
He et al. Journal of Inequalities and Applications         (2020) 2020:37 
https://doi.org/10.1186/s13660-020-2291-4

R E S E A R C H Open Access

Local monotonicity coefficients in Orlicz
sequence spaces equipped with the
p-Amemiya norm
Xin He1* , Yunan Cui2 and Henryk Hudzik3

*Correspondence:
hexin8323@163.com
1Department of Mathematics,
Harbin Normal University, Harbin,
P.R. China
Full list of author information is
available at the end of the article

Abstract
In this paper, the monotonicity is investigated with respect to Orlicz sequence space
lΦ ,p equipped with the p-Amemiya norm, and the necessary and sufficient condition
is obtained to guarantee the uniform monotonicity, locally uniform monotonicity,
and strict monotonicity for lΦ ,p. This completes the results of the paper (Cui et al. in
J. Math. Anal. Appl. 432:1095–1105, 2015) which were obtained for the non-atomic
measure space. Local upper and lower coefficients of monotonicity at any point of
the unit sphere are calculated, lΦ ,p is calculated.
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1 Introduction
The role of monotonicity in Banach lattices is similar to the role of rotundity in Banach
spaces. It is well known that monotonicity properties of Banach lattices has various ap-
plications in the fields of ergodic theory (see [2]) and approximation theory; in particu-
lar, they are very useful for estimating the errors of the approximation. Also, they have
been introduced and studied in the context of their geometric structure by Birkhoff in [3].
Moreover, Betiuk-Pilarska and Prus showed recently that if X is a weakly orthogonal Ba-
nach lattice with εm(X) < 1, then X has the weak normal structure. Consequently, X has
the weak fixed point property (see [4]).

For lattice theory and monotonicity results in some Banach lattices we refer to [5–14].
Monotonicity has been extensively studied by several researchers in some specific lattices
such as Lorentz, Orlicz or Musielak-Orlicz spaces [15–33].

In this paper, monotonicity properties and the coefficient of monotonicity for Orlicz
sequence spaces equipped with the p-Amemiya norm are investigated.

Let X be a Banach lattice with a lattice norm ‖ · ‖ and X+ be the positive cone of X. We
denote by B(X) the unit ball of X, by S(X) the unit sphere of X, and S(X+) = S(X) ∩ X+. We
begin with auxiliary definitions and results that are used in the sequel.

A Banach lattice X is strictly monotonic (STM) if, for all x, y ∈ X+, the conditions x ≥ y,
y �= 0, and ‖x‖ = ‖y‖ imply x = y. X is uniformly monotone (UM) if, for any sequence {xn},
{yn} in X+, yn ≥ xn, the equalities limn→∞ ‖xn‖ = limn→∞ ‖yn‖ imply limn→∞ ‖yn – xn‖ = 0.

© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other
third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

https://doi.org/10.1186/s13660-020-2291-4
http://crossmark.crossref.org/dialog/?doi=10.1186/s13660-020-2291-4&domain=pdf
http://orcid.org/0000-0002-3549-0519
mailto:hexin8323@163.com


He et al. Journal of Inequalities and Applications         (2020) 2020:37 Page 2 of 15

A point x ∈ S(X+) is said to be upper (lower) locally monotonic point if, for any ε > 0,
there exists δ(ε) > 0 such that, for any y ∈ X+ (resp. for 0 ≤ y ≤ x), the condition ‖y‖ ≥ ε

implies ‖x + y‖ ≥ 1 + δ(ε) (resp. ‖x – y‖ ≤ 1 – δ(ε)). X is said to be upper (lower) locally
uniformly monotone if any x ∈ S(X+) is upper (lower) locally monotone point.

Obviously, each UM Banach lattice is both (upper and lower) locally uniformly mono-
tone, and both these properties imply strict monotonicity. In an UM Banach lattice,
the norm is order continuous and monotonically complete. For example, the lattice Lp

(1 ≤ p < ∞) is an UM, but the lattice L∞ is not even a STM.
A map Φ : R → [0,∞] is said to be an Orlicz function if Φ(0) = 0, Φ is not identically

equal to zero, it is even, convex, and left-continuous on the whole space of R+. We say
that Φ satisfies �2-condition at zero (Φ ∈ �2(0)) if there exist u0 > 0 and K > 2 such that
Φ(u0) > 0 and Φ(2u) ≤ KΦ(u) for any 0 < u ≤ u0.

For a given Orlicz function Φ , we define a convex functional IΦ on l0 by

IΦ (x) =
∞∑

i=1

Φ
(∣∣x(i)

∣∣) for any x ∈ l0.

We define supp(x) = {i ∈ N : |x(i)| �= 0} and the Orlicz sequence space lΦ generated by an
Orlicz function Φ by the formula

lΦ =
{

x ∈ l0 : IΦ (cx) < ∞ for some c > 0 depending on x
}

.

The Orlicz space lΦ is usually equipped with the Luxemburg norm

‖x‖Φ = inf

{
ε > 0 : IΦ

(
x
ε

)
≤ 1

}

or with an equivalent one

‖x‖◦
Φ = sup

{ ∞∑

i=1

∣∣x(i)y(i)
∣∣dμ : y ∈ lΨ , IΨ (y) ≤ 1

}

called the Orlicz norm.
For any 1 ≤ p ≤ ∞ and u ≥ 0, define

sp(u) =

⎧
⎨

⎩
(1 + up)

1
p for 1 ≤ p < ∞,

max{1, u} for p = ∞

and next define sΦ ,p(x) = sp ◦ IΦ (x) for all 1 ≤ p ≤ ∞ and all x ∈ l0. Note that the functions
sp and sΦ ,p are convex. Moreover, the function sp is increasing on R

+ for 1 ≤ p < ∞, but
the function s∞ is only increasing on the interval [1,∞).

