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1 Introduction

To unify discrete and continuous analysis and generalize the discrete and continuous the-
ories to cases “in between’, Stefan Hilger in [1] initiated the notions of a time scale and
a delta derivative of a function defined on the time scale. The author then presented the
calculus on time scales. If the time scale is an interval, the calculus is reduced to the clas-
sical calculus; if the time scale is discrete, the calculus is reduced to the calculus of finite
differences. Since then, research in the area of the theory of time scales introduced by
Stefan Hilger has exceeded by far a thousand publications, and numerous applications to
all branches of science, such as operations research, engineering, economics, physics, fi-
nance, statistics, and biology, have been proposed. For more details on time scales theory,
the interested readers may consult [2—12] and the references therein.

As we all know, inequality plays a very important and basic role in all mathematic areas,
and it is also an indispensable and basic tool in engineering technology (see [13-27]).
The classic Cauchy—Schwarz inequality is an important cornerstone in some branches of
mathematic areas. It is also a bridge to help solve problems into depth. In [28], Agarwal et

al. first gave the following Cauchy—Schwarz inequality for A-integral on time scale.

Theorem A Let T be a time scale, t1,t, € T with t; < t, and let s,t € Cyy([t1, t2],R). Then

/‘t2 |S(x)t(x)|Ax < (_/.tz sz(x)Ax) ’ (/tz tz(x)Ax> z' (1)

Later, Wong et al. [29] presented the extension of inequality (1).
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Theorem B Let T be a time scale, t1,t, € T and t; < t, and let s,t, . € C,4([t1, 2], R). Then

/2‘k(x)“s(x)t(x)‘Ax§ (/ zyk(x)|52(x)Ax)7</2‘A(x)’t2(x)Ax)7.

In 2008, Ozkan et al. [30] introduced the time scale versions of (1) for the V-integral and
oq-integral, respectively.

Theorem C Let T be a time scale, t1,t, € T and t; < ty, and let s, t, ). € Ciy([t1, 2], R). Then

/2\x(x)\\s(x)t(x)\wg (/2‘}L(x)‘sz(x)Vx>2</2|k(x)‘t2(x)Vx)2. 2)

Theorem D Let T be a time scale, t1,t, € T with t; < ty, and let s,t,A : [t1,t5] — R be
©q-integrable functions. Then

/ 2|)L(x)||s(x)t(x)| O X < (/ 2|)\(x)|s2(x) S x) ’ </ 2|)L(x)|t2(x) O x> 2. (3)

Remark 1.1 Taking « = 0 in Theorem D, inequality (3) is reduced to inequality (2). Taking
a =1 in Theorem D, inequality (3) is reduced to inequality (1).

In 2018, Tian [3] gave the triple diamond-alpha integral and proved that the Cauchy—
Schwarz inequality holds for the triple diamond-alpha integral on the time scale.

Theorem E Let A(x1, %2, %3), (X1, %2, %3), £(X1, %2, %3) ¢ [cz,-,b,»].f'T — R be oy -integrable func-
tions with A(x1,%2,x3) > 0. Then

by pby pbs 2
(/ / / A1, %2, X3)8(x1, %2, X3)E(X1, X2, X3) O X1 Og X Og xs)
al a as
by pby b3
2
= (/ / / A%, %2, %3)5° (%1, %2, X3) Og X1 Og X O xs)
ay a as
by pby b3
2
X (/ / / A1, %, X3)E7 (%1, X2, X3) O X1 O X2 O x3>.
al ay Jaz

In 2019, Tian et al. [4] introduced the notion of n-tuple diamond-alpha integral for
a function of n variables and established the Cauchy-Schwarz inequality for n-tuple
diamond-alpha integral as follows.

