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1 Introduction
IfO<Y > a2 <ooand 0< Y o2, b% < oo, then we have the following discrete Hilbert’s
inequality with the best possible constant factor  (cf. [1], Theorem 315):

sznmf2<”(zﬁzlbi) : 1)

m=1 n=1

Assuming that 0 < [;° f*(x) dx < 0o and 0 < [;~ g*(y) dy < 00, we still have the following
Hilbert’s integral inequality (cf. [1], Theorem 316):

/ /oof;)f;y) dxdy<n</ X x)dx/O g (y)dy)m, 2)

where the constant factor 7 is the best possible. Inequalities (1) and (2) play an important
role in the analysis and its applications (cf. [2-13]).

We still have the following half-discrete Hilbert-type inequality (cf. [1], Theorem 351):
If K(x) (x > 0) is a decreasing function, p > 1, }7 + % =1,0<¢(s) = [,  Kx)x*dx < o0,
f(x)>0,0< [;°fP(x)dx < 00, then

inp_2</ool((nx)f(x)dx) <¢1’< )/ fP(x)d (3)
n=1 0

In recent years, some new extensions of (3) have been provided by [14-19].
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In 2006, by using the Euler— Maclaurin summation formula, Krnic et al. [20] gave an
extension of (1) with the kernel (O <X <4); and in 2019, according to the results of
[20], Adiyasuren et al. [21] c0n51dered an extension of (1) involving the partial sums.

In 2016-2017, by applying the weight functions, Hong [22, 23] considered some equiv-
alent statements of the extensions of (1) and (2) with a few parameters. Some similar in-
terested works were provided by [24-26].

In this paper, according to the way of [21, 22], by the use of the weight functions, the idea
of introducing parameters and the Euler—Maclaurin summation formula, anew extended
half-discrete Hilbert’s inequality with the homogeneous kernel (0 <X <26)and the
beta, gamma function is given. The equivalent statements of the best possible constant
factor related to a few parameters are considered. As applications, a corollary about the

case of non-homogeneous kernel and some particular cases are also obtained.

2 Some lemmas
In what follows, we assume that p > 1, }7 + %1 =1,1€(=2,26], Ay € (-1,1], Ay, Ay € (-1, A +
1),f(x) >0,f € LY(R,) (R, = (0,00)),a, >0 (n e N={1,2,...}), {a,}2, € I,

F(x) = f wde w0, A, > ar (neN)
0 k=1

such that

A+1A A1+l A+1 A+1A
0</ LI 'FP(x)dx <oco and 0<Zn (=g
0

n=1

Aq<oo

By the definition of the gamma function, for A,x > 0, n € N, the following equality holds:

1 _ A 1 —x+n)t
(x+nm)r F(A) dt. @

Lemma 1l Fort >0, we have
oo o0
Z e Mg, <t Z e A, (5)
n=1 n=1
o0 o0
/ e fx)dx=t / e F(x) dx. (6)
0 0

Proof Since {a,}°; € Y, we find lim, oo A, = Zl 1 ai € [0,00). Using Abel’s summation
by parts formula and the inequality 1 — e™* < ¢, we have (cf. [21])

00 00
e—tnan - lim e—t(n+1)An + § :[e—m _ e—t(n+1)]An
n—00
n=1 n=1

[ee]

o0
=(1-¢7) Ze‘”’An < tz e A,

n=1 n=1
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namely, inequality (5) follows. For f € L(R,), F(0) = 0, F(c0) € [0, 00), we find
/ e f(x)dx = / e dF(x) = e "F(x)|3° - / F(x)de™
0 0 0
o0
=t / e ™ F(x) dx,
0

and then expression (6) follows. g

Lemma 2 For1<s<28,0 €(0,2]N(0,s), define the following weight function:

o o1
w(o,x) :=x° . (x € R,). (7)
; (x + n)

We have the following inequality:
w(o,x)<B(o,s—0) (x€R,). (8)

Proof We set function g(¢) := W (t > 0). Using the Euler—Maclaurin summation formula
(cf. [20)), for p(¢) := t — [t] — 5, we have

o0 1 oo , B o0
gt - [ etrde+ e+ [ ptog@dr= [ gdt-hios

1 o0
(o s) o= /0 g0t~ g1) - /1 PO () dt.