Definition 1.1 ([34]) Let 1 ≤ p ≤ ∞. For any x ∈ l0, define the p-Amemiya norm by the
formula

‖x‖Φ ,p = inf
k>0

1
k

sΦ ,p(kx).
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In this paper, the Orlicz sequence space equipped with the p-Amemiya norm will be de-
noted by lΦ ,p. It is known that ‖x‖Φ ,1 = ‖x‖◦

Φ and ‖x‖Φ ,∞ = ‖x‖Φ (see [34]). Orlicz sequence
spaces lΦ ,p are Banach lattices.

For a given Orlicz function Φ , define

aΦ = max
{

u ≥ 0 : Φ(u) = 0
}

, bΦ = sup
{

u ≥ 0 : Φ(u) < ∞}
.

For every Orlicz function Φ , we define its complementary function Ψ : R → [0,∞] by
the formula Ψ (v) = sup{u|v| – Φ(u) : u ≥ 0}. The complementary function Ψ is also an
Orlicz function. Let p+ be the right-hand side derivative of Φ on [0, bΦ ) and set p+(bΦ ) =
limu→b–

Φ
p+(u). Define the function αp : LΦ ,p → [–1,∞] by

αp(x) =

⎧
⎪⎪⎨

⎪⎪⎩

Ip–1
Φ (x)IΨ (p+(|x|)) – 1, 1 ≤ p < ∞,

–1, p = ∞, IΦ (x) ≤ 1,

IΨ (p+(|x|)), p = ∞, IΦ (x) > 1

and the functions k∗
p : lΦ ,p \ {0} → [0,∞), k∗∗

p : lΦ ,p → [0,∞) by

k∗
p = inf

{
k ≥ 0 : αp(kx) ≥ 0

}
(with infφ = ∞),

k∗∗
p = sup

{
k ≥ 0 : αp(kx) ≤ 0

}
.

It is obvious that k∗
p(x) ≤ k∗∗

p (x) for every 1 ≤ p ≤ ∞ and x ∈ lΦ ,p \ {0}.
Set Kp(x) = {0 < k < ∞ : k∗

p(x) ≤ k ≤ k∗∗
p (x)}. Note that Kp(x) = ∅ if and only if

k∗
p(x) = k∗∗

p (x) = ∞. Moreover, the p-Amemiya norm ‖x‖Φ ,p is attained at every point
k ∈ [k∗

p(x), k∗∗
p (x)) where k∗

p(x) < ∞, and at k∗∗
p (x) whenever this number is finite.

2 Monotonicity in lΦ ,p spaces
We begin this section with some useful lemmas.

Lemma 2.1 ([10]) Let X be a Banach sequence lattice. X is STM iff, for every x =
(x(1), x(2), . . .) ∈ X such that ‖x‖ = 1 for every atom {j} included in supp(x), ‖xχN\{j}‖ < ‖x‖.

Lemma 2.2 ([10]) A Banach lattice X is UM iff, for any x ∈ X such that ‖x‖ = 1 and for
every ε > 0, there exists δ > 0 such that, for any measurable set A ⊂ supp(x) where ‖xχA‖ > ε,
we have ‖xχN\A‖ < ‖x‖ – δ.

Lemma 2.3 Let x ∈ lΦ ,p \ {0} be given. If Kp(x) = ∅, then ‖x‖Φ ,p = rΦ

∑∞
i=1 |x(i)|, where rΦ =

limu→∞ Φ(u)
u .

Proof Let f (k) = 1
k (1 + Ip

Φ (kx))
1
p . Then limk→0+ f (k) = +∞. Since f (k) is continuous and

Kp(x) = ∅, we have

‖x‖Φ ,p = lim
k→∞

f (k) = lim
k→∞

IΦ (kx)
k

= lim
k→∞

∞∑

i=1

∣∣x(i)
∣∣Φ(kx(i))

k|x(i)| = rΦ

∞∑

i=1

∣∣x(i)
∣∣. �

Lemma 2.4 Let Φ be an Orlicz function. For any subset A ⊂N and any p with 1 ≤ p < ∞,
the following conditions are equivalent:
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(1) For any x ∈ lΦ ,p satisfying supp(x) ⊂ A, we have Kp(x) = ∅.
(2) Ip–1

Φ (q–(rΦχA))IΨ (rΦχA) < 1, where χA =
∑

i∈A ei.

Proof (1) ⇒ (2) If Ip–1
Φ (q–(rΦχA))IΨ (rΦχA) > 1, take a sequence {Nn} of subsets of N such

that N1 ⊂ N2 ⊂ N3 ⊂ · · · ,
⋃∞

n=1 Nn = N, and χNn ∈ lΦ ,p for all n ∈ N. Since

lim
n→∞ Ip–1

Φ

(
q–(nχNn∩A)

)
IΨ

(
p+(nχNn∩A)

)
= Ip–1

Φ

(
q–(rΦχA)

)
IΨ (rΦχA),

there exists n0 ∈N such that Ip–1
Φ (q–(n0χNn0 ∩A))IΨ (p+(n0χNn0 ∩A)) > 1, thus Kp(n0χNn0 ∩A) �=

∅. Therefore Ip–1
Φ (q–(rΦχA))IΨ (rΦχA) ≤ 1.

