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Abstract
We consider equilibrium problems for a cracked composite plate with a thin
cylindrical rigid inclusion. Deformation of an elastic matrix is described by the
Timoshenko model. The plate is assumed to have a through crack that does not
touch the rigid inclusion. In order to describe mutual nonpenetration of the crack
faces we impose a boundary condition in the form of inequality on the crack curve.
For a family of appropriate variational problems, we analyze the dependence of their
solutions on the location of the rigid inclusion. We formulate an optimal control
problem with a cost functional defined by an arbitrary continuous functional on the
solution space, while the location parameter of inclusion is chosen as the control
parameter. The existence of a solution to the optimal control problem and a
continuous dependence of the solutions in a suitable Sobolev space with respect to
the location parameter are proved.

Keywords: Variational inequality; Optimal control problem; Nonpenetration;
Nonlinear boundary conditions; Crack; Rigid inclusion

1 Introduction
Mathematical models and methods related to analysis of the mechanical properties and
behavior of composite materials are sought to provide optimal engineering properties of
composites [1–31]. The presence of heterogeneity in the form of microcracks, cracks, and
inclusions in loaded structures, can lead to significant local stresses, which in turn, can
cause their destruction. In this regard, the issues of justification and examination of math-
ematical models describing the mechanical influence of defects on stress–strain state of
composites are very important.

From a mathematical point of view, the study of composite solids with cracks are of-
ten associated with significant difficulties due to the presence of irregular components of
boundaries. While studying the problems of the theory of cracks, it is appropriate to take
into account the possibility of contact mechanical interaction between the crack faces,
which, in particular, leads to the need to use of boundary conditions of the Signorini type.
These conditions have the form of inequalities and describe the nonpenetration of the op-
posite faces of the crack. Nonlinearity of such problems of the theory of cracks leads to
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the use of variational formulations. This variational approach in studying the nonlinear
problems of the theory of cracks began to be actively elaborated since the 1990s [32–35].
Among the studies in this field let us note the recently developed nonlinear models de-
scribing the equilibrium state of composite solids having cracks on the interfacial bound-
ary of inclusions. For the mentioned models, the carrier matrix is assumed to be elastic,
whereas the inclusion is either absolutely rigid (for instance, see [8–10, 13–18, 20, 23]) or
elastic and described by other constitutive relations (in this case, we have the so-called
junction problems [26–31]). The optimal control problems for the shape of the bodies
with with cracks and rigid inclusions are studied, for example, in [10–12, 15, 17, 18, 21, 22].
Employing the shape-topological sensitivity analysis [36], the existence of a solution of an
optimal control problem related to the best choice of the location and shape of small in-
clusions was shown in [37]. The existence of an optimal location of a thin rigid inclusion
for a two-dimensional model describing equilibrium of a cracked body is proved in [11].

In this article, under study is a model which describes equilibrium state of a composite
plate consisting of an elastic carrier matrix, a thin rigid cylindrical inclusion, and a crack
at a certain distance from the inclusion. The plate is supposed to be fixed on the external
boundary, whereas, on the crack curve, the nonpenetration conditions on the crack faces
are imposed. In the framework of this model, we consider a family of problems depend-
ing on a parameter t ∈ [0, T]. Each value of the parameter t corresponds to one certain
location of a thin rigid inclusion of fixed shape. The optimal control problem analyzed in
this paper consists in the best choice of location parameter t. A cost functional is defined
using an arbitrary continuous functional in the suitable Sobolev space. As our main result,
the existence of a solution to the optimal control problem is proved.