We obtain -3 le1) = . Integrating by parts, it follows that

Loy f Voode
+ — S —
o o Jo (x+p)+!

x+1

1 1 ta—l 1 1 dta 1 t°
t)dt = —dt=— = —
/0 ) /0 (x+ 1) o /0 (x+1)s o (x+1)

11 s /1 dee+!
=— +
ox+1 o(o+1)Jy (x+2)y

1 1 s el Pt s(s+1) 1ot

> — + +
ow+1)p ol@+1) (x+t)*], o(o+1)Jy (x+1)5+2
1 1 s 1 s(s+1) 1

o+l o@D s oo +1)o+2) xr 1)
Since we find

(0 =1)t°2 sto1 1-0)t°2 sto2 sxt? 2
+ = + -
(x+1) (x + £)s+L (x+12) (x+2)p  (x+p)t

) =~

s+ l-o)t7? sxt”?
(x+2) (x +2)s+1

andfor0<o <2,1<s<28,

; 4 to—2 ; 1 ta72 '
=1 dt‘|:(x+t)s] >0, D' dri |:(x+t)“1] >0 (i=0,1,2,3),
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still by the Euler—Maclaurin summation formula (cf. [20]), for s + 1 — o > 0, we have

o2 s+l-0

(S+1—O')/1‘ p(t)mdt>—m,

[e%e) t(r—z
_xs / p(0)
1

————dt
(x + )5+t

xs xs =2 7"

g 12(x + 1)s+1 720 |: (o + £)s+1 :|t=1

x+1)s—s @E+Ds[(s+1)(s+2) 2s+1)2-0) (2-0)3-0)
L+ 720 [ (x+1)73 (x+1p72 @+ 1) ]

s s

120+ 1)5  12(x + 1)s+
B i[(H 1)(s+2) . 2s+1)(2-0) . (2—0)(3—0)]

720 (% +1)5*2 (x+ 1)s+1 (x+1)

shy(o,s) s(s+1)h3(o,s

h(o.5)
+ s+1 + (x+1)”2

)
Gt T Gerl) , where

Hence, we have (o, s) >

hl(a,s):zg_%_ -0 s(2-0)3-0)

’

12 720
1 1 (s+1)2-0)
hy(o,8)i=——m - — - ——————,
2008 D T 720
and h3(0,s) := G L 52

o(o+1)(c+2) ~ 720°

For s € (1,28] i, o €(0,2], it follows that

) 555 <
1 1-0 (2-0)3-0) 24-200+70%-0"

1
hi(o,s)>—— = — >0.
o 2 12 24 240

In fact, setting g(o) := 24 — 200 + 702 — 03(0 € (0,2]), we obtain

7\ 11
g’(a):—20+1402—302:_3(U_§> _?<0,

and then g(o) > g(2) =4 >0 (o €(0,2]).
We still find that /,(o,s) > é - L 3% —0and hs(0,s) > £ — 2L = 0. Hence, we have

12~ 360 24~ 720
h(o,s) > 0, and then

[e'9) 00 00 tg—l 00 ua—l
(n) < / (t)dt = / dt = x”‘S/ du=x""B(o,s—0),
2 e | eOdi= | o5 o Wvuy

namely, (8) follows. O

Lemma 3 Suppose that s € (1,28], u,0 € (1,5), 0 €(0,2],

o0 o0
(=9 L Ky (2 52y -
0</ LTI oy dx < oo and 0 < E n T g oo,
0

n=1
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We have the following inequality:

fWan
/ Z (x + n)s
<B3(G,S—G)B5(M,s—u)