If Ip–1
Φ (q–(rΦχA))IΨ (rΦχA) = 1, then IΦ (q–(rΦχA)) < ∞. Define y = q–(rΦχA), we have

IΦ (y) < ∞, that is, y ∈ lΦ ,p.
For any k ≥ 1, we get Ip–1

Φ (ky)IΨ (p+(ky)) ≤ Ip–1
Φ (q–(rΦχA))IΨ (rΦχA) = 1 and

Ip–1
Φ (ky)IΨ

(
p+(ky)

) ≥ Ip–1
Φ (y)IΨ

(
p+(y)

)

= Ip–1
Φ

(
q–(rΦχA)

)
IΨ

(
p+

(
q–(rΦχA)

))

≥ Ip–1
Φ

(
q–(rΦχA)

)
IΨ (rΦχA) = 1.

Therefore, [1,∞) ⊂ Kp(y) �= ∅, so Ip–1
Φ (q–(rΦχA))IΨ (rΦχA) < 1.

(2) ⇒ (1) Set x ∈ lΦ ,p, supp(x) ⊂ A. If Ip–1
Φ (q–(rΦχA))IΨ (rΦχA) < 1, then

Ip–1
Φ (kx)IΨ

(
p+(kx)

) ≤ Ip–1
Φ

(
q–(rΦχA)

)
IΨ (rΦχA) < 1

for all k > 0. So k∗
p(x) = ∞, whence Kp(x) = ∅. �

Next, let us discuss the strict monotonicity, upper and lower local uniform monotonic-
ities, and uniform monotonicity of lΦ ,p.

Theorem 2.1 If 1 ≤ p < ∞, the space lΦ ,p is strictly monotone if and only if one of the
following conditions holds:

(1) aΦ = 0 or
(2) Ip–1

Φ (q–(rΦ ))IΨ (rΦ ) < 1.
If p = ∞, lΦ ,p is strictly monotone if and only if aΦ = 0 and Φ ∈ �2(0).

Proof Here, we only discuss the case where 1 ≤ p < ∞, see [22] for detailed discussion
whenever p = ∞.

Necessity. If aΦ > 0, divide N into infinite pairwise disjoint subsets, denoted by Nn, such
that Card(Nn) = ∞ for all n ∈N. Define xn =

∑
i∈Nn+1

aΦei, x =
∑

i∈N1
aΦei.

For any k > 1, we have IΦ (kxn) = IΦ (kx) = IΦ (k(xn + x)) = ∞. Moreover, for any k ∈ (0, 1],
we get

1
k
(
1 + Ip

Φ (kxn)
) 1

p =
1
k
(
1 + Ip

Φ (kx)
) 1

p =
1
k
(
1 + Ip

Φ

(
k(xn + x)

)) 1
p =

1
k

.

Therefore, ‖xn‖Φ ,p = infk>0
1
k (1 + Ip

Φ (kxn))
1
p = 1. In the same way we obtain that ‖x‖Φ ,p =

‖xn + x‖Φ ,p = 1. This shows that lΦ ,p is not STM.
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If Ip–1
Φ (q–(rΦ ))IΨ (rΦ ) ≥ 1, take a sequence {Nn} of subset of N such that N1 ⊂ N2 ⊂ N3 ⊂

· · · ,
⋃∞

n=1 Nn = N, and χNn ∈ lΦ ,p for all n ∈N. Since

lim
n→∞ Ip–1

Φ

(
q–(nχNn )

)
IΨ

(
p+(nχNn )

)
= Ip–1

Φ

(
q–(rΦ )

)
IΨ (rΦ ),

there exists n0 ∈ N such that Ip–1
Φ (q–(n0χNn0

))IΨ (p+(n0χNn0
)) ≥ 1. Consequently, by Lem-

ma 2.4 we have Kp(n0χNn0
) �= ∅.

Set x = n0χNn0
. Then x ∈ lΦ ,p and Kp(x) �= ∅. Take h ∈ Kp(x) and define y = x + aΦ

h χN\Nn0
.

Then we have x ≤ y, x �= y, and

‖y‖Φ ,p ≤ 1
h
(
1 + Ip

Φ (hy)
) 1

p =
1
h
(
1 +

(
IΦ (hx) + IΦ (aΦχN\Nn0

)
)p) 1

p

=
1
h
(
1 + Ip

Φ (hx)
) 1

p = ‖x‖Φ ,p.

Therefore, ‖x‖Φ ,p = ‖y‖Φ ,p, which implies that lφ,p is not STM.
Sufficiency. If aΦ = 0, for any x, y ∈ (lΦ ,p)+ satisfying ‖x‖Φ ,p = 1 and y �= 0, the following

cases are considered,
1. If Kp(x) �= ∅, then Kp(x + y) �= ∅, so taking k ∈ Kp(x + y), we get

‖x + y‖p
Φ ,p – ‖x‖p

Φ ,p =
1
kp

(
1 + Ip

Φ

(
k(x + y)

))
– ‖x‖p

Φ ,p

≥ 1
kp

(
1 + Ip

Φ

(
k(x + y)

))
–

1
kp

(
1 + Ip

Φ (kx)
)

≥ 1
kp

((
IΦ (kx) + IΦ (ky)

)p – Ip
Φ (kx)

)

≥ 1
kp Ip

Φ (ky) > 0.