2 A family of equilibrium problems
Let Ω ⊂ R

2 be a bounded domain with a smooth boundary Γ ∈ C0,1. Suppose that a
smooth curve γ ⊂ Ω without self-intersections has the following properties: γ̄ ⊂ Ω , it can
be extended to some curve Σ dividing Ω into two subdomains Ω1 and Ω2 with Lipschitz
boundaries ∂Ω1 and ∂Ω2 where meas(Γ ∩ ∂Ωi) > 0, i = 1, 2. This condition is sufficient
for Korn’s inequality to hold in the non-Lipschitz domain Ωγ = Ω \ γ̄ . Let (0, x0

2) be the
point which is the left end of the curve Ξ , Ξ ⊂ Ωγ , defined as the graph of the function
g(t) ∈ C1[0, T] (see Fig. 1). Let us also consider the family of curves βt , t ∈ [0, T] defined
by the relations

βt =
{

x +
(
t, g(t)

) | x ∈ β̂
}

, t ∈ C[0, T],

where β̂ = {(x1, x2) | x2 = λ(x1), –a ≤ x1 ≤ 0}, λ ∈ C1[–a, 0], 0 < λ′(t), λ(0) = 0.
For the mentioned geometrical objects we assume that the following assumption is ful-

filled.

Assumption The curve γ can be extended to a simple closed curve Σ that bounds a
domain O, O ⊂ Ω . In addition,

(1) we have the inclusion βT
0 ⊂ O;

(2) the boundaries of the domains Ω \ O and O \ β
μ
θ are Lipschitz for all μ and θ such

that 0 ≤ θ < μ ≤ T . The sets βT
0 and β

μ
θ are defined by the relations

β
μ
θ =

⋃

t∈[θ ,μ]

βt , 0 ≤ θ < μ ≤ T .
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Figure 1 Geometry of the problem

We define a three-dimensional Cartesian space {x1, x2, z} such that the set {Ωγ } × {0} ⊂
R

3 corresponds to the middle plane of the plate. We assume that the thickness 2h of the
plate is constant and is equal to two, i.e. h = 1. The curve γ defines a crack (a cut) in
the plate. This means that the cylindrical surface of the through crack specified by the
relations x = (x1, x2) ∈ γ , –1 ≤ z ≤ 1 where |z| is the distance to the middle plane. For a
fixed parameter t ∈ [0, T] we suppose that the thin rigid inclusion is specified by the set
βt × [–1; 1]. The elastic part of the plate corresponds to the domain Ωγ \ β t . Depending
on the direction of the normal ν = (ν1,ν2) to γ we will speak about a positive face γ + or a
negative face γ – of the curve γ . The jump [v] of the function v on the curve γ is found by
the formula [v] = v|γ + – v|γ – .

Denote by (W , w) the vector of mid-plane displacements (x ∈ Ωγ ), where W = (w1, w2)
are the displacements in the plane and {x1, x2} and w are the displacements along the axis z.
We denote the angles of rotation of a normal fiber by ψ = ψ(x) = (ψ1,ψ2) (x ∈ Ωγ ).

Introduce the tensors describing the deformation of the transversely isotropic plate

εij(ψ) =
1
2

(ψi,j + ψj,i), εij(W ) =
1
2

(wi,j + wj,i), i, j = 1, 2
(

v,i =
∂v
∂xi

)
.

The tensors of moments m(ψ) = {mij(ψ)} and stresses σ (W ) = {σij(W )} are expressed by
the formulas (summation is performed over repeated indices) [38]

mij(ψ) = aijklεkl(ψ), σij(W ) = 3aijklεkl(W ), i, j, k, l = 1, 2, (1)

where the nonzero components of elasticity tensor A = {aijkl} are as follows:

aiiii = D, aiijj = Dκ , aijij = aijji = D(1 – κ)/2, i �= j, i, j = 1, 2, (2)

where D and κ are the constants: D is a cylindrical rigidity of the plate, κ is the Poisson
ratio, 0 < κ < 1/2. The transverse forces in the Timoshenko-type model are specified by
the expressions

qi(w,ψ) = Λ(w,i +ψi), i = 1, 2, (3)

where Λ = 2k′s′h, k′ is the shear coefficient, s′ is the shear modulus in areas perpendicular
to the middle plane of the plate, and Λ is the constant [38]. Let B(G, ·, ·) be a bilinear form
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defined by the equality