Theorem F Let A(x),s(x),t(x) : [a;,b;]F — R be o4-integrable functions with L(x) > 0.
Then

by by 2
(/ .. f AX)S(X)E(X) ©g X1+ Oy xn)
by by
S (/ / )\,(x)sz(x) <>ot xl"'oa xn)
by ' by
x </ / A(x)tz(x) Oq X1+ Oy xn>, )

where X = (X1,%2,...,%,).
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Moreover, Yeh et al. in [31] presented some interesting complements of the Cauchy—
Schwarz inequality via delta integral. Motivated by the above results, in the paper, by using
methods similar to that in [31], we shall give some new variants, generalizations, and re-
finements of the Cauchy—Schwarz inequality for n-tuple diamond-alpha integral on time
scales.

2 Main results
Throughout the paper, we use T to denote a time scale, denote x = (x1,%2,...,%,), [4;, bi]} =

[a1,b1] X [az, by] X - -+ X [a,, b,], where x;,a;,b; € T with a; < b;,i=1,2,...,n

Proposition 2.1 ([4]) Let s(x), £(X) be oq-integrable functions on [a;, b;l} (i=1,2,...,n).
(P1) Ifs(x) > 0 for x € [a;, b;]}, then

b b
.
al an

(P2) If s(x) < t(x) for x € [a;, b;]y, then

by by b1 by
/ / S(x)oaxl"'oaxnff / LX) Og X1 -+ Og Ko
a an ai an

(P3) Iff(x) >0 forx € [a;, b;]}, then s(x) = 0 if and only if

by by
/ / 8(X) O X1+ -+ Og %y, = 0.
ay ay

Lemma 2.2 ((AG inequality) [32]) Letr; >0 (i=1,2,...,n), and let 61,0,,...,0, € (1,+00)
such that )", 9% =1. Then

n no 6
[Tr=X " (5)
i=1 =1

Remark 2.3 The Cauchy—Schwarz inequality for n-tuple diamond-alpha integral has the
following variants.

(V1) Lett(x) >0, p,q € N*, and let s(x) and £(x) be replaced by s”(x)/+/t9(x) and +/£7(x)
in (4), respectively. Then

b1 by 2
([ [ resn )
by bn py x)szl’(x
= </ / Tupg Mo x>
b1 by
x </ / A(x)tq(x)oaxl«o~oaxn>.
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(V2) Let s(x) and £(x) be replaced by (s (x) + t* (x))? and 2 (x)9(x)/(s2 (x) + £29(x))?
in (4), respectively, where p,q € N*. Then we get

by b 2
</ / A(x)sP (x)t1(X) Oq X1 -+ + O xn)
by ' by
< (/ / AX) (s (x) + £21(x)) 0 1+ Oq xn)
by bn ), (x)s% (x)£24(x)
</ / ssz)+t2q (x) <>ax1---<>axn)

(V3) Let s(x) and #(x) be replaced by /#4(x)/s?(x) and +/s?(x)£4(x) in (4), respectively,
where s?(x)t7(x) > 0, s(x) #0, and p,q € N*. Then we get

by by 2
</ / AX)E1(X) Oq X1+ -+ O xn)
by by
R Te—
b1 by
x </ / AX)sP (X)t1(X) 0g X1+ -+ Oq xn>.

Theorem 2.4 Let A(x),s(x),t(X) : [a;, bl — R be oy-integrable functions with A(x) > 0,
and let there be constants m, M, h,H € R such that

(Ms(x) - ht(x)) (HE(x) - ms(x)) > 0. 6)

Then
by by
mM/ / A(X)S2(X) O X1 -+ O X
a an
b b
+hH/ / AX)E2(X) Og X1 - - - O X
a an

b by
< (mh +MH)/ .- / A(X)S(X)E(X) Og X1+ + + Og Xy

b by 1/2
< |mh +MH|</ f )»(x X) Oq X1+ * O x,,)
by by 1/2
(/ / X) Og X1+ * O x,,) . (7)

Specially, if Mm > 0, Hh > 0, then

</;h1~--‘/;b” A(x)sZ(x)oo,xl--~<>axn>
x </ah1.../bnx(x)t2(x)oax1...oaxn)

by bn 2
O ([ [ s o o) ®
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Proof 1t is easy to find from (6) that
A(x) (Ms(x) - ht(x)) (Ht(x) - ms(x)) > 0.
Then

b b
/ e MHMX)E(X)S(X) Og X1 - -+ O Xy
al a,

n

by by
—/ f HHAX)E(X) O X1 - - - O %
by by
- Wle / <>a X1 Oq Xy
b b
+ mh/ / VE(X)S(X) Og X1 - -+ O X, > 0. 9)