1

{/ 20 (52+ /q)]_lfp(x)dx} {Zn a—=(5+52) }q' o

Proof For n € N, setting x = nu, we obtain the following weight function:

o xh1dx © yh-ldy
o(pu,n) =n" / = f = B(u,s — ). (10)
o @+ny Jo (u+1)

By Holder’s inequality (cf. [27]), we obtain
/ — S x)an
(x +n)s

(6 1)/p x(# 1)/q
:/0 Z(,Hn)s[ S ][ /pan]dx

:{/ @ (o, lfp(x)dx}_{Zw (o =G g
0

Then, by (8) and (10), we have (9). O

Remark1 Fors=A+2,1€(-1,26),A1=u-1€(0,A+1),Ay=0-1€(0,1]N (0,1 + 1),

we can reduce (9) as follows:
f°° =\ F(x)A,
(x (x + n)M+2

1
<B}7()‘2+1’)“+1—)»2)35()&1+1,)»+1—)L1)

o0 Atlhy A (2211 A+l A 4
x{/ e le(x)dx} {an“ SoTe et o an
0
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3 Main results
Theorem 1 If A € (0,26], A1, Az € (0, A + 1), Ay € (0, 1], then we have the following inequal-
ity:

I / f (x)an

(x + n))\

ru+m
o)

00 Atl-dy A A+l A+1A
x{/ STy “F”(x)dx} {Zﬂ"“ LA lAq}. (12)
0

1 1
B;()\.2+1,)\‘+ 1—)\.2)35()\1 + LA+ 1—)\‘1)

In particular, for Ay + Ay = A, we also have

/ Z (]:C(f)ﬂn dx<)»1)»23()»1,)\2)</0 xPM- 1Fp(x dx> <ank2 1Aq> , (13)

where the constant factor A AyB(A1, L2) is the best possible.

Proof Using (4), (5), and (6), we find

I= %}\)/Omganf(x)(/o Prlemwemt dt)dx
_ %}\) /0 ootH( e (x) dx) <i1 e‘”ta,,) dt
-7 ) N :ilp(xmn ( fo T gt dt) dx

CL(+2) [ 2. F(x)A,
B F(A 0 Z x+n)*+2

A

(14)

In view of (11), we have (12).
In the case of A1 + Ay = A, we find

(A +2)
o
%Bﬁ(kz LA+ D)BI(y + 1Ay +1) = %
TG TOa+ DI (g +1) T ()

re) oy Ty kBl i),

B ()\2+1)\,+1 Kz)Bq()\1+1)\.+1 )\,1)

B()\l + 1,)\.2 + 1)

and then (13) follows.
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For any 0 < ¢ < min{pA,qh,}, we set

0, O0<t<1, ho-£-1

fO=1" ay =k (k€ N).
T

We obtain from A1,45 € (0,A + 1), Ay € (0,1], and 0 < & < min{pA,gA,} that F(x)=0(0<

x<1),

X X )"1_1%
ﬁm=ﬂjmm=£ **m<f — x21),
p

n n n £

. ~ Ap—E-1 A-E-1 5, BT 1

A,,.—E ak—g k™"a </t a dt—)@_s (n eN).
k=1 k=1 0

If there exists a positive constant M (M < A1A,B(A1, 7)) such that (13) is valid when
replacing A1A2B(A1, A3) by M, then in particular, by substitution of f(x) = f (x) and a,, = a,,

we have

x)“n oo —p-17 (& —ga-17 g
/ Z(x+n)k (/0 - Fp(x)dx> (Eﬂq AZ) '
We find
T .= * —pA1- 11:10 d ) —qh2-1 44
J (/0 x (x) dx (Zn )
1 > -p-1( M5 24 ]% - —qhy-1(, r2-5\4 ’
<(A1—;><Az—g>[/l ) Zl” ()
1 oo —e—1 1% - —e-1 %
- d
(Al—;,)(xz—g)ql ¥ ") (“;” )
1 * —e—1 1% OO —e—1 )é (8 + l)l/q
_— d t)| = ——FF.
) (M—f,)(xz—g)(fl g ") (“/1 ) TS D0e-D)