B(G,χ , χ̄ ) =
∫

G

{
mij(ψ)εij(ψ̄) + Λ(w,i +ψi)(v̄,i +ψ̄i) + σij(W )εij(W̄ )

}
dx,

with some subdomain G ⊂ Ωγ , χ = (W , w,ψ), χ̄ = (W̄ , w̄, ψ̄). The potential energy func-
tional of the plate occupying the region Ωγ has the form

Π (χ ) =
1
2

B(Ωγ ,χ ,χ ) –
∫

Ωγ

Fχ dx, χ = (W , w,ψ),

where F = (f1, f2, f3,μ1,μ2) ∈ L2(Ωγ )5 is the vector specifying the external loads [38].
Introduce the Sobolev spaces

H1,0(Ωγ ) =
{

v ∈ H1(Ωγ ) | v = 0 a.e. on Γ
}

, H(Ωγ ) = H1,0(Ωγ )5.

Due to the presence of a rigid inclusion in the plate, restrictions of the functions describing
displacements (W , w) and angles of rotation ψ to the curve βt satisfy a special kind of
relations. We introduce the space which allows us to characterize the properties of a thin
rigid inclusion [19],

R(βt) =
{
ζ | ζ (x) = (bx2 + c1, –bx1 + c2, a0 + a1x1 + a2x2, –a1, –a2); x ∈ βt

}
, (4)

where b, c1, c2, a0, a1, a2 ∈R. The condition of mutual nonpenetration of the opposite faces
of the crack is given by [20]

[W ]ν ≥ ∣∣[ψ]ν
∣∣ on γ . (5)

We formulate the contact problem of the plate with a rigid inclusion

inf
χ∈Kt

Π (χ ), (6)

where

Kt =
{
χ = (W , w,ψ) ∈ H(Ωγ )

∣∣ [W ]ν ≥ ∣∣[ψ]ν
∣∣ on γ ,χ |βt ∈ R(βt)

}

is the set of admissible functions. Note that the inclusion χ ∈ H(Ωγ ) assumes that the
homogeneous boundary-value conditions hold:

w = 0, ψ = W = (0, 0) on Γ . (7)

It can be shown that the set Kt is convex and closed in the Hilbert space H(Ωγ ) [20]. Due
to the estimate

B(Ωγ ,χ , χ̄ ) ≤ c1‖χ‖‖χ̄‖, ‖ · ‖ = ‖ · ‖H(Ωγ ),
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where the constant c1 > 0 is independent of χ ∈ H(Ωγ ) and χ̄ ∈ H(Ωγ ), the symmetric
bilinear form of B(Ωγ ,χ , χ̄ ) is continuous with respect to H(Ωγ ). The coercivity of the
functional Π (χ ) follows from the inequality

B(Ωγ ,χ ,χ ) ≥ c‖χ‖2, ∀χ ∈ H(Ωγ ), (8)

where the constants c > 0 is independent of χ (see [39]).

Remark 1 The inequality (8) yields the equivalence of the standard norm and the semi-
norm determined by the bilinear form B(Ωγ , ·, ·) in the space H(Ωγ ).

The above properties of the energy functional Π (χ ), the bilinear form B(Ωγ , ·, ·), and
the set Kt allow one to establish the existence of a unique solution ξt = (Ut , ut ,φt) ∈ Kt

for problem (6); see [34]. Symmetry and continuity of the bilinear form B(Ωγ , ·, ·) and the
properties of the set Kt provide the equivalence of problem (6) to the variational inequality

ξt ∈ Kt , B(Ωγ , ξt ,χ – ξt) ≥
∫

Ωγ

F(χ – ξt) dx, ∀χ = (W , w,ψ) ∈ Kt . (9)

3 Optimal control problem
For an arbitrary continuous functional G(χ ) : H(Ωγ ) → R we can define the cost func-
tional J : [0, T] → R with the help of the equality J(t) = G(ξt), where ξt is the solution of
the problem (6). The mentioned continuity property is fulfilled for many physically moti-
vated functionals, for example, the functional

G1(χ ) = ‖χ – χ0‖H(Ωγ )

characterizes the deviation of the generalized displacement vector from a given function
χ0 ∈ H(Ωγ ).