From (9) and Cauchy—Schwarz inequality (4), we find that (7) holds.
Moreover, from mM > 0, hH > 0, and

b bu 3
[(hH / / X) Oq X1+ * O x,,)
3 b 112
(WIM/ f Oa X1 Oy xrl) ] = 0! (10)

we have

by by
th : f AX)E2(X) O X1 -+ - O X
al ap

by bn
+mM/ / A(X)$2(X) Og X1 - - - O X
al an

by by 1/2
> 2<Mm/ / X) Og X1+ * O xn)
by by 1/2
(Hh/ / £2(X) 0g %1 - O xn) . (11)

Therefore, by using (11) and (7), we find that (8) is valid. The proof of Theorem 2.10 is
completed. d

Remark 2.5 Obviously, inequality (8) extends the result in [33].

Remark 2.6 Under the assumptions of Theorem 2.4, and letting mM >0, hH >0,0< g <
p<1l,and p + g = 1, from the AG inequality (5) and (7) we have

M (b by p
<m_/ / )L(X)S2(x)<>ax1--~<>axn>
b Jay an
hH (b bn !
,(_ [ Mxyz(x)w...w)
q Ju an

Page 5 of 15
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by by
SmM/ / A(X)SH(X) Og X1+ + + O Ky
ay an
by b
+hH/ / AX)E2(X) O X1+ -+ O X
ay an

b1 by
< (mh +MH)/ / AX)S(X)E(X) Og X1+ +  Cg Xy

which implies that

(/abl /h ARE(X) 0 %1+~ 04 x,,)q
X (/abl ~--/;bn AX)S2(X) Og X1 - - - O x,,)p

mh + MH

1—
<p1-p) pi(mM)P(hH)l

Letting p — 1~ on the both sides of inequality (12), we find

b by
/ / AX)S?(X) O X1 - -+ O X
ay ap

b by
s<g+%>/al /a A(SO)E(X) O 1 - -+ G %o

by by
= / / A(x)s(x)Ht(x) g X1+ g Xp

m

by bn ht(x)
+ AX)S(X) ——— Og X1 - - Og Xp-
/ﬂl / (95697 o0 3

Letting p — 0* on the both sides of inequality (12), we find

b bn
/ . / AX)E2(X) O X1 - -+ O X
ai an

by by
< (%J;ﬁ) /;1 / AX)SEX) O %1 - - - O X

b1 by
- ‘/;1 .. /;n A(X)S(X)E(X) Og X1+ + + Og Xy

Page 6 of 15

(12)

(13)

Remark 2.7 Let S(x) : [a;, ]} — (0,+00) be a ¢4-integrable function. If s(x) = S 771(x),

tx)=S 3 (x), then inequality (7) reduces to

b1 bn b1 bn )\‘(X)
th f )»(x)S(x)Oax1~~~<>ax,,+mM/ / —— Qg X1 Og Xy
a an a an S(X)

by by
§(mh+MH)f / AX) Og X1 - -+ O Xy
a an

which generalizes the result in [34].
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Remark 2.8 Letting A(x) =1 in (8), then inequality (8) reduces to

(/bl"'/hnsz(x)oaxl"'Oaxn></hl"'/b”tz(x)oaxyuoaxn)

hm+HM b1 bn
S / / SO O 1+ 00 )

which extends Pélya and Szegé’s result [35].

Remark 2.9 Let S(x) : [a;, bi]T — (0,+00) be a o4-integrable function. If s(x) = S%l(x),
tx)=S 3 (x), then inequality (8) reduces to

b bn (%) O X1+ O Xy ! " AX)S(x) 0 X1+ + O X
(I Lo )

_ (hm+ HM)? (hm + HM)? /bl /bnx( Yo i
X) O X o %n |
= 4hmHM v g

which extends some results in [36, 37].