2. If Kp(x) = ∅, then Kp(x + y) = ∅, and according to Lemma 2.3,

‖x + y‖Φ ,p = rΦ

∞∑

i=1

∣∣x(i) + y(i)
∣∣ = rΦ

( ∞∑

i=1

x(i) +
∞∑

i=1

y(i)

)

= ‖x‖Φ ,p + ‖y‖Φ ,p = ‖x‖Φ ,p > 1.

When Kp(x + y) �= ∅, taking k ∈ Kp(x + y), the proof can be proceeded in the same way as
in case 1. In conclusion, lΦ ,p is strictly monotone.

In the following we consider (2) was established. For any x ∈ S(lΦ ,p) and any j ∈ supp(x),
we have ‖xχj‖Φ ,p > 0. According to Lemma 2.4, we know that Kp(xχN\{j}) = ∅. If Kp(x) = ∅,
then

‖x‖Φ ,p = rΦ

∞∑

i=1

∣∣x(i)
∣∣ = rΦ

∣∣x(j)
∣∣ + rΦ

∑

i�=j

∣∣x(i)
∣∣

≥ ‖xχ{j}‖Φ ,p + ‖xχN\{j}‖Φ ,p > ‖xχN\{j}‖Φ ,p.

If Kp(x) �= ∅, taking h ∈ Kp(x), we get

‖x‖Φ ,p =
1
h
(
1 + Ip

Φ (hx)
) 1

p ≥ 1
h
(
1 + Ip

Φ (hxχN\{j})
) 1

p > ‖xχN\{j}‖Φ ,p.
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According to Lemma 2.1, lΦ ,p is strictly monotone. �

Lemma 2.5 If x ∈ S(lΦ ,p), x ≥ 0, and Kp(x) = ∅, then x is a point of upper local uniform
monotonicity as well as a point of lower local uniform monotonicity.

Proof By Lemma 2.3, we have ‖x‖Φ ,p = rΦ

∑∞
i=1 x(i). For any y ∈ (lΦ ,p)+ with y ≤ x and

‖y‖Φ ,p ≥ ε, we have KΦ ,p(x – y) = ∅, whence

‖x – y‖Φ ,p = rΦ

∞∑

i=1

(
x(i) – y(i)

)
= rΦ

∞∑

i=1

x(i) – rΦ

∞∑

i=1

y(i)

= ‖x‖Φ ,p – ‖y‖φ,p ≤ 1 – ε.

This shows that x is a point of lower local uniform monotonicity.
Assume that x is not a point of upper local uniform monotonicity. Then there exists a

sequence {xn} in (lΦ ,p)+ such that ‖xn‖Φ ,p ≥ ε > 0 and limn→∞ ‖x + xn‖Φ ,p = 1. Next, we
consider some cases under this assumption.

1. There exists an infinite number of n such that Kp(xn + x) = ∅. Due to Lemma 2.3, we
have

‖x + xn‖Φ ,p = rΦ

∞∑

i=1

(
x(i) + xn(i)

)
= rΦ

∞∑

i=1

x(i) + rΦ

∞∑

i=1

xn(i)

≥ ‖x‖Φ ,p + ‖xn‖Φ ,p ≥ 1 + ε.

This inequality holds for infinite n ∈ N, which is contradictory obviously.
2. There exists an infinite number of n ∈N such that Kp(xn + x) �= ∅. In this case,

applying the double extract subsequence theorem, we may assume that Kp(xn + x) �= ∅
for any n ∈N. Let kn ∈ Kp(xn + x), n = 1, 2, . . . . Here, we consider two subcases as
follows.
(1) If limn→∞ kn = k0 < ∞, then

‖x + xn‖Φ ,p =
1
kn

(
1 + Ip

Φ

(
kn(xn + x)

)) 1
p ≥ 1

kn

(
1 + Ip

Φ (knx)
) 1

p .

Since Kp(x) = ∅, limn→∞ ‖xn + x‖Φ ,p = 1 and by the Fatou lemma, we have

1 = lim
n→∞‖xn + x‖Φ ,p ≥ 1

k0

(
1 + Ip

Φ (k0x)
) 1

p > ‖x‖Φ ,p = 1,

which is a contradiction.
(2) If limn→∞ kn = ∞, then by superadditivity of Φ on R+, we get

1 = lim inf
n→∞ ‖xn + x‖p

= lim inf
n→∞

1
kp

n

(
1 + Ip

Φ

(
kn(xn + x)

))

≥ lim inf
n→∞

1
kp

n

(
1 + Ip

Φ (knxn) + Ip
Φ (knx)

)
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= lim inf
n→∞

(
1
kp

n

(
1 + Ip

Φ (knxn)
)

+
1
kp

n

(
1 + Ip

Φ (knx)
))

≥ lim inf
n→∞

(‖xn‖p
Φ ,p + ‖x‖p

Φ ,p
)

≥ 1 + ε.

This is a contradiction, which finishes the proof. �

Lemma 2.6 ([35])
(1) For any sequences {ξk}, {ηk}, we have (

∑
k |ξk + ηk|p)

1
p ≤ (

∑
k |ξk|p)

1
p + (

∑
k |ηk|p)

1
p

for every 1 ≤ p < ∞.
(2) (1 + (u + v)p)

1
p ≤ (1 + up)

1
p + v for all u, v ≥ 0 and every 1 ≤ p < ∞.

