapping JA

λ : (I +λA)C → C by JA
λ = (I +λA)–1 for each λ > 0. Such JA

λ is called
the resolvent of A; see, e.g., [23–25] and the references therein. Recall now that a single-
valued mapping F : C → X is called η-strongly accretive if 〈Fx – Fy, j(x – y)〉 ≥ η‖x – y‖2

for some η ∈ (0, 1) and j(x – y) ∈ J(x – y). Moreover, F is called ξ -strictly pseudocontractive
if, ∀x, y ∈ C, 〈Fx – Fy, j(x – y)〉 ≤ ‖x – y‖2 – ξ‖x – y – (Fx – Fy)‖2 for some ξ ∈ (0, 1), where
j(x – y) ∈ J(x – y).
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Let F : C → X be a mapping. Then (i) if F : C → X is η-strongly accretive and ξ -strictly
pseudocontractive with η+ξ ≥ 1, then I –F is nonexpansive, and F is Lipschitz continuous
with constant 1 + 1

ξ
; (ii) if F : C → X is η-strongly accretive and ξ -strictly pseudocontrac-

tive with η + ξ ≥ 1, then, for any fixed τ ∈ (0, 1), I – τF is a contraction with constant
1 – τ (1 –

√
1–η

ξ
).

From now on, one employs Π to denote a mapping from C onto its subset D. One says
that Π is sunny if, whenever Π (x)+t(x–Π (x)) ∈ C for x ∈ C, Π [Π (x)+t(x–Π (x))] = Π (x).
A mapping Π defined on C is called a retraction if Π = Π2. One says that subset D is a
sunny nonexpansive retract of the set C if there exists a sunny nonexpansive retraction
from C onto D.

Let {Sn}∞n=0 be a countable family of nonexpansive mappings defined on C, which is a
convex and closed subset of a strictly convex Banach space, and let {ζn}∞n=0 be a sequence
in [0, 1]. For any n ≥ 0, define a mapping Wn : C → C as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Un,n+1 = I,

Un,n = ζnSnUn,n+1 + (1 – ζn)I,

· · ·
Un,1 = ζ1S1Un,2 + (1 – ζ1)I,

Wn = Un,0 = ζ0S0Un,1 + (1 – ζ0)I.

(2.1)

Lemma 2.1 ([25, 26]) Suppose that {Sn}∞n=0 is a countable family of nonexpansive mappings
defined on a subset C of a strictly convex space X . Suppose that

⋂∞
n=0 Fix(Sn) �= ∅, and {ζn}∞n=0

is a real sequence such that 0 < ζn ≤ b < 1, ∀n ≥ 0. Then
(i) Wn is nonexpansive and Fix(Wn) =

⋂n
i=0 Fix(Si), ∀n ≥ 0;

(ii) the limit limn→∞ Un,kx exists for all x ∈ C and k ≥ 0;
(iii) the mapping W : C → C defined by Wx := limn→∞ Wnx = limn→∞ Un,0x, ∀x ∈ C, is

a nonexpansive mapping satisfying Fix(W ) =
⋂∞

n=0 Fix(Sn) and it is called the
W -mapping. If D is any bounded subset of C, then limn→∞ supx∈D ‖Wnx – Wx‖ = 0.

For our main strong convergence theorems, the following tools are also needed.

Lemma 2.2 ([27]) Let X be smooth, D be a nonempty subset of C and Π be a retraction of
C onto D. Then the following are equivalent: (i) Π is sunny and nonexpansive; (ii) ‖Π (x) –
Π (y)‖2 ≤ 〈x – y, J(Π (x) – Π (y))〉, ∀x, y ∈ C; (iii) 〈x – Π (x), J(y – Π (x))〉 ≤ 0, ∀x ∈ C, y ∈ D.

Lemma 2.3 ([28]) Let q ∈ (1, 2] a given real number and let X be q-uniformly smooth. Then
‖x + y‖q ≤ q〈y, Jq(x)〉+‖x‖q +κq‖y‖q, ∀x, y ∈ X, where κq is the q-uniformly smooth constant
of X. For any given x, y ∈ X, one has ‖x + y‖q ≤ ‖x‖q + q〈y, jq(x + y)〉, ∀jq(x + y) ∈ Jq(x + y).

Lemma 2.4 ([28, 29]) Let X be a uniformly convex and q-uniformly, where 1 < q ≤ 2,
smooth Banach space. Let A : C → X be an α-inverse-strongly accretive mapping of or-
der q and B : C → 2X be an m-accretive operator. In the sequel, we will use the notation
Tλ := JB

λ (I – λA) = (I + λB)–1(I – λA), ∀λ > 0. The following statements hold:
(i) the resolvent identity: Jλx = Jμ( μ

λ
x + (1 – μ

λ
)Jλx), ∀λ,μ > 0, x ∈ X ;

(ii) if JA
λ is a resolvent of A for λ > 0, then JA

λ is a single-valued nonexpansive mapping
with Fix(JA

λ ) = A–10, where A–10 = {x ∈ C : 0 ∈ Ax};
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(iii) Fix(Tλ) = (A + B)–10, ∀λ > 0;
(iv) ‖x – Tλx‖ ≤ 2‖x – Tsx‖ for 0 < λ ≤ s and x ∈ X ;
(v) ‖Tλx – Tλy‖ ≤ ‖x – y‖;

(vi) ‖(I – λA)x – (I – λA)y‖q ≤ ‖x – y‖q – λ(qα – κqλ
q–1)‖Ax – Ay‖q , ∀x, y ∈ C. In

particular, if 0 < λ ≤ ( qα

κq
)

1
q–1 , then I – λA is nonexpansive.

Lemma 2.5 ([30]) Let T : C → C be nonexpansive with Fix(T) �= ∅, and let f : C → C be
a fixed contraction mapping, where C is convex and closed set in a real reflexive Banach
space with the uniformly Gâteaux differentiable norm and the normal structure. Let zt ∈ C,
where t ∈ (0, 1), be the unique fixed point of the contraction C � z �→ (1 – t)Tz + tf (z) on C,
that is, zt = (1 – t)Tzt + tf (zt). Then {zt} converges to x∗ ∈ Fix(T) in norm. This convergent
point also solves 〈(f – I)x∗, J(p – x∗)〉 ≤ 0, ∀p ∈ Fix(T).