In view of Fubini’s theorem (cf. [28]), it follows that

Ap—%

e i N g
I:/ Zi)\x)”*i*l dxz/ (/ —)Ldt>xhpl dx
1 = (x+n) 1 1 (w+1)
)»2—— 1
dx
/ //x 1+u)A
00 1 2—5— 00 00 Az—%—l
=/ x’s’lf u—Adudx+/ x’s’lf “ Adudx
1 1x (1+ 1) 1 1 (1+u)
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1 o0 ha-£-1 0o, ha-£-1
u- 4 1 u?a
/ / x*Ldx du + — / ——du
0o \J1/u (1+u) e)1 (1+uw?
A2

1 1uxz+§71 00 4 7%71
- ——d ——du|.
5[/0 (L+uy ”+/1 L+ uy ”]

So we obtain

Lyt %0 275! M(e + 1)V
———du+ —du<s]<5M1<ﬁ.
o (1+u) 1 (T+u)? ()»1—1;)()»2—5)

For ¢ — 0" in the above inequality, in view of the continuity of the beta function, we find

B(A1,19) < %, namely A;AB(A1,A2) < M. Hence M = A1A2B(A1, 1) is the best possible

constant factor of (13). O

Remark 2 We set A, “; 22 4 % —1, “1;1 + % — 1. It follows that

~ ~ )\,+1—)\,2 )»1+1 )»2+1 )x+l—)u1
AM+Ay= + -1+ + -1=2,
p q p q

0 < 21,42 < A + 1, and then we reduce (12) as follows:

f (x)an
/ Z (x + n)*
(A +2)

()

X (/:Oxp“ Lpp( x)dx) (Zn‘m 1A‘f7) . (15)

Theorem 2 Assuming that A € (0,26], 11,12 € (0,1 + 1), Ay € (0,1], if the constant factor

1 1
Br(My+1L,A+1=2)Bi(A1 +1,A+1—A4g)

(A+mB(A LA+1—A)Bi(y + 1,4 +1—24)
—_— + + + +

o) 2 2 1 1
in (15) is the best possible, then A1 + Ay = A.

Proof As regards to the assumptions, we find 0 < ):1, )A»z < X + 1. By (13), the unified best

possible constant factor in (15) must be of the following form:

'(A+2)

B+ 1,0+ 1)),
TG A+ 1,0+ ))

1haB(h1, ho) <=
namely, it follows that

A A 1 1
BOa+ 1A +1)=BP (Ao + LA+ 1=A)Ba(hy + 1, A +1— A1)
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By Hélder’s inequality (cf. [27]), we obtain

R R o) u(5\1+1)—1 o0 Mil
BA+1,Ay+1) = ————du-= —du
(1 2+1) /0 (1 +u) 2 _/0 (1 +u)*+2

1 Atl=Ao +}»1+1 1 A=Ao A

=/(; mu Pt _lduzv/o W(MT)(”F)‘I”

00 Ak L A 1
< f M—Z du ? / u—l du !
- 0 (1 + M)A+2 0 (1 + M)A+2
=B+ LA +1-29)Bi(hy + LA+1—2y). (16)

We observe that (16) keeps the form of equality if and only if there exist constants A and B
such that they are not all zero and Au*~*? = By’ a.e. in R,. Assuming that A #0, it follows
that y*~*27%1 = :? a.e.in R,, namely A — Ay — A1 = 0, and then A; + Ay = A. O

Theorem 3 If A € (0,26], A1,A3 € (0,1 + 1), Ay € (0,1], then the following statements are
equivalent:
(i) B% A +1L,A+1- )Lz)Bfll (A1 + LA+ 1-xq) is independent of p, q;
(ii) BP% A +1,A+1- Az)B% (A + 1, A+ 1—Xq) is expressible as a single integral;
(ifl) Ap+As=A;
(iv) The constant factor