(3) max{1, (u + v)} ≤ max{1, u} + v for all u, v ≥ 0.
(4) sΦ ,p(x + y) ≤ sΦ ,p(x) + IΦ (y) for all measurable functions x, y with disjoint supports.

Theorem 2.2 For the Orlicz sequence space, the following conditions are equivalent:
(1) lΦ ,p is uniformly monotone.
(2) lΦ ,p is upper locally uniformly monotone.
(3) lΦ ,p is lower locally uniformly monotone.

(4)
{

lΦ ,p is strictly monotone, if p = ∞,
lΦ ,p is strictly monotone and Φ ∈ �2(∞), if 1 ≤ p < ∞.

Proof Obviously, (1) ⇒ (2) and (1) ⇒ (3).
(4) ⇒ (1). In this paper, we only discuss the case 1 ≤ p < ∞, because the case p = ∞ was

discussed in [22].
Assume that Φ ∈ �2(0). If aΦ = 0 but lΦ ,p is not uniformly monotone, there exist ε > 0

and xn, yn ∈ l+
Φ ,p for all n ∈N satisfying ‖xn‖Φ ,p = 1, ‖yn‖Φ ,p ≥ ε, and limn→∞ ‖xn + yn‖Φ ,p =

1. Then ‖yn/2‖Φ ≥ 2– 1
p –1

ε. By virtue of Φ ∈ �2(0), there exists δ > 0 such that IΦ (yn/2) ≥ δ.
Take kn ∈ Kp(xn + yn). Since ‖xn + yn‖Φ ,p ≤ 2, we get kn > 1/2. Hence

‖xn + yn‖p
Φ ,p – 1 = ‖xn + yn‖p

Φ ,p – ‖xn‖p
Φ ,p

≥ 1
kp

n

(
1 + Ip

Φ

(
kn(xn + yn)

))
–

1
kp

n

(
1 + Ip

Φ (knxn)
)

≥ 1
kp

n

((
IΦ (knxn) + IΦ (knyn)

)p – Ip
Φ (knxn)

)

≥ 1
kp

n
Ip
Φ (knyn) ≥ 2pIp

Φ

(
yn

2

)
≥ 2pδp,

which contradicts the equality limn→∞ ‖xn + yn‖Φ ,p = 1.
Moreover, if Ip–1

Φ (q–(rΦ ))IΨ (rΦ ) < 1, then Ip–1
Φ (p+(kx))IΨ (kx) ≤ Ip–1

Φ (q–(rΦ ))IΨ (rΦ ) < 1 for
all x ∈ lΦ ,p and all k > 0, so we have k∗

x = ∞ and Kp(x) = ∅. For any ε > 0 and any supp(x) ⊂ A
such that ‖xχA‖Φ ,p ≥ ε, it is easy to see that Kp(xχA) = ∅, Kp(xχN\A) = ∅. Therefore,

‖x‖Φ ,p = rΦ

∞∑

i=1

∣∣x(i)
∣∣ = rΦ

∑

i∈A

∣∣x(i)
∣∣ + rΦ

∑

i∈N\A

∣∣x(i)
∣∣
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> ‖xχA‖Φ ,p + ‖xχN\A‖Φ ,p

≥ ‖xχN\A‖Φ ,p + ε.

By Lemma 2.2, lΦ ,p is uniformly monotone.
(2) ⇒ (4). We only need to prove that Φ ∈ �2(0) if 1 ≤ p < ∞. If not, for any ε ∈ (0, 1/2)

there exists a sequence {un} ↓ 0 such that

Φ(un) < εunp+(un),

( ∞∑

n=1

Ψ
(
p+(un)

)
)( ∞∑

n=1

Φ(un)

)p–1

= 1.

Set k = (1 + (
∑∞

n=1 Φ(un))p)
1
p and define x = 1

k (u1, 0, u2, 0, u3, 0, . . .). Then

αp(kx) = Ip–1
Φ (kx)IΨ

(
p+

(
k|x|)) – 1

=

( ∞∑

n=1

Ψ
(
p+(un)

)
)( ∞∑

n=1

Φ(un)

)p–1

– 1 = 0.

So we get k ∈ Kp(x) and ‖x‖Φ ,p = 1
k (1 + Ip

Φ (kx))
1
p = 1.

Since Φ /∈ �2(0), for any η ∈ (0, ε), there exists sufficiently small v > 0 such that Φ((1 +

η)v) > Φ(v)
η

. Take m ∈ N such that η < mΦ(v) ≤ 2η and define y = 1
k (

2m︷ ︸︸ ︷
0, v, 0, v, . . . , 0, v, 0, 0,

0, . . .). Note that,

IΦ
(
(1 + η)ky

)
= mΦ

(
(1 + η)v

)
>

mΦ(v)
η

> 1.

So we have ‖y‖Φ ,p ≥ ‖y‖Φ ≥ 1
(1+η)k > 1

(1+ε)k . And due to

k =

(
1 +

( ∞∑

n=1

Φ(un)

)p) 1
p

<

(
1 + εp

( ∞∑

n=1

unp+(un)

)p) 1
p

=

(
1 + εp

( ∞∑

n=1

Φ(un) +
∞∑

n=1

Ψ
(
p+(un)

)
)p) 1

p

=

(
1 + εp

( ∞∑

n=1

Φ(un) +

( ∞∑

n=1

Φ(un)

)1–p)p) 1
p

,

we obtain kp < 1 + εp((kp – 1)
1
p + (kp – 1)– 1

q )p, thus k < ( 1
1–ε

)
1
p and ‖y‖Φ ,p ≥ 1

(1+ε)k > (1–ε)
1
p

1+ε
.