Lemma 2.6 ([14]) Suppose that ΠC is a sunny nonexpansive retraction from a q-uniformly
smooth X onto its convex closed subset C. Let the mapping Ai : C → X be αi-inverse-strongly
accretive of order q for i = 1, 2. Let the mapping G : C → C be defined as Gx := ΠC(I –
μ1A1)ΠC(I – μ2A2), ∀x ∈ C. If 0 < μi ≤ ( qαi

κq
)

1
q–1 for i = 1, 2, then G : C → C is a Lipschitz

mapping. More precisely, it is nonexpansive. Let A1, A2 : C → X be two nonlinear mappings.
For given (x∗, y∗) ∈ C × C, (x∗, y∗) is a solution of SVIs (1.1) iff x∗ = ΠC(y∗ – μ1A1y∗), where
y∗ = ΠC(x∗ – μ2A2x∗).

Lemma 2.7 ([31]) Let {an} be a sequence defined by an+1 ≤ γnλn + an(1 – λn), ∀n ≥ 0,
where {λn} and {γn} are sequences of real numbers such that (i) lim supn→∞ γn ≤ 0 or
∑∞

n=0 |λnγn| < ∞; (ii) {λn} ⊂ [0, 1] and
∑∞

n=0 λn = ∞. Then limn→∞ an = 0.

Lemma 2.8 ([28]) Let Br = {x ∈ X : ‖x‖ ≤ r}, r > 0, where X is a uniformly convex Banach
space. Then there exists a continuous, strictly increasing and convex function g : [0,∞) →
[0,∞), g(0) = 0 such that, with p > 1,

‖αx + βy + γ z‖p +
αpβ + βpα

(α + β)p g
(‖x – y‖) ≤ α‖x‖p + β‖y‖p + γ ‖z‖p

for all x, y, z ∈ Br and α,β ,γ ∈ [0, 1] with α + β + γ = 1.

Lemma 2.9 ([32]) Suppose that {xn} is a sequence defined by xn+1 = αnxn + (1 –αn)yn, ∀n ≥
0, where {yn} is bounded sequences in Banach space X and let {αn} be a real sequence such
that 0 < lim infn→∞ αn ≤ lim supn→∞ αn < 1. If lim supn→∞(‖yn+1 – yn‖ – ‖xn+1 – xn‖) ≤ 0,
then limn→∞ ‖yn – xn‖ = 0.

3 Iterative algorithms and convergence criteria
Theorem 3.1 Let X be a both uniformly convex and q-uniformly smooth space with 1 < q ≤
2 and let B : C → 2X be an m-accretive operator. Let Ai : C → X be an αi-inverse-strongly
accretive operator of order q for each i = 1, 2 and A : C → X be an α-inverse-strongly ac-
cretive of order q. Assume that Ω =

⋂∞
n=0 Fix(Sn) ∩ SVI(C, A1, A2) ∩ (A + B)–10 �= ∅, where

SVI(C, A1, A2) is the fixed point set of G := ΠC(I –μ1A1)ΠC(I –μ2A2) with 0 < μi < ( qαi
κq

)
1

q–1

for i = 1, 2. Let f : C → C be a δ-contraction with constant δ ∈ (0, 1) and let F : C → X be
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η-strongly accretive and ξ -strictly pseudocontractive with η + ξ ≥ 1. For arbitrarily given
x0 ∈ C, let {xn} be a sequence generated by

⎧
⎪⎪⎨

⎪⎪⎩

vn = ΠC(I – μ1A1)ΠC(yn – μ2A2yn),

yn = βnxn + γnΠC(I – σnF)(tnxn + (1 – tn)Wnvn) + αnf (yn),

xn+1 = δnxn + (1 – δn)JB
λn (yn – λnAyn), n ≥ 0,

(3.1)

where ΠC is the sunny nonexpansive retraction from X onto C, {Wn} is the sequence defined
by (2.1), {λn} ⊂ (0, ( qα

κq
)

1
q–1 ), {σn} ⊂ [0, 1) and {αn}, {βn}, {γn}, {δn}, {tn} ⊂ (0, 1) satisfy the

following conditions:
(i) αn + βn + γn = 1,

∑∞
n=0 αn = ∞ and limn→∞ αn = 0;

(ii) limn→∞ σn
αn

= 0, limn→∞ |γn – γn–1| = 0 and limn→∞ |βn – βn–1| = 0;
(iii) limn→∞ |tn – tn–1| = 0, lim supn→∞ γntn(1 – tn) < 1 and lim infn→∞ γn(1 – tn) > 0;
(iv) lim infn→∞ βnγn > 0, lim supn→∞ δn < 1 and lim infn→∞ δn > 0;
(v) 0 < λ̄ ≤ λn, ∀n ≥ 0 and limn→∞ λn = λ < ( qα

κq
)

1
q–1 .

Then xn → x∗ ∈ Ω , which is a unique solution to the generalized variational inequality
(GVI) 〈(I – f )x∗, J(x∗ – p)〉 ≤ 0, ∀p ∈ Ω .

Proof Put un = ΠC(yn – μ2A2yn). It is easy to see that scheme (3.1) can be rewritten as

⎧
⎨

⎩

yn = βnxn + γnΠC(I – σnF)(tnxn + (1 – tn)WnGyn) + αnf (yn),

xn+1 = δnxn + (1 – δn)Tnyn, n ≥ 0,
(3.2)

where Tn := JB
λn (I –λnA). From η+ξ ≥ 1, {σn} ⊂ [0, 1), one asserts that ΠC(I –σnF) : C → C

is a nonexpansive mapping for each n ≥ 0. Because of the situation αn + βn + γn = 1, one
knows that

αnδ + γn(1 – tn) + βn + γntn = αnδ + γn + βn = 1 – αn(1 – δ) ∀n ≥ 0.

One now shows that the sequence {xn} generated by (3.2) is well defined. Define a mapping
Fn : C → C by Fn(x) = βnxn + γnΠC(I – σnF)(tnxn + (1 – tn)WnGx) + αnf (x), ∀x ∈ C. Then

∥
∥Fn(x) – Fn(y)

∥
∥ ≤ γn

∥
∥ΠC(I – σnF)

(
tnxn + (1 – tn)WnGx

)

– ΠC(I – σnF)
(
tnxn + (1 – tn)WnGy

)∥
∥

+ αn
∥
∥f (x) – f (y)

∥
∥

≤ γn(1 – tn)‖WnGx – WnGy‖ + αnδ‖x – y‖
≤ (

1 – αn(1 – δ)
)‖x – y‖.

This guarantees the result that Fn is a contraction mapping. Hence there is a unique fixed
point yn ∈ C satisfying

yn = βnxn + γnΠC(I – σnF)
(
(1 – tn)WnGyn + tnxn

)
+ αnf (yn).