Consider the optimal control problem:

Find t∗ ∈ [0, T] such that J
(
t∗) = sup

t∈[0,T]
J(t). (10)

Theorem 1 There exists a solution of the optimal control problem (10).

Proof Let {tn} be a maximizing sequence. By the boundedness of the interval [0, T], we
can extract a convergent subsequence {tnk } ⊂ {tn} such that

tnk → t∗ as k → ∞, t∗ ∈ [0, T].

Without loss of generality we assume that tnk �= t∗ for sufficiently large k. Otherwise there
would exist a subsequence {tnl } such that tnl ≡ t∗, and therefore J(t∗) is solution of (10).

Now we take into account Lemma 2 proved below: the solutions ξk of (6) corresponding
to the parameters tnk converge to the solution ξt∗ strongly in H(Ωγ ) as k → ∞. This allows
us to obtain the convergence

J(tnk ) → J
(
t∗),
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indicating that

J
(
t∗) = sup

t∈[0,T]
J(t).

The theorem is proved. �

4 Auxiliary lemmas
Now we have to justify auxiliary lemmas used within the proof of the theorem. In estab-
lishing the proof, we needed Lemma 2; however, before proceeding we need first prove
the following lemma.

Lemma 1 Let t∗ ∈ [0, t] be a fixed number and let {tn} ⊂ [0, T] be a sequence of numbers
converging to t∗ as n → ∞. Then for every function η ∈ Kt∗ there are a subsequence {tk} =
{tnk } ⊂ {tn} and a sequence of functions {ηk} such that ηk ∈ Ktk , k ∈N and ηk → η strongly
in H(Ωγ ) as k → ∞.

Proof Note that if there is a subsequence {tnk } such that tnk = t; then the statement of the
lemma will hold for Wk = W , k ∈ N. Without loss of generality, we assume that {tn} is a
strictly monotonic decreasing sequence such that

t∗ = lim
n→∞ tn.

Denote by ζ ∗ the function describing the structure of η on βt∗ , i.e.

ζ ∗ = η =
(
b∗x2 + c∗

1, –b∗x1 + c∗
2, a∗

0 + a∗
1x1 + a∗

2x2, –a∗
1, –a∗

2
)

on βt∗ . We extend the definition of ζ ∗ to the whole domain Ω by the equality:

ζ ∗(x) =
(
b∗x2 + c∗

1, –b∗x1 + c∗
2, a∗

0 + a∗
1x1 + a∗

2x2, –a∗
1, –a∗

2
)
, x ∈ Ω .

By the assumptions, there exists some number δ > 0 such that for all t ∈ [0, T]∩ (t∗, t∗ +δ)
the set β t

t∗ has a Lipschitz boundary. We fix a parameter t ∈ [0, T]∩ (t∗, t∗ +δ) and consider
the following family of auxiliary problems:

Find Qt ∈ K ′
t such that p(Qt) = inf

χ∈K ′
t
p(χ ), (11)

where p(χ ) = B(Ωγ ,χ – η,χ – η),

K ′
t =

{
χ = (W , w,ψ) ∈ H(Ωγ ) | χ = η on γ ±,χ |βt

t∗
= ζ ∗}.

It is easy to see that the functional p(χ ) is coercive and weakly lower semicontinuous on
the space H(Ωγ ). One can verify that the set K ′

t is convex and closed in H(Ωγ ). These
properties guarantee the existence of a solution Qt of problem (11). Besides, its solution
is unique [33]. Since the functional p(χ ) is convex and differentiable on H(Ωγ ), problem
(11) can be written in the equivalent form:

Qt ∈ K ′
t , B(Ωγ , Qt – η,χ – Qt) ≥ 0, ∀χ ∈ K ′

t . (12)
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Note that {Qt} ∈ Kt for all t ∈ [0, T] ∩ [t∗, t∗ + δ). To prove the boundedness of {Qt},
we use (12) with an appropriate test function χ̂ that belongs to K ′

t for all t ∈ [0, T] ∩
[t∗, t∗ + δ). Such a function χ̂ ∈ H(Ωγ ) can be constructed by applying a lifting operator
for the Lipschitz domains Ω \ Ō and O\ (βT

0 ) with the following values on the boundaries:
χ̂ = ζ ∗ on ∂βT

0 , χ̂ = 0 on Γ , χ̂ = η on γ ± [33]. The function constructed in the proposed
manner obviously belongs to K ′

t for all t ∈ [0, T] ∩ (t∗, t∗ + δ), and, hence, it can serve in
(12) as a test function. This yields

B(Ωγ , Qt – η, χ̂ ) + B(Ωγ ,η, Qt) ≥ B(Ωγ , Qt , Qt), ∀t ∈ [0, T] ∩ (
t∗, t∗ + δ

)
.

Using the inequality (8) we obtain from this relation the following uniform upper bound:

‖Qt‖ ≤ c, ∀t ∈ [0, T] ∩ (
t∗, t∗ + δ

)
.

This allows us to extract from the sequence {Qtn} a subsequence {Ql}, l ∈ N weakly con-
verging to some function η̃ in H(Ωγ ). Hereinafter, for convenience, we use the following
notation for subsequences: tl = tnl and Ql = Qtnl

.
It is now necessary to show that η̃ = η. By construction we have the inclusion (Ql – η) ∈

H1
0 (Ωγ \ β t∗ )5. Then, taking into account the properties of H1

0 (Ωγ \ βt∗ )5, we see that the
limit function (̃η – η) belongs to the same functional space.

We consider now the functions of the form χ±
l = Ql ± α, where α is a function defined

by zero extension of some arbitrary function α̃ ∈ C∞
0 (Ωγ \ β t∗ )5 into Ωγ . One can note

that for sufficiently large k the inclusion χ±
l ∈ K ′

tl
holds. Taking the elements of these se-

quences, {χ+
l } and {χ–

l }, as test functions into inequalities (12), we infer

Ql ∈ K ′
tl

, B(Ωγ , Ql – η,α) = 0. (13)

The function α is now fixed and by passing to the limit in (13) it is established that

B(Ωγ , η̃ – η,α) = 0, ∀α ∈ C∞
0 (Ωγ \ β t∗ )5.

Hence, by the density of C∞
0 (Ωγ \ β t∗ ) in H1

0 (Ωγ \ β t∗ ), we infer that η̃ – η = 0 in
H1

0 (Ωγ \ β t∗ )5. Consequently, η̃ = η in H(Ωγ ). Therefore, there is a sequence {Ql} such
that Ql ∈ Ktl , l ∈N and Ql → η weakly in H(Ωγ ) as l → ∞.

Now we are in a position to prove the existence the strongly converging subsequence. We
will construct it with the help of {Ql}. In fact, by the Mazur theorem, there exist a function
N : N → N and a sequence of the sets of reals {d(n)i | i = n, . . . , N(n)}, satisfying d(n)i ≥ 0
and

∑N(n)
i=n d(n)i = 1, such that the sequence {Q̂n} defined by the convex combination

Q̂n =
N(n)∑

i=n

α(n)iQi

converges strongly to η in the space H(Ωγ ). Hence, we can define the elements ηnk of the
desired sequence ηnk by the formulas

ηn1 = Q̂N(1), ηn2 = Q̂N(N(1)), . . . ηnk = Q̂Nk (1), . . .
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Obviously, the elements of the constructed sequence {ηnk } belong to the corresponding
sets KtNk (1)

with the parameters tNk (1) which are the elements of the subsequence {tl} ⊂ {tn}.
Recalling the assumptions made with respect to {tn} in the beginning of the proof of this
lemma, we should note the following: In the contrary case, namely, when the sequence {tn}
is strictly monotonically increasing, one has to consider the sets K ′

t defined by the sets of
the form β t∗

t , where t ∈ [0, T] ∩ (t∗ – δ, t∗). Lemma 1 is proved. �

Using Lemma 1, we prove the following statement applied in the proof of the theorem.