Since k > 1, by Lemma 2.6, we have

‖x + y‖Φ ,p – 1 = ‖x + y‖Φ ,p – ‖x‖Φ ,p

≤ 1
k

(1 + Ip
Φ

(
k(x + y)

) 1
p –

1
k

(1 + Ip
Φ (kx)

1
p
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≤ 1
k

IΦ (ky) < IΦ (ky)

= mΦ(v) ≤ 2η.

This contradicts property (2) from our theorem.
(3) ⇒ (4). If Φ does not satisfy �2(0)-condition, there exists a sequence {uk} ↑ ∞, satis-

fying Φ((1 + 1
k )uk) > 2k+1Φ(uk) for all k ∈ N. Take mn ∈ N such that 1

2n+1 ≤ mnΦ(un) < 1
2n .

And define

x =
( m1︷ ︸︸ ︷
u1, . . . , u1,

m2︷ ︸︸ ︷
u2, . . . , u2

m3︷ ︸︸ ︷
u3, . . . , u3, . . .

)
,

xn =
∞∑

n=(m1+m2+···+mn)+1

x(i)ei (for all n ∈N).

Then 0 ≤ xn ≤ x and

IΦ (x) =
∞∑

i=1

miΦ(ui) ≤
∞∑

i=1

1
2i = 1,

IΦ
((

1 +
1
n

)
xn

)
=

∞∑

i=n+1

Φ

((
1 +

1
n

)
ui

)
≥

∞∑

i=n+1

Φ

((
1 +

1
i

)
ui

)

>
∞∑

i=n+1

2i+1miΦ(ui) =
∞∑

i=n+1

1 = ∞ (for all n ∈N).

Hence

n
n + 1

≤ ‖xn‖Φ ≤ ‖xn‖Φ ,p, 1 = ‖x‖Φ ≤ ‖x‖Φ ,p ≤ 2
1
p (for all n ∈N)

and

lim
n→∞‖x – xn‖Φ ,p = lim

n→∞

∥∥∥∥∥

(m1+m2+···+mn)∑

n=1

x(i)ei

∥∥∥∥∥
Φ ,p

= ‖x‖Φ ,p.

This means that lΦ ,p is not lower locally uniformly monotonic. �

Corollary 2.1 lΦ ,p is order continuous if and only if Φ ∈ �2(0).

Example Let Φ(u) = |u|e– 1
|u| for u �= 0 and Φ(0) = 0. Then the Orlicz space lΦ ,p is STM for

p = 1 but it is not STM for 1 < p ≤ ∞.

Indeed, Φ vanishes only at 0. For any u > 0, limu→0
Φ(2u)
Φ(u) = limu→0 2e

1
2u = ∞, which im-

plies that the function Φ does not satisfy the condition �2(0). By Theorem 2.2, we obtain
our result.

A Banach lattice X is said to be weakly orthogonal if, for every weakly null sequence
{xn}, it follows that limn→∞ ‖|xn| ∧ |x|‖ = 0 for all x ∈ X. Dalby [36] proved that weakly
compact convex subsets of a weakly orthogonal Banach lattice with uniformly monotone
norm have a weak normal structure. And Yunan Cui [37] proved that the Köthe sequence
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spaces X are weakly orthogonal if and only if X is order continuous. So we obtain the
following result.

Corollary 2.2 If aΦ = 0, Φ ∈ �2(0), then each nonexpansive mapping of a nonempty con-
vex weakly compact set in lΦ ,p has a fixed point.

3 Coefficients of local uniform monotonicities of lΦ ,p

For a given Banach lattice X, the upper (lower) modulus of monotonicity of X for all ε > 0
(resp. 0 < ε ≤ 1) is defined by the formula

ηX(ε) = inf
{‖x + y‖ – 1 : x, y ∈ X+,‖x‖ = 1,‖y‖ ≥ ε

}
,

δX(ε) = inf
{

1 – ‖x – y‖ : x ≥ y ≥ 0,‖x‖ = 1,‖y‖ ≥ ε
}

.

In 1993, Kurc [14] proved the following equality:

δX(ε) =
ηX(ε)

1 + ηX(ε)
(∀ε ∈ [0, 1)

)
.

Obviously, X is uniformly monotone if and only if ηX(ε) > 0 (or δX(ε) > 0) for every ε ∈
(0, 1]. X is strictly monotone if and only if δX(1) = 1.

Moreover, the numbers εm(X) and ε̃m(X) defined by

εm(X) = sup
{
ε ∈ [0, 1] : ηX(ε) = 0

}
= inf

{
ε ∈ [0, 1] : ηX(ε) > 0

}
,

ε̃m(X) = sup
{
ε ∈ [0, 1] : δX(ε) = 0

}
= inf

{
ε ∈ [0, 1] : δX(ε) > 0

}

are said to be the upper and lower characteristic of the monotonicity of X, respectively. In
2009, Hudzik and Kaczmarek [20] proved the following:

ε̃m(X) ≤ εm(X) ≤ 2̃εm(X).