One next divides the rest of the proof into several steps.
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Step 1. Show that {xn} is bounded.
From {λn} ⊂ (0, ( qα

κq
)

1
q–1 ), one observes that Tn : C → C is a nonexpansive mapping for

each n ≥ 0. Take a fixed p ∈ Ω =
⋂∞

n=0 Fix(Sn) ∩ SVI(C, A1, A2) ∩ (A + B)–10 arbitrarily.
From Lemmas 2.4 and 2.6, we know that Wnp = p, Gp = p and Tnp = p. Moreover, using
the nonexpansivity of Wn and G yields

‖yn – p‖ ≤ βn‖xn – p‖ + γn
∥
∥ΠC(I – σnF)

(
tnxn + (1 – tn)WnGyn

)
– ΠC(I – σnF)p

∥
∥

+ γn
∥
∥ΠC(I – σnF)p – p

∥
∥ + αn

(∥
∥f (yn) – f (p)

∥
∥ +

∥
∥f (p) – p

∥
∥
)

≤ βn‖xn – p‖ + αn
(
δ‖yn – p‖ +

∥
∥f (p) – p

∥
∥
)

+ γn
[
tn‖xn – p‖

+ (1 – tn)‖WnGyn – p‖]

+ γnσn‖Fp‖
≤ (βn + γntn)‖xn – p‖ + αn

∥
∥f (p) – p

∥
∥ + σn‖Fp‖ +

(
αnδ + γn(1 – tn)

)‖yn – p‖,

which hence implies that

‖yn – p‖ ≤ αn‖f (p) – p‖ + σn‖Fp‖
1 – (αnδ + γn(1 – tn))

+
1 – (αnδ + γn(1 – tn)) – αn(1 – δ)

1 – (αnδ + γn(1 – tn))
‖xn – p‖. (3.3)

Since limn→∞ σn
αn

= 0, one may suppose σn ≤ αn. Thus, from (3.2), (3.3) and the nonexpan-
sivity of Tn, we find that

‖xn+1 – p‖ ≤ δn‖xn – p‖ + (1 – δn)‖Tnyn – p‖
≤ δn‖xn – p‖ + (1 – δn)‖yn – p‖

≤ δn‖xn – p‖ + (1 – δn)
{(

1 –
αn(1 – δ)

1 – (αnδ + γn(1 – tn))

)

‖xn – p‖

+
αn‖f (p) – p‖ + αn‖Fp‖
1 – (αnδ + γn(1 – tn))

}

=
[

1 –
(1 – δn)(1 – δ)

1 – (αnδ + γn(1 – tn))
αn

]

‖xn – p‖

+
(1 – δn)(1 – δ)

1 – (αnδ + γn(1 – tn))
αn

‖f (p) – p‖ + ‖Fp‖
1 – δ

≤ max

{‖f (p) – p‖ + ‖Fp‖
1 – δ

,‖xn – p‖
}

.

It immediately follows that {xn} is a bounded vector in set C.
Step 2. One shows that ‖xn+1 – xn‖ → 0 as n → ∞.
Indeed,

zn – zn–1 = (tn – tn–1)(xn–1 – Wn–1Gyn–1) + (1 – tn)(WnGyn – Wn–1Gyn–1)

+ tn(xn – xn–1)
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and

yn – yn–1 = (αn – αn–1)f (yn–1) + βn(xn – xn–1) + αn
(
f (yn) – f (yn–1)

)

+ (βn – βn–1)xn–1 + γn
(
ΠC(I – σnF)zn – ΠC(I – σn–1F)zn–1

)

+ (γn – γn–1)ΠC(I – σn–1F)zn–1. (3.4)

Utilizing Lemmas 2.1 and 2.4 yields

‖Tnyn – Tn–1yn–1‖
≤ ‖Tnyn – Tnyn–1‖ + ‖Tnyn–1 – Tn–1yn–1‖
≤ ∥

∥JB
λn (I – λnA)yn–1 – JB

λn–1 (I – λnA)yn–1
∥
∥ + ‖yn – yn–1‖

+
∥
∥JB

λn–1 (I – λnA)yn–1 – JB
λn–1 (I – λn–1A)yn–1

∥
∥

= ‖yn – yn–1‖ +
∥
∥
∥
∥JB

λn–1

(
λn–1

λn
I +

(

1 –
λn–1

λn

)

JB
λn

)

(I – λnA)yn–1

– JB
λn–1 (I – λnA)yn–1

∥
∥
∥
∥ +

∥
∥JB

λn–1 (I – λnA)yn–1 – JB
λn–1 (I – λn–1A)yn–1

∥
∥

≤
∣
∣
∣
∣1 –

λn–1

λn

∣
∣
∣
∣
∥
∥JB

λn (I – λnA)yn–1 – (I – λnA)yn–1
∥
∥ + ‖yn – yn–1‖

+ |λn – λn–1|‖Ayn–1‖
≤ |λn – λn–1|M1 + ‖yn – yn–1‖, (3.5)

where supn≥1{ 1
λ̄
‖JB

λn (I – λnA)yn–1 – (I – λnA)yn–1‖ + ‖Ayn–1‖} ≤ M1 for some M1 > 0. Also,
it follows from the nonexpansivity of ΠC and (I – σnF) that

∥
∥ΠC(I – σnF)zn – ΠC(I – σn–1F)zn–1

∥
∥

≤ ∥
∥ΠC(I – σnF)zn – ΠC(I – σnF)zn–1

∥
∥ +

∥
∥ΠC(I – σnF)zn–1 – ΠC(I – σn–1F)zn–1

∥
∥

≤ ‖zn – zn–1‖ + |σn – σn–1|‖Fzn–1‖
≤ tn‖xn – xn–1‖ + |tn – tn–1|‖xn–1 – Wn–1Gyn–1‖

+ (1 – tn)‖WnGyn – Wn–1Gyn–1‖ + |σn – σn–1|‖Fzn–1‖
≤ tn‖xn – xn–1‖ + |tn – tn–1|‖xn–1 – Wn–1Gyn–1‖

+ (1 – tn)
[‖yn – yn–1‖ + ‖WnGyn–1 – Wn–1Gyn–1‖

]
+ |σn – σn–1|‖Fzn–1‖.