Lemma 2 Let t∗ ∈ [0, T] be a fixed real number. Then ξt → ξt∗ strongly in H(Ωγ ) as t → t∗,
where ξt = (Ut , ut ,φt), ξt∗ = (Ut∗ , ut∗ ,φt∗ ) are the solutions of (6), corresponding to parame-
ters t ∈ [0, T], t∗ ∈ [0, T].

Proof We proceed by contradiction. Assume that there exist a number ε0 > 0 and some
sequence {tn} ⊂ [0, T] such that tn → t∗, ‖ξn – ξt∗‖ ≥ ε0, where the ξn = ξtn , n ∈ N, are the
solutions of (6), corresponding to tn.

Owing to the inclusion χ0 ≡ 0 ∈ Kt for all t ∈ [0, T], we can substitute χ = χ0 in (9) for
all t ∈ [0, T]. This leads to

ξt ∈ Kt , B(Ωγ , ξt , ξt) ≤
∫

Ωγ

Fξt dx, ∀t ∈ [0, T].

From this, using (8) we can conclude that for all t ∈ [0, T] the following uniform estimate
holds:

‖ξt‖ ≤ c, (14)

with some constant c > 0 independent of t. Consequently, replacing {ξn} by its subse-
quence, if necessary, we can assume that {ξn} converges to some ξ̃ weakly in H(Ωγ ).

Now we show that ξ̃ ∈ Kt∗ . In accordance with the Sobolev embedding theorem [33],
we obtain

ξn|βt∗ → ξ̃ |βt∗ strongly in L2(βt∗ )5 as n → ∞, (15)

ξn|γ → ξ̃ |γ strongly in L2(γ )5 as n → ∞. (16)

We will use the following well-known property of continuity of traces:

∥∥v|βt∗ – v
(
x1 +

(
tn – t∗), x2 + g(tn) – g

(
t∗))∣∣

βt∗
∥∥

L2(βt∗ )

≤ C1

√∣∣tn – t∗∣∣‖v‖H1(Ωγ ), (17)

where v ∈ H1(Ωγ ) is an arbitrary function [40]. Note that inequality (17) is based on the
boundedness of the derivative of the function g . In (17) the traces of the function v(x1 +
(tn – t∗), x2 + g(tn) – g(t∗)) on βt∗ are related with the traces of the function v on βtn by the
equality

v
(
x1 +

(
tn – t∗), x2 + g(tn) – g

(
t∗))∣∣

βt∗
= v(y1, y2)|βtn ,

(y1, y2) =
(
x1 +

(
tn – t∗), x2 + g(tn) – g

(
t∗)).
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Owing to inequality (17) and estimate (14), we have

∥∥ξn|βt∗ – ξn
(
x1 +

(
tn – t∗), x2 + g(tn) – g

(
t∗))∣∣

βt∗
∥∥

L2(βt∗ )5

≤ C1

√∣∣tn – t∗∣∣‖ξn‖H(Ωγ ) ≤ C2

√∣∣tn – t∗∣∣, (18)

with some constant C2 > 0 independent of ξn. Since by construction

ξn
(
x1 +

(
tn – t∗), x2 + g(tn) – g

(
t∗))∣∣

βt∗
= ξn|βtn = ζn ∈ R(βtn ),

ξn
(
x1 +

(
tn – t∗), x2 + g(tn) – g

(
t∗))∣∣

βt∗

=
(
bn

(
x2 + g(tn) – g

(
t∗)) + cn

1, –bn
(
x1 +

(
tn – t∗)) + cn

2,

a0 + a1
(
x1 +

(
tn – t∗)) + a2

(
x2 + g(tn) – g

(
t∗)), –a1, –a2

)∣∣
βt∗

,

passing to the limit in (18) and taking into account (15) together with the relations tn → t∗

and g(tn) → g(t∗) as n → ∞, we arrive at

lim
n→∞ ξn = lim

n→∞
(
bnx2 + cn

1, –bnx1 + cn
2, an

0 + an
1x1 + an

2x2, –an
1, –an

2
)