Namely, X is uniformly monotonic if and only if εm(X) = ε̃m(X) = 0.
Similarly, for any x ∈ S(X+) and any ε > 0 (resp. ε ∈ [0, 1]), the functions defined by

ηx(ε) = inf
{‖x + y‖ – 1 : y ∈ X+,‖y‖ ≥ ε

}
,

δx(ε) = inf
{

1 – ‖x – y‖ : 0 < y ≤ x,‖y‖ ≥ ε
}

are called the upper and the lower modulus of local monotonicity at the point x, respec-
tively. Moreover, the numbers

εm(x) = sup
{
ε ∈ [0, 1] : ηx(ε) = 0

}
,

ε̃m(x) = sup
{
ε ∈ [0, 1] : δx(ε) = 0

}

are called the upper and the lower characteristic of monotonicity at the point x, respec-
tively. Clearly, x is a point of upper (lower) local uniform monotonicity if and only if
εm(x) = 0 (̃εm(x) = 0).
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For more information about the characteristics of monotonicity and the modulus of
monotonicity, see [7, 9, 13, 20] and the references therein.

In the last part of our paper we consider the problem of estimates for the local character-
istic of monotonicity lower modulus of monotonicity of Orlicz function spaces equipped
with the p-Amemiya norm.

Lemma 3.1 ([9]) For any ε ∈ (0, 1), we have

δX(ε) = inf
{

1 – ‖x – y‖ : 0 ≤ y ≤ x,‖X‖ = 1,‖y‖ ≥ ε
}

= inf
{

1 – ‖x – y‖ : 0 ≤ y ≤ x,‖X‖ = 1,‖y‖ = ε
}

= inf
{

1 – ‖x – y‖ : 0 ≤ y ≤ x,‖X‖ ≤ 1,‖y‖ ≥ ε
}

= inf
{

1 – ‖x – y‖ : 0 ≤ y ≤ x,‖X‖ ≤ 1,‖y‖ = ε
}

.

Lemma 3.2 ([34]) For every x ∈ lΦ ,p \ {0} and every 1 ≤ p < ∞, the function k → 1
k sΦ ,p(kx)

is decreasing on (0, k∗
p(x)).

Theorem 3.1
(1) If Φ /∈ �2(0), 1 ≤ p ≤ ∞, then ε̃m(lΦ ,p) = εm(lΦ ,p) = 1.
(2) If Φ ∈ �2(0), 1 ≤ p < ∞, and either of the two conditions (i) aΦ = 0 or

(ii) Ip–1
Φ (q–(rΦ ))IΨ (rΦ ) < 1 is satisfied, then ε̃m(lΦ ,p) = εm(lΦ ,p) = 0.

(3) If Φ ∈ �2(0), p = ∞, then ε̃m(lΦ ,p) = εm(lΦ ,p) = 0.

Let us discuss the local characteristic of monotonicity at the points from the unit sphere.

Lemma 3.3 ([38]) For any u ∈ lΦ , setting [u]n =
∑n

i=1 u(i)ei, we have

lim
n→∞‖u – un‖Φ = lim

n→∞‖u – un‖◦
Φ = θ (u),

where θ (u) = inf{λ > 0 : IΦ ( u
λ

) < ∞}.

Theorem 3.2 For any x ∈ S(l+
Φ ,p), we have the following results:

(1) If Φ /∈ �2(0), then

εm(x) =

⎧
⎨

⎩
1, p = ∞,

1
k∗

p (x) , 1 ≤ p < ∞.

(2) If Φ ∈ �2(0), 1 ≤ p < ∞, and either of the two conditions (i) aΦ = 0 or
(ii) Ip–1

Φ (q–(rΦ ))IΨ (rΦ ) < 1 is satisfied, then εm(x) = 0;
(3) If Φ ∈ �2(0) and p = ∞, then εm(x) = 0.

Proof Only the case 1 ≤ p < ∞ should be considered. If condition (2) is satisfied, then lΦ ,p

is upper locally uniformly monotone, so εm(x) = 0 according to Theorem 2.2.
If Φ /∈ �2(0), then for any ε ∈ (0, 1

3 ) and any δ > 0, there is u > 0 such that Φ(u) < δ

and Φ((1 + ε)u) > 1
δ
Φ(u). Choose m ∈ N such that δ < mΦ(u) ≤ 2δ. Take i0 ∈ N such that

k∗
p(x)x(i) < εu is satisfied for all i > i0.
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Define y =
∑i0+m

i=i0+1( u
k∗

p (x) – x(i))ei. Then

IΦ
(
(1 + 3ε)k∗

p(x)y
)

>
i0+m∑

i=i0+1

Φ
(
(1 + 3ε)(1 – ε)u

)
> mΦ

(
(1 + ε)u

)
> 1.

Hence ‖y‖Φ ,p ≥ ‖y‖Φ > 1
(1+3ε)k∗

p (x) .
On the other hand, according to Lemma 2.6, we have

‖x + y‖Φ ,p

≤ 1
k∗

p(x)
(
1 + Ip

Φ

(
k∗

p(x)(x + y)
)) 1

p

=
1

k∗
p(x)

[
1 +

( i0+m∑

i=i0+1

Φ(u) +
i0∑

i=1

Φ
(
k∗

p(x)x(i)
)

+
∞∑

i=i0+m+1

Φ
(
k∗

p(x)x(i)
)
)p] 1

p

<
1

k∗
p(x)

(
1 +

(
mΦ(u) + IΦ

(
k∗

p(x)x
))p) 1

p

≤ 1
k∗

p(x)
((

1 + Ip
Φ

(
k∗

p(x)x
)) 1

p + mΦ(u)
)

= ‖x‖Φ ,p +
1

k∗
p(x)

mΦ(u)

≤ ‖x‖Φ ,p + 2δ.