1(A+2)B1%(A LA+ 1=A)Bi( +1,A+1—-2)
—_— +1L,A+1- +1L,A+1-
() 2 2 ! !

in (12) is the best possible.
Proof (i) = (ii). We find

1 1
BE()\.2+ 1,)\.+1—)\2)Bq()\.1 +1,)\.+1—)\.1)

1 1
= lim lim Bl;()\.2+1,)\‘+ 1—)\.2)35()@ + LA+ 1—)\‘1)

p—>00g—>1*

00 ukl
=BM+LA+1-1y)= ——duy,
(A 1) /0 1+ u) U

1 1
which is a single integral. (ii) = (iii). Suppose that B (A3 + 1, A+ 1 —X3)B7 (A1 + 1, A +1—14)
A+l-A A+l
is expressible as a single integral fooo mu 7 >*% "1 dy. Then (16) keeps the form of

equality. By the proof of Theorem 2, we have A; + A, = A. (iii) = (i). If &1 + A5 = A, then

1 1
BE()\,2+ 1,)»+1—)»2)B§()\,1 +1,)»+1—)»1)=B()»1+ 1,)»2+1),

which is a single integral.
(iii) = (iv). By Theorem 1, for A; + A = A, the constant factor

'(A+2) 1 1
WB” ()\.2 +1L,A+1- Kz)Bq()\l +1L,A+1- )\.1) = )\.1)\23()\.1,)\2)

in (12) is the best possible. (iv) = (iii). By Theorem 2, we have A1 + Ay = A.
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Hence, statements (i), (ii), (iii), and (iv) are equivalent. O

Remark 3 If u + o = s,then inequality (9) reduces to

/ fx)“”d <Blu.o [/ AP0~ fp(x)dx] [an” "T' (17)

We confirm that the constant factor B(u, o) in (17) is the best possible. Otherwise, we

would reach a contradiction by (14) that the constant factor in (13) is not the best possi-
ble.

4 A corollary and some particular cases
Replacing x by 1 in (12), setting g(x) = x*7*f(2), we define

GA(x):zF(x)zfof(t)dtzfl f<§)%du:/l g (t) dt

Then we obtain the following inequality with the non-homogeneous kernel:

g(x)an
/ Z 1+ xn)*
. (A + 2)

F(A) ()\2+1 A+1-— )\z)Bq()\.1+1 A+1-— )\1)

0 Atl-dg xl+1 xz+1 ml Atl-dg 4
X {/ P - "G x)dx} [an[l )= taat (18)
0

It is obvious that inequality (18) is equivalent to (12).

In view of Theorem 3, we have the following.

Corollary 1 Assuming that ) € (0,26], 11,Az € (0,1 + 1), A5 € (0, 1], the constant factor

'(A+2)

1 1
Br(Ay+1,A+1=-29)Bi (A +L,A+1-A
o) (A2 2)B7 (A 1)

in (18) is the best possible if and only if 1 + Ay = L. In the case of A1 + Ay = X, (18) reduces
to the following inequality with the best possible constant factor k1 AaB(A1, 12):

g(x)an
/ Z 1+ xn)k
<)»1)»zB()»1,)»2)(/ooxp“ 'G(x) dx) (Z T2 1A") , (19)
0

which is equivalent to (13).
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Remark 4 (i) In (13) and (19), for 0 < A < min{p, 26}, A; = g, Ay = % (< 1), we have the
following equivalent inequalities:

f(x)zzn
/ Z (x+ nm)*
RSERAY s 7
ZBl%z k(l—p)—le d) A(l—q)—lAq ) 20
Pq (P Q><./0 x () dx (;n n) (20)
(x)an
/ Z 1 +xn)k

5 1/ %
R (hh °°xmfp)71Gp(x) dx ) 3 w-a-ig) (21)
“pa \p'q ’ -1 .