Remark 2.10 Letting & = H = 1 in (8), inequality (8) reduces to

b b
/ . / AX)E2(X) O X1 - - - O %
al an

b bn
+mM/ / A(X)S(X) 0g X1 - - - O Xy

by bn
(m + M) / / X) Og X1 -+ - Og Xpy
by b 3
<|m +M|</ / AE)EH(X) O X7 - <>axn>
by b 3
</ / (X) Oq X1+ O xn) . (14)

Moreover, if mM > 0, then

(/abl.../ab"x(x)sz(x)oaxl...oaxn>
« (/ﬂb]-~~Lbnk(x)t2(x)0ax1~~~<>ax,,)

2 b1 by 2
< %(/ f AX)S(X)E(X) O X1 - - - O x,,) . (15)

The above inequalities (14) and (15) extend some results in [31].

Theorem 2.11 Let A(x), s(x), t(x) : [a;, ;] — [0, +00) be o, -integrable functions, let there
be constants h,H,m,M,p,q > 0 such that m < t(x) <M, h <s(x) <H,0<qg<p<1,and
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p+q=1.Then
b by by by q
(/ / A(x X) Oq X1+ * O x,,) (/ / A(x X) Oq X1+ * O x,,)
HM b bn
p * qhm (/ / X)S(X)E(X) ©g X1 - -+ Oy x,,) (16)

Proof As (pMs(x) — hqt(x))(ms(x) — Ht(x)) < 0, we have
pmMs?(x) — (pHM + ghm)s(X)t(x) + gHht*(x) < 0.
Then
pmMs?(x) + qgHht*(x) < (pHM + qghm)s(x)t(x). (17)

By the AG inequality (5) and (17), we find

by b by b
(/ / A(x)sz(x))p </ / AX)E(X) Og X1 - - - O xn)q
hl by p
(hH)q(mM)l’ ( / / AX)S2(X) O X1 - - O x,,)
b by
X (hH/ / AX)EE(X) Og X1 - -+ O x,,)q

1 by by
= W(””Wff / A(X)5%(X) O Xy - - - O Xy

b bn
+qhH/ / A(x)tz(x) <>ax1---<>ax,,>

HM N
L prM +qhm p + qhm (/ [ x)S(X)t X) O X1+ O x,,),

which implies (16) holds. O

Theorem 2.12 Let A(x),s(x), t(x) : [a;, bi]} — [0, +00) be o4 -integrable functions.
(i) Ifthere are constants h,H,m, M € R such that [Ht(x) — ms(y)][Ms(y) — ht(x)] > 0 for
all x,y € [a;, b7, then

b1 by
(l’ll’l’l +HM (/ / <>a X1 Oy xn)
b1 by
x (/ / A(x)t(x) <>ax1~~.<>axn>
ai an
b1 by
Zhl—l(/ / )»(X)Oaxl"'%xn>
ai an
b1 by
> (/ / AX)E(X) 0 X1 -+ - O xn>
ai an
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+mM(/abl~~-/‘;hnk(x)<>ax1-~~<>axn>
X (/:l ~~~/‘:n AX)S2(X) Og X1+ - - O xn). (18)

(ii) If hH >0, mM > 0 such that [Ht(x) — ms(y)]|[Ms(y) — ht(x)] > O for all x,y € [a;, b;]},
and if p,q > 0 such that 1% + é =1, then

b by
(hm+HM)(/ - x(x)s(x)oax1~-~<>axn)
b1 by '
> [h—H(/b1~~~/bn)L(x)<> PIRERRY x)
o P al apn “ o
b by p
x (/m /a A(x)tz(x)oaxlmoaxn)}
x [@(/bl.../bnk(x)o Xy 0 x)
4 o . o A1 o An
b by q
X (/;1 ---/;n A(x)sz(x)oa x1~~~<>axn>} . (19)
(iii) If mM >0, hH > 0 such that [Ht(x) — ms(x)][Ms(x) — ht(x)] > 0, then
b1 by
(hm +HM)(/ / A(x)s(x) oaxl'uoaxn)
by