This together with (3.4) guarantees

‖yn – yn–1‖ ≤ αnδ‖yn – yn–1‖ + |αn – αn–1|
∥
∥f (yn–1)

∥
∥ + βn‖xn – xn–1‖

+ |βn – βn–1|‖xn–1‖ + γn
{

tn‖xn – xn–1‖ + |tn – tn–1|‖xn–1 – Wn–1Gyn–1‖
+ (1 – tn)

[‖yn – yn–1‖ + ‖WnGyn–1 – Wn–1Gyn–1‖
]

+ |σn – σn–1|‖Fzn–1‖
}

+ |γn – γn–1|
∥
∥ΠC(I – σn–1F)zn–1

∥
∥
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≤ (
αnδ + γn(1 – tn)

)‖yn – yn–1‖ + (βn + γntn)‖xn – xn–1‖ +
(|αn – αn–1|

+ |βn – βn–1| + |γn – γn–1| + |σn – σn–1| + |tn – tn–1|
)
M2

+ ‖WnGyn–1 – Wn–1Gyn–1‖,

where supn≥0{‖xn‖+‖f (yn)‖+‖WnGyn‖+‖Fzn‖+‖ΠC(I –σnF)zn‖} ≤ M2 for some M2 > 0.
Then

‖yn – yn–1‖ ≤ βn + γntn

1 – (αnδ + γn(1 – tn))
‖xn – xn–1‖

+
1

1 – (αnδ + γn(1 – tn))
[(|αn – αn–1| + |βn – βn–1|

+ |γn – γn–1| + |σn – σn–1| + |tn – tn–1|
)
M2 + ‖WnGyn–1 – Wn–1Gyn–1‖

]

=
(

1 –
αn(1 – δ)

1 – (αnδ + γn(1 – tn))

)

‖xn – xn–1‖

+
1

1 – (αnδ + γn(1 – tn))
[(|αn – αn–1| + |βn – βn–1|

+ |γn – γn–1| + |σn – σn–1| + |tn – tn–1|
)
M2 + ‖WnGyn–1 – Wn–1Gyn–1‖

]

≤ ‖xn – xn–1‖
+

1
1 – (αnδ + γn(1 – tn))

[(|αn – αn–1| + |βn – βn–1| + |γn – γn–1|

+ |σn – σn–1| + |tn – tn–1|
)
M2 + ‖WnGyn–1 – Wn–1Gyn–1‖

]
,

which together with (3.5) asserts that

‖Tnyn – Tn–1yn–1‖ – ‖xn – xn–1‖ ≤ 1
1 – (αnδ + γn(1 – tn))

[(|αn – αn–1| + |βn – βn–1|

+ |γn – γn–1| + |σn – σn–1| + |tn – tn–1|
)
M2

+ ‖WnGyn–1 – Wn–1Gyn–1‖
]

+ |λn – λn–1|M1.

Since limn→∞ supx∈D ‖Wnx – Wx‖ = 0 on bounded subset D = {Gyn : n ≥ 0} of C, one
knows that

lim
n→∞‖WnGyn–1 – Wn–1Gyn–1‖ = 0.

Note that limn→∞ αn = 0, limn→∞ σn
αn

= 0, limn→∞ λn = λ and lim infn→∞(1 – (αnδ + γn(1 –
tn))) > 0. Thus, from |βn – βn–1| → 0, |γn – γn–1| → 0 and |tn – tn–1| → 0 as n → ∞ (due to
conditions (ii), (iii)), we get

lim sup
n→∞

(‖Tnyn – Tn–1yn–1‖ – ‖xn – xn–1‖
) ≤ 0.

So it follows from condition (iv) and Lemma 2.9 that limn→∞ ‖Tnyn – xn‖ = 0. Hence

lim
n→∞‖xn+1 – xn‖ = lim

n→∞(1 – δn)‖Tnyn – xn‖ = 0. (3.6)
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Step 3. One shows that ‖xn –yn‖ → 0 and ‖xn –Gxn‖ → 0 as n → ∞. Indeed, for simplicity,
set p̄ := ΠC(I – μ2A2)p. Note that un = ΠC(I – μ2A2)yn and vn = ΠC(I – μ1A1)un. Then
vn = Gyn. An application of Lemma 2.4 yields

‖un – p̄‖q ≤ ∥
∥(I – μ2A2)yn – (I – μ2A2)p

∥
∥q

≤ ‖yn – p‖q – μ2
(
qα2 – κqμ

q–1
2

)‖A2yn – A2p‖q. (3.7)

One also has

‖vn – p‖q ≤ ‖un – p̄‖q – μ1
(
qα1 – κqμ

q–1
1

)‖A1un – A1p̄‖q. (3.8)

By using (3.7) and (3.8), one reaches

‖vn – p‖q ≤ ‖yn – p‖q – μ2
(
qα2 – κqμ

q–1
2

)‖A2yn – A2p‖q

– μ1
(
qα1 – κqμ

q–1
1

)‖A1un – A1p̄‖q. (3.9)

Equations (3.2) and (3.9) further guarantee that ‖zn – p‖q ≤ tn‖xn – p‖q + (1 – tn)‖vn – p‖q

and

∥
∥ΠC(I – σnF)zn – p

∥
∥q ≤ ‖zn – p – σnFzn‖q

≤ ‖zn – p‖q – qσn
〈
Fzn, Jq(zn – p – σnFzn)

〉

≤ ‖zn – p‖q + qσn‖Fzn‖‖zn – p – σnFzn‖q–1.

Thus

‖yn – p‖q

≤ βn‖xn – p‖q + γn
∥
∥ΠC(I – σnF)zn – p

∥
∥q + qαn

〈
f (p) – p, Jq(yn – p)

〉

+ αn
∥
∥f (yn) – f (p)

∥
∥q

≤ βn‖xn – p‖q + γn
[‖zn – p‖q + qσn‖Fzn‖‖zn – p – σnFzn‖q–1]

+ qαn
〈
f (p) – p, Jq(yn – p)

〉
+ αn

∥
∥f (yn) – f (p)

∥
∥q

≤ βn‖xn – p‖q + αnδ‖yn – p‖q + γn
[
tn‖xn – p‖q + (1 – tn)‖vn – p‖q

+ qσn‖Fzn‖‖zn – p – σnFzn‖q–1] + qαn
∥
∥f (p) – p

∥
∥‖yn – p‖q–1

≤ (βn + γntn)‖xn – p‖q + αnδ‖yn – p‖q + γn(1 – tn)
[‖yn – p‖q

– μ2
(
qα2 – κqμ

q–1
2

)‖A2yn – A2p‖q – μ1
(
qα1 – κqμ

q–1
1

)‖A1un – A1p̄‖q]

+ qσn‖Fzn‖‖zn – p – σnFzn‖q–1 + qαn
∥
∥f (p) – p

∥
∥‖yn – p‖q–1,

which immediately yields

‖yn – p‖q ≤
(

1 –
αn(1 – δ)

1 – (αnδ + γn(1 – tn))

)

‖xn – p‖q –
γn(1 – tn)

1 – (αnδ + γn(1 – tn))

× [
μ2

(
qα2 – κqμ

q–1
2

)‖A2yn – A2p‖q + μ1
(
qα1 – κqμ

q–1
1

)‖A1un – A1p̄‖q]
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+
qαn

1 – (αnδ + γn(1 – tn))
[‖Fzn‖‖zn – p – σnFzn‖q–1

+
∥
∥f (p) – p

∥
∥‖yn – p‖q–1].

On the other hand, (3.2) implies

‖xn+1 – p‖q

≤ (1 – δn)‖yn – p‖q + δn‖xn – p‖q

≤ δn‖xn – p‖q + (1 – δn)
{(

1 –
αn(1 – δ)

1 – (αnδ + γn(1 – tn))

)

‖xn – p‖q

–
γn(1 – tn)

1 – (αnδ + γn(1 – tn))

× [
μ2

(
qα2 – κqμ

q–1
2

)‖A2yn – A2p‖q + μ1
(
qα1 – κqμ

q–1
1

)‖A1un – A1p̄‖q]

+
qαn

1 – (αnδ + γn(1 – tn))
[‖Fzn‖‖zn – p – σnFzn‖q–1 +

∥
∥f (p) – p

∥
∥‖yn – p‖q–1]

}

=
(

1 –
αn(1 – δn)(1 – δ)

1 – (αnδ + γn(1 – tn))

)

‖xn – p‖q –
γn(1 – δn)(1 – tn)

1 – (αnδ + γn(1 – tn))
[
μ2

(
qα2 – κqμ

q–1
2

)

× ‖A2yn – A2p‖q + μ1
(
qα1 – κqμ

q–1
1

)‖A1un – A1p̄‖q]

+
q(1 – δn)αn

1 – (αnδ + γn(1 – tn))
[‖Fzn‖‖zn – p – σnFzn‖q–1 +

∥
∥f (p) – p

∥
∥‖yn – p‖q–1]

≤ ‖xn – p‖q –
(1 – δn)γn(1 – tn)

1 – (αnδ + γn(1 – tn))
[
μ2

(
qα2 – κqμ

q–1
2

)‖A2yn – A2p‖q

+ μ1
(
qα1 – κqμ

q–1
1

)‖A1un – A1p̄‖q] + αnM3, (3.10)

where

sup
n≥0

{
q(1 – δn)

1 – (αnδ + γn(1 – tn))
[‖Fzn‖‖zn – p – σnFzn‖q–1 +

∥
∥f (p) – p

∥
∥‖yn – p‖q–1]

}

≤ M3

for some M3 > 0. So it follows from (3.10) that

(1 – δn)γn(1 – tn)
1 – (αnδ + γn(1 – tn))

[
μ2

(
qα2 – κqμ

q–1
2

)‖A2yn – A2p‖q

+ μ1
(
qα1 – κqμ

q–1
1

)‖A1un – A1p̄‖q]

≤ ‖xn – p‖q – ‖xn+1 – p‖q + αnM3

≤ q‖xn – xn+1‖‖xn+1 – p‖q–1 + κq‖xn – xn+1‖q + αnM3.

Thanks to 0 < μi < ( qαi
κq

)
1

q–1 for i = 1, 2, lim infn→∞ γn(1 – tn) > 0, lim infn→∞(1 – δn) > 0 and
limn→∞ αn = 0, one asserts

lim
n→∞‖A2yn – A2p‖ = 0 and lim

n→∞‖A1un – A1p̄‖ = 0. (3.11)
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This further implies

‖un – p̄‖2 ≤ 〈
(I – μ2A2)yn – (I – μ2A2)p, J(un – p̄)

〉

=
〈
yn – p, J(un – p̄)

〉
+ μ2

〈
A2p – A2yn, J(un – p̄)

〉

≤ μ2‖A2p – A2yn‖‖un – p̄‖

+
1
2
[‖yn – p‖2 + ‖un – p̄‖2 – g1

(∥
∥yn – un – (p – p̄)

∥
∥
)]

,

from which one concludes

‖un – p̄‖2 ≤ ‖yn – p‖2 – g1
(∥
∥yn – un – (p – p̄)

∥
∥
)

+ 2μ2‖A2p – A2yn‖‖un – p̄‖. (3.12)

One also derives that

‖vn – p‖2 ≤ ‖un – p̄‖2 – g2
(∥
∥un – vn + (p – p̄)

∥
∥
)

+ 2μ1‖A1p̄ – A1un‖‖vn – p‖. (3.13)

Employing (3.12) and (3.13), one arrives at

‖vn – p‖2 ≤ ‖yn – p‖2 – g1
(∥
∥yn – un – (p – p̄)

∥
∥
)

– g2
(∥
∥un – vn + (p – p̄)

∥
∥
)

+ 2μ2‖A2p – A2yn‖‖un – p̄‖ + 2μ1‖A1p̄ – A1un‖‖vn – p‖. (3.14)

Utilizing Lemma 2.8, we obtain from (3.2) and (3.14)

‖zn – p‖2 ≤ tn‖xn – p‖2 + (1 – tn)‖WnGyn – p‖2 – tn(1 – tn)g3
(‖xn – WnGyn‖

)

≤ tn‖xn – p‖2 + (1 – tn)‖vn – p‖2 – tn(1 – tn)g3
(‖xn – WnGyn‖

)
,

and hence

‖yn – p‖2 ≤ βn‖xn – p‖2 + αn
∥
∥f (yn) – f (p)

∥
∥2 + γn

∥
∥ΠC(I – σnF)zn – p

∥
∥2

– βnγng4
(∥
∥xn – ΠC(I – σnF)zn

∥
∥
)

+ 2αn
〈
f (p) – p, J(yn – p)

〉

≤ βn‖xn – p‖2 + αnδ‖yn – p‖2 + γn
[
tn‖xn – p‖2 + (1 – tn)‖vn – p‖2

– tn(1 – tn)g3
(‖xn – WnGyn‖

)
+ 2σn‖Fzn‖‖zn – p – σnFzn‖

]

+ 2αn
∥
∥f (p) – p

∥
∥‖yn – p‖ – βnγng4

(∥
∥xn – ΠC(I – σnF)zn

∥
∥
)

≤ βn‖xn – p‖2 + αnδ‖yn – p‖2 + γn
{

tn‖xn – p‖2 + (1 – tn)
[‖yn – p‖2

– g1
(∥
∥yn – un – (p – p̄)

∥
∥
)

– g2
(∥
∥un – vn + (p – p̄)

∥
∥
)

+ 2μ2‖A2p – A2yn‖‖un – p̄‖ + 2μ1‖A1p̄ – A1un‖‖vn – p‖]

– tn(1 – tn)g3
(‖xn – WnGyn‖

)
+ 2σn‖Fzn‖‖zn – p – σnFzn‖

}

+ 2αn
∥
∥f (p) – p

∥
∥‖yn – p‖ – βnγng4

(∥
∥xn – ΠC(I – σnF)zn

∥
∥
)

≤ (βn + γntn)‖xn – p‖2 +
(
αnδ + γn(1 – tn)

)‖yn – p‖2

– γn(1 – tn)
[
g1

(∥
∥yn – un – (p – p̄)

∥
∥
)

+ g2
(∥
∥un – vn + (p – p̄)

∥
∥
)]
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+ 2μ2‖A2p – A2yn‖‖un – p̄‖ + 2μ1‖A1p̄ – A1un‖‖vn – p‖
+ 2σn‖Fzn‖‖zn – p – σnFzn‖ + 2αn

∥
∥f (p) – p

∥
∥‖yn – p‖

– γntn(1 – tn)g3
(‖xn – WnGyn‖

)
– βnγng4

(∥
∥xn – ΠC(I – σnF)zn

∥
∥
)
,

which immediately yields

‖yn – p‖2 ≤
(

1 –
αn(1 – δ)

1 – (αnδ + γn(1 – tn))

)

‖xn – p‖2

–
γn(1 – tn)

1 – (αnδ + γn(1 – tn))
[
g1

(∥
∥yn – un – (p – p̄)

∥
∥
)

+ g2
(∥
∥un – vn + (p – p̄)

∥
∥
)]

+
2

1 – (αnδ + γn(1 – tn))
[
μ2‖A2p – A2yn‖‖un – p̄‖

+ μ1‖A1p̄ – A1un‖‖vn – p‖ + αn‖Fzn‖‖zn – p – σnFzn‖
+ αn

∥
∥f (p) – p

∥
∥‖yn – p‖]

–
1

1 – (αnδ + γn(1 – tn))
[
γntn(1 – tn)g3

(‖xn – WnGyn‖
)

+ βnγng4
(∥
∥xn – ΠC(I – σnF)zn

∥
∥
)]

.

This guarantees

‖xn+1 – p‖2 ≤ δn‖xn – p‖2 + (1 – δn)
{(

1 –
αn(1 – δ)

1 – (αnδ + γn(1 – tn))

)

‖xn – p‖2

–
γn(1 – tn)

1 – (αnδ + γn(1 – tn))
[
g1

(∥
∥yn – un – (p – p̄)

∥
∥
)

+ g2
(∥
∥un – vn + (p – p̄)

∥
∥
)]

+
2

1 – (αnδ + γn(1 – tn))
[
μ2‖A2p – A2yn‖‖un – p̄‖

+ μ1‖A1p̄ – A1un‖‖vn – p‖
+ αn‖Fzn‖‖zn – p – σnFzn‖ + αn

∥
∥f (p) – p

∥
∥‖yn – p‖]

–
1

1 – (αnδ + γn(1 – tn))

× [
γntn(1 – tn)g3

(‖xn – WnGyn‖
)

+ βnγng4
(∥
∥xn – ΠC(I – σnF)zn

∥
∥
)]

}

≤
(

1 –
αn(1 – δn)(1 – δ)

1 – (αnδ + γn(1 – tn))

)

‖xn – p‖2

–
1 – δn

1 – (αnδ + γn(1 – tn))
[
γn(1 – tn)

(
g1

(∥
∥yn – un – (p – p̄)

∥
∥
)

+ g2
(∥
∥un – vn + (p – p̄)

∥
∥
))

+ γntn(1 – tn)g3
(‖xn – WnGyn‖

)

+ βnγng4
(∥
∥xn – ΠC(I – σnF)zn

∥
∥
)]

+
2

1 – (αnδ + γn(1 – tn))
[
μ2‖A2p – A2yn‖‖un – p̄‖
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+ μ1‖A1p̄ – A1un‖‖vn – p‖ + αn‖Fzn‖‖zn – p – σnFzn‖
+ αn

∥
∥f (p) – p

∥
∥‖yn – p‖]

≤ ‖xn – p‖2 –
1 – δn

1 – (αnδ + γn(1 – tn))
[
γn(1 – tn)

(
g1

(∥
∥yn – un – (p – p̄)

∥
∥
)

+ g2
(∥
∥un – vn + (p – p̄)

∥
∥
))

+ γntn(1 – tn)g3
(‖xn – WnGyn‖

)

+ βnγng4
(∥
∥xn – ΠC(I – σnF)zn

∥
∥
)]

+
2

1 – (αnδ + γn(1 – tn))
[
μ2‖A2p – A2yn‖‖un – p̄‖

+ μ1‖A1p̄ – A1un‖‖vn – p‖ + αn‖Fzn‖‖zn – p

– σnFzn‖ + αn
∥
∥f (p) – p

∥
∥‖yn – p‖],

which immediately yields

1 – δn

1 – (αnδ + γn(1 – tn))
[
γn(1 – tn)

(
g1

(∥
∥yn – un – (p – p̄)

∥
∥
)

+ g2
(∥
∥un – vn + (p – p̄)

∥
∥
))

+ γntn(1 – tn)g3
(‖xn – WnGyn‖

)
+ βnγng4

(∥
∥xn – ΠC(I – σnF)zn

∥
∥
)]

≤ ‖xn – p‖2 – ‖xn+1 – p‖2 +
2

1 – (αnδ + γn(1 – tn))
[
μ2‖A2p – A2yn‖‖un – p̄‖

+ μ1‖A1p̄ – A1un‖‖vn – p‖ + αn‖Fzn‖‖zn – p – σnFzn‖ + αn
∥
∥f (p) – p

∥
∥‖yn – p‖]

≤ (‖xn – p‖ + ‖xn+1 – p‖)‖xn – xn+1‖

+
2

1 – (αnδ + γn(1 – tn))
[
μ2‖A2p – A2yn‖‖un – p̄‖

+ μ1‖A1p̄ – A1un‖‖vn – p‖ + αn‖Fzn‖‖zn – p – σnFzn‖ + αn
∥
∥f (p) – p

∥
∥‖yn – p‖].