if 0 < A <min{q,26}, A1 = 1%, Ay = % (< 1), then we have the following equivalent inequali-
ties:
2 ! i
o & e Mp(t A e
/ Z f(x)ll )\ B< ) (/ —A—le(x) dx) ZH—A—IAZ , (22)
o = (x+n) pq rq =

1
oo X }"2 A A [e'e} 1 00 q
g(x)an x< —B| —,— x 7 1G (x) dx ' n AT . (23)
(1 + xn)* » "
pqg \p 49 0 oy

In particular, for p = g =2, 0 < A < 2, both inequalities (20) and (22) reduce to

2 N ad :
et LA

n=1

and both (21) and (23) reduce to the equivalent form of (24) as follows:

o ) . % ;
EdSse ol ([ oaaegra) . o

n=1

(ii) In (13) and (19), for i <A<26,A1=A— 1%’ Ay = % (< 1), we have the following equiv-
alent inequalities:

f (x)an
f Z (o + n)*
f;fg«—:%;x/fxw)‘”(zﬂw)‘
n=1
g(x)an
/ Z (1+ xn)’\

. 1
A-1 (pr—-11 o s 1
P 5 B(p—, —) (/ x PG (x) dx) Z n 1AL (27)
p p p 0 n=1

Page 11 of 14
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if é <A<26,A1=A— %, Ay = é (< 1), then we have the following equivalent inequalities:

[l

L /jx-umdx)%(gn-ug)? o
[

< ’”q; 13(%;1, é) ( /0 e dx); (i: n-zAg) %. (29)

In particular, forp =g =2, 5 < A < 26, both inequalities (26) and (28) reduce to

1
o0 o0 2
./ (x + I’l 2A4_ 18(2A2_ : , %> (/ x_ZAFZ(x) o Z n_ZA%I) , (30)
0

n=1

and both (27) and (29) reduce to the equivalent form of (30) as follows:

N gw)a, 22-1_(2x-11 /00 o .
B , = G2(x)d A2 . (31
/0 ;(1+xn)* dx < 2 ( 5 2)( o 5 (x) xZn p (31)

n=1

[T

(iii) In (13) and (19), for 1 < A <26, A; = A — 1, A, = 1, we have the following equivalent

inequalities:

/000 i (];(f)z;; dx < </0‘00 1-D-1Fp () dx) <Z n 1Aq> , (32)

n=1

C e gWay % a1 )’l’ g é.
/0 ;7(1+xn)kdx(/o xP G, (x)dx ;nq AT (33)

if1<X<2,4 =1, =%-1(<1), we have the following equivalent inequalities:

Z f(x)an > ’ Zoc (i gq )

/ (x + l’l <\/O ! Fp(x) dx) (n:l " AZ) ’ (34)
N o gw)ay, ® )’1’ - (1-2)-1 !

/ (1 e dx(/o x PG (%) dx (,?1 n? AT) . (35)

In particular, for A = 2, both (32) and (34) reduce to

/ (x 2 x < (‘/000 xPLFP(x) dx) ’ (Z n_q_lAZ) q, (36)
n=1
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both (33) and (35) reduce to the equivalent form of (36) as follows:

1
oo X 00 }, o q
/ Z &d”z dx (f x”’_ng(x) dx) Z n_q_lAZ . (37)
(N (1+axn) 0 —
The constant factors in the above inequalities are the best possible.

5 Conclusions

In this paper, according to the way of [21, 22], by applying the weight functions, the idea
of introduced parameters, and the Euler—Maclaurin summation formula, a new extended
half-discrete Hilbert’s inequality with the homogeneous kernel and the beta, gamma func-
tion is given in Theorem 1. The preliminaries are obtained in Theorem 2. The equivalent
statements of the best possible constant factor related to some parameters are proved in
Theorem 3. As applications, a corollary about the case of the non-homogeneous kernel
and some particular cases are considered in Corollary 1 and Remark 4. The lemmas and

theorems provide an extensive account of this type of inequalities.
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