= ξ̃

a.e. on βt∗ . In turn, it follows that the numbers {bn}, {cn
i }, {an

i }, i = 1, 2, and {an
0} converge

to certain numbers b∗, c∗
i , a∗

i , i = 1, 2, a∗
0, respectively. Hence,

ξ̃ (x) =
(
b∗x2 + c∗

1, –b∗x1 + c∗
2, a∗

0 + a∗
1x1 + a∗

2x2, –a∗
1, –a∗

2
)

a.e. on βt∗ .

Therefore, ξ̃ ∈ R(βt∗ ). It remains to show that ξ̃ satisfies the nonpentration inequality (5).
In view of (16), we can extract subsequences once again and obtain the following con-
vergence: ξn|γ → ξ̃ |γ , a.e. on both γ + and γ –. Now we pass to the limit in the following
inequalities as n → ∞:

[Un]ν ≥ ∣∣[φn]ν
∣∣ on γ .

This leads to [Ũ]ν ≥ |[φ̃ν]| on γ , that is, ξ̃ ∈ Kt∗ .
Our next goals are to prove that ξ̃ = ξt∗ and to establish the existence of a sequence

ξn = ξtn , n = 1, 2, . . . , of solutions strongly converging to ξt∗ in H(Ωγ ). For this purpose, we
will pass to a limit in variational inequalities (9) corresponding to various parameters t.
By Lemma 1, for every η ∈ Kt∗ there exist a subsequence {tk} = {tnk } ⊂ {tn} and a sequence
of functions {ηk} such that ηk ∈ Ktk and ηk → η strongly on H(Ωγ ) as k → ∞.

This fact, together with Lemma 2, allows us to pass to the limit as k → ∞ in the following
inequalities obtained from (9) for the values of t = tk and the test functions {ηk}:

B(Ωγ , ξk ,ηk – ξk) ≥
∫

Ωγ

F(χk – ξk) dx. (19)

As a result, we deduce

B(Ωγ , ξ̃ ,η – ξ̃ ) ≥
∫

Ωγ

F(η – ξ̃ ) dx (20)
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for every η ∈ Kt∗ . From this we can see that the arbitrariness of η ∈ Kt∗ implies that the
last inequality is variational. Therefore, by its unique solvability, we conclude that ξ̃ = ξ ∗

t .
It remains to establish the strong convergence of ξn → ξt∗ . Inserting χ = 2ξt and χ = 0

into the variational inequalities (9) for t ∈ [0, T], we infer that

B(Ωγ , ξt , ξt) =
∫

Ωγ

Fξt dx (21)

for all t ∈ [0, T]. Equality (21) together with the weak convergence ξn → ξt∗ in H(Ωγ ) as
n → ∞ implies

lim
n→∞ B(Ωγ , ξn, ξn) = lim

n→∞

∫

Ωγ

Fξn dx =
∫

Ωγ

Fξt∗ dx = B(Ωγ , ξt∗ , ξt∗ ).

Recalling here the equivalence of the norms (see Remark 1), we conclude that ξn → ξt∗

strongly in H(Ωγ ) as n → ∞. Thus, we arrive at a contradiction. Lemma 2 is proved. �

5 Conclusion
For a family of variational equilibrium problems (9) for composite plates with a thin rigid
inclusion and a crack, the study is performed of the dependence of their solutions on the
parameter t ∈ [0, T] characterizing the location of the rigid inclusion.

The existence of the solution to the optimal control problem (10) is proved. For that
problem the cost functional J(t) is defined by an arbitrary continuous functional G :
H(Ωγ ) → R, while the control parameter t specifies location of a thin rigid inclusion.
To every value of t, there corresponds a curve βt defining the rigid inclusion, which is
obtained by shifting the curve β̂ along a given graph Ξ .
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