Utilizing (3.6) and (3.11), we asserts from lim infn→∞(1 – δn) > 0, lim infn→∞ γntn(1 – tn) >
0 and lim infn→∞ βnγn > 0 that limn→∞ g1(‖yn – un – (p – p̄)‖) = 0, limn→∞ g2(‖un – vn +
(p – p̄)‖) = 0, limn→∞ g3(‖xn – WnGyn‖) = 0 and limn→∞ g4(‖xn – ΠC(I – σnF)zn‖) = 0. So,
limn→∞ ‖yn – un – (p – p̄)‖ = limn→∞ ‖un – vn + (p – p̄)‖ = 0 and

lim
n→∞‖xn – WnGyn‖ = lim

n→∞
∥
∥xn – ΠC(I – σnF)zn

∥
∥ = 0. (3.15)

Furthermore, one has

‖yn – Gyn‖ = ‖yn – vn‖
≤ ∥

∥yn – un – (p – p̄)
∥
∥ +

∥
∥un – vn + (p – p̄)

∥
∥ → 0 (n → ∞). (3.16)

Since yn – xn = αn(f (yn) – xn) + γn(ΠC(I – σnF)zn – xn), we see from (3.15) that ‖yn – xn‖ ≤
‖ΠC(I – σnF)zn – xn‖ + αn‖xn – f (yn)‖ → 0 (n → ∞). With the aid of (3.16), one asserts

‖xn – Gxn‖ ≤ ‖xn – yn‖ + ‖yn – Gyn‖ + ‖Gyn – Gxn‖
≤ 2‖xn – yn‖ + ‖yn – Gyn‖ → 0 (n → ∞). (3.17)
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Step 4. One shows that ‖xn – Wxn‖ → 0, ‖xn – Tλxn‖ → 0 and ‖xn – Γ xn‖ → 0 as n → ∞,
where Wx = limn→∞ Wnx, ∀x ∈ C, Tλ = JB

λ (I – λA) and Γ x = θ1Wx + θ2Gx + θ3Tλx, ∀x ∈ C
for constants θ1, θ2, θ3 ∈ (0, 1) satisfying θ1 + θ2 + θ3 = 1. Indeed, utilizing (3.15) and (3.17),
one deduces that

‖Wxn – xn‖ ≤ ‖Wxn – WGxn‖ + ‖WGxn – WnGxn‖ + ‖WnGxn – WnGyn‖
+ ‖WnGyn – xn‖

≤ ‖xn – Gxn‖ + ‖WGxn – WnGxn‖ + ‖xn – yn‖
+ ‖WnGyn – xn‖ → 0 (n → ∞). (3.18)

Furthermore, since xn+1 – xn + xn – yn = δn(xn – yn) + (1 – δn)(Tnyn – yn), from xn – xn+1 → 0
and xn – yn → 0, we have

‖Tnyn – yn‖ =
1

1 – δn

∥
∥xn+1 – xn + (1 – δn)(xn – yn)

∥
∥

≤ ‖xn+1 – xn‖ + ‖xn – yn‖
1 – δn

→ 0 (n → ∞).

Also, utilizing similar arguments to those of (3.5), we obtain

‖Tnyn – Tλyn‖ ≤
∣
∣
∣
∣1 –

λ

λn

∣
∣
∣
∣
∥
∥JB

λn (I – λnA)yn – (I – λnA)yn
∥
∥ + |λn – λ|‖Ayn‖

=
∣
∣
∣
∣1 –

λ

λn

∣
∣
∣
∣
∥
∥Tnyn – (I – λnA)yn

∥
∥ + |λn – λ|‖Ayn‖.

Since limn→∞ λn = λ and the sequences {yn}, {Tnyn}, {Ayn} are bounded, we get

lim
n→∞‖Tnyn – Tλyn‖ = 0. (3.19)

Taking into account condition (v), i.e., 0 < λ̄ ≤ λn, ∀n ≥ 0 and limn→∞ λn = λ, where
κqλ

q–1 < qα, we know that 0 < κqλ̄
q–1 ≤ κqλ

q–1 < qα. So Fix(Tλ) = (A + B)–10 and Tλ : C →
C is nonexpansive. Therefore, we infer from (3.19) and xn – yn → 0 that

‖Tλxn – xn‖ ≤ ‖Tλxn – Tλyn‖ + ‖Tλyn – Tnyn‖ + ‖Tnyn – yn‖ + ‖yn – xn‖
≤ 2‖xn – yn‖ + ‖Tλyn – Tnyn‖ + ‖Tnyn – yn‖ → 0 (n → ∞). (3.20)

One now defines the mapping Γ x = θ1Wx + θ2Gx + θ3Tλx, ∀x ∈ C with constants
θ1, θ2, θ3 ∈ (0, 1) satisfying θ1 + θ2 + θ3 = 1. One gets Fix(Γ ) = Fix(W ) ∩ Fix(G) ∩
Fix(Tλ) = Ω . Observe that

‖Γ xn – xn‖ ≤ θ1‖xn – Wxn‖ + θ2‖xn – Gxn‖ + θ3‖xn – Tλxn‖. (3.21)

From (3.17), (3.18), (3.20) and (3.21), one gets

lim
n→∞‖Γ xn – xn‖ = 0. (3.22)
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Step 5. Letting xt is the unique fixed point of x �→ (1 – t)Γ x + tf (x) for each t ∈ (0, 1), one
shows that

lim sup
n→∞

〈
f
(
x∗) – x∗, J

(
xn – x∗)〉 ≤ 0, (3.23)

where x∗ = s- limn→∞ xt . By Lemmas 2.3 and 2.5, one asserts

‖xt – xn‖2 ≤ 2t
〈
f (xt) – xn, J(xt – xn)

〉
+ (1 – t)2‖Γ xt – xn‖2

≤ ‖Γ xn – xn‖)2 + 2t
〈
f (xt) – xn, J(xt – xn)

〉
+ (1 – t)2(‖Γ xt – Γ xn‖

≤ (
1 – 2t + t2)‖xt – xn‖2 + fn(t) + 2t

〈
f (xt) – xt , J(xt – xn)

〉

+ 2t‖xt – xn‖2, (3.24)

where

fn(t) = (1 – t)2‖xn – Γ xn‖
(
2‖xt – xn‖ + ‖xn – Γ xn‖

) → 0 (n → ∞). (3.25)

It follows from (3.24) that

2
〈
xt – f (xt), J(xt – xn)

〉 ≤ t‖xt – xn‖2 +
fn(t)

t
. (3.26)

Letting n → ∞ and employing (3.25), one derives

2 lim sup
n→∞

〈
xt – f (xt), J(xt – xn)

〉 ≤ tM4, (3.27)

where sup{‖xt – xn‖2 : t ∈ (0, 1) and n ≥ 0} ≤ M4 for some M4 > 0. Taking t → 0 in (3.27),
we have

lim sup
t→0

lim sup
n→∞

〈
xt – f (xt), J(xt – xn)

〉 ≤ 0.

On the other hand, we have

〈
f
(
x∗) – x∗, J

(
xn – x∗)〉

=
〈
f
(
x∗) – x∗, J

(
xn – x∗)〉 –

〈
f
(
x∗) – x∗, J(xn – xt)

〉

+
〈
f
(
x∗) – x∗, J(xn – xt)

〉
–

〈
f
(
x∗) – xt , J(xn – xt)

〉

+
〈
f
(
x∗) – xt , J(xn – xt)

〉

–
〈
f (xt) – xt , J(xn – xt)

〉
+

〈
f (xt) – xt , J(xn – xt)

〉

=
〈
f
(
x∗) – x∗, J

(
xn – x∗) – J(xn – xt)

〉
+

〈
xt – x∗, J(xn – xt)

〉

+
〈
f
(
x∗) – f (xt), J(xn – xt)

〉
+

〈
f (xt) – xt , J(xn – xt)

〉
.
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So, it follows that

lim sup
n→∞

〈
f
(
x∗) – x∗, J

(
xn – x∗)〉

≤ lim sup
n→∞

〈
f
(
x∗) – x∗, J

(
xn – x∗) – J(xn – xt)

〉

+ (1 + δ)
∥
∥xt – x∗∥∥ lim sup

n→∞
‖xn – xt‖ + lim sup

n→∞
〈
f (xt) – xt , J(xn – xt)

〉
.

Taking into account that xt → x∗ as t → 0, we have

lim sup
n→∞

〈
f
(
x∗) – x∗, J

(
xn – x∗)〉

= lim sup
t→0

lim sup
n→∞

〈
f
(
x∗) – x∗, J

(
xn – x∗)〉

≤ lim sup
t→0

lim sup
n→∞

〈
f
(
x∗) – x∗, J

(
xn – x∗) – J(xn – xt)

〉
. (3.28)

Thanks to the space (q-uniformly smooth), one knows that the two limits can be inter-
changeable. Equation (3.23) therefore holds. Note that xn – yn → 0 implies J(yn – x∗) –
J(xn – x∗) → 0. Thus, we conclude from (3.23) that

lim sup
n→∞

〈
f
(
x∗) – x∗, J

(
yn – x∗)〉

= lim sup
n→∞

{〈
f
(
x∗) – x∗, J

(
xn – x∗)〉 +

〈
f
(
x∗) – x∗, J

(
yn – x∗) – J

(
xn – x∗)〉}

= lim sup
n→∞

〈
f
(
x∗) – x∗, J

(
xn – x∗)〉 ≤ 0. (3.29)

Step 6. One shows ‖xn – x∗‖ → 0 as n → ∞.

∥
∥yn – x∗∥∥2 =

∥
∥αn

(
f (yn) – f

(
x∗)) + βn

(
xn – x∗) + γn

(
ΠC(I – σnF)zn – x∗)

+ αn
(
f
(
x∗) – x∗)∥∥2

≤ αn
∥
∥f (yn) – f

(
x∗)∥∥2 + βn

∥
∥xn – x∗∥∥2 + γn

[∥
∥zn – x∗∥∥2

+ 2σn‖Fzn‖
∥
∥zn – x∗ – σnFzn

∥
∥
]

+ 2αn
〈
f
(
x∗) – x∗, J

(
yn – x∗)〉

≤ αnδ
∥
∥yn – x∗∥∥2 + βn

∥
∥xn – x∗∥∥2 + γn

(
tn

∥
∥xn – x∗∥∥2 + (1 – tn)

∥
∥yn – x∗∥∥2)

+ 2σn‖Fzn‖
∥
∥zn – x∗ – σnFzn

∥
∥ + 2αn

〈
f
(
x∗) – x∗, J

(
yn – x∗)〉,

which hence yields

∥
∥yn – x∗∥∥2 ≤

(

1 –
αn(1 – δ)

1 – (αnδ + γn(1 – tn))

)
∥
∥xn – x∗∥∥2 +

2αn

1 – (αnδ + γn(1 – tn))

×
[

σn

αn
‖Fzn‖

∥
∥zn – x∗ – σnFzn

∥
∥ +

〈
f
(
x∗) – x∗, J

(
yn – x∗)〉

]

.
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Due to the convexity of ‖ · ‖2, and the nonexpansivity of Tn, one asserts

∥
∥xn+1 – x∗∥∥2 ≤ δn

∥
∥xn – x∗∥∥2 + (1 – δn)

∥
∥yn – x∗∥∥2

≤ δn
∥
∥xn – x∗∥∥2 + (1 – δn)

{(

1 –
αn(1 – δ)

1 – (αnδ + γn(1 – tn))

)
∥
∥xn – x∗∥∥2

+
2αn

1 – (αnδ + γn(1 – tn))

×
[

σn

αn
‖Fzn‖

∥
∥zn – x∗ – σnFzn

∥
∥ +

〈
f
(
x∗) – x∗, J

(
yn – x∗)〉

]}

=
[

1 –
αn(1 – δn)(1 – δ)

1 – (αnδ + γn(1 – tn))

]
∥
∥xn – x∗∥∥2 +

αn(1 – δn)(1 – δ)
1 – (αnδ + γn(1 – tn))

× 2[ σn
αn

‖Fzn‖‖zn – x∗ – σnFzn‖ + 〈f (x∗) – x∗, J(yn – x∗)〉]
1 – δ

. (3.30)

Since lim infn→∞ (1–δn)(1–δ)
1–(αnδ+γn(1–tn)) > 0, { αn(1–δ)

1–(αnδ+γn(1–tn)) } ⊂ (0, 1) and
∑∞

n=0 αn = ∞, we know

{
αn(1 – δn)(1 – δ)

1 – (αnδ + γn(1 – tn))

}

⊂ (0, 1)

and

∞∑

n=0

αn(1 – δn)(1 – δ)
1 – (αnδ + γn(1 – tn))

= ∞.

Utilizing (3.29) and Lemma 2.7, we conclude from (3.30) that ‖xn – x∗‖ → 0 as n → ∞.
This completes the proof. �

Remark 3.1 Comparing with the corresponding results in and Chang et al. [8], we have
the following aspects. The problem of solving a HVI with the constraints of SGVIs (1.1)
and a countable family of nonexpansive mappings in [8, Theorem 3.1] is extended to
our problem of solving a HVI with the constraints of SGVIs (1.1), a variational inclu-
sion (VI) and a countable family of nonexpansive mappings. The modified relaxed extra-
gradient method in[8, Theorem 3.1] is extended to our composite extragradient implicit
rule (3.1). That is, two iterative steps yn = (1 – βn)xn + βnGxn and xn+1 = ΠC[γnxn + ((1 –
γn)I – αnρF)Snyn + αnγ f (xn)] in [8, Theorem 3.1] are extended to our two iterative steps
yn = βnxn + γnΠC(I – σnF)(tnxn + (1 – tn)WnGyn) + αnf (yn) and xn+1 = δnxn + (1 – δn)Tnyn,
where Tn = JB

λn (I – λnA).
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