So, ηx( 1
(1+3ε)k∗

p (x) ) ≤ 2δ → 0 as δ → 0. Therefore, εm(x) ≥ 1
(1+3ε)k∗

p (x) . By the arbitrariness of
ε > 0, we have εm(x) ≥ 1

k∗
p (x) .

Assuming that εm(x) > 1
k∗

p (x) . There is ε0 > 0 such that εm(x) > 1
k∗

p (x) + ε0, thus there exists
a sequence {yn} ⊂ l+

Φ ,p satisfying ‖yn‖Φ ,p ≥ 1
k∗

p (x) + ε0 and limn→∞ ‖x + yn‖Φ ,p = 1.
Denote kn = k∗

p(x + yn) for all n ∈ N. Clearly, kn ≤ k∗
p(x). Without loss of generality, as-

suming that limn→∞ kn = k0, we have k0 ≤ k∗
p(x). If k0 < k∗

p(x), by Lemma 3.2, the func-
tion k → 1

k sΦ ,p(kx) is decreasing on (0, k∗
p(x)), so there is σ > 0 such that 1

kn
sΦ ,p(knx) ≥

1
k∗

p (x) sΦ ,p(k∗
p(x)) + σ for n large enough. Hence,

‖x + yn‖Φ ,p – 1 = ‖x + yn‖Φ ,p – ‖x‖Φ ,p ≥ σ

for n large enough. This contradicts the equality limn→∞ ‖x + yn‖Φ ,p = 1.
If k0 = k∗

p(x), by virtue of the Fatou lemma, lim infn→∞ IΦ (knx) ≥ IΦ (k0x) = (kp
0 – 1)

1
p .

Then

kp
0 = lim

n→∞ kp
n‖x + yn‖p

Φ ,p

= lim
n→∞

(
1 + Ip

Φ

(
kn(x + yn)

))

≥ lim
n→∞

(
1 +

(
IΦ (knx) + IΦ (knyn)

)p)

≥ lim
n→∞

(
1 + Ip

Φ (knx) + Ip
Φ (knyn)

)
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≥ lim
n→∞

(
Ip
Φ (knx) + ‖kny‖p

Φ ,p
)

≥
(

k0

(
1
k0

+ ε0

))p

+ kp
0 – 1

= kp
0 + (1 + k0ε0)p – 1 > kp

0 .

This is a contradiction. Therefore, εm(x) = 1
k∗

p (x) . �

Theorem 3.3 For any x ∈ S(l+
Φ ,p) and any 1 ≤ p ≤ ∞, we have

ε̃m(x) = θ (x).

Proof Set [x]n =
∑n

i=1 x(i)ei for all x ∈ lΦ ,p. By Lemma 3.3, we have θ (x) = limn→∞ ‖x –
[x]n‖Φ ,p.

For any ε > 0, there is i0 ∈N such that ‖[x]i0‖Φ ,p > 1–ε, whence ‖x–(x–[x]i0 )‖Φ ,p > 1–ε.
Further, as a result of the inequalities ‖x–[x]i0‖Φ ,p ≥ ‖x–[x]i0‖Φ ≥ θ (x), we get δx(θ (x)) < ε.
By the arbitrariness of ε, we obtain δx(θ (x)) = 0, whence ε̃m(x) ≥ θ (x).

Assuming that ε̃m(x) > θ (x), then there is ε0 > 0 such that ε̃m(x) > θ (x)+ε0. So there exists
a sequence {yn} in lΦ ,p satisfying yn ≤ x, ‖yn‖Φ ,p ≥ θ (x) + ε0 for any n ∈ N and limn→∞ ‖x –
yn‖Φ ,p = 1.

Choose a sufficiently large i0 such that ‖x – [x]i0‖Φ ,p < θ (x) + ε0
2 . Then

‖yn‖Φ ,p ≤ ∥∥[yn]i0
∥∥

Φ ,p +
∥∥yn – [yn]i0

∥∥
Φ ,p

≤ ∥∥[yn]i0
∥∥ +

∥∥x – [x]i0
∥∥

Φ ,p

<
∥∥[yn]i0

∥∥
Φ ,p + θ (x) +

ε0

2
,

whence ‖[yn]i0‖Φ ,p > ε0
2 . Consequently, ‖[yn]i0‖Φ > ε0

2
1
p +1

, whence there is δ > 0 such that

IΦ ([yn]i0 ) > δ. Taking any k ∈ Kp(x), we get

‖x – yn‖p
Φ ,p ≤ 1

kp

(
1 + Ip

Φ

(
k(x – yn)

))

≤ 1
kp

(
1 +

(
IΦ (kx) – IΦ (kyn)

)p)

≤ 1
kp

(
1 +

(
Ip
Φ (kx) – Ip

Φ (kyn)
))

≤ ‖x‖p
Φ ,p – Ip

Φ (yn)

≤ 1 – δp.

This is a contradiction with limn→∞ ‖x – yn‖Φ ,p = 1. Therefore, ε̃m(x) = θ (x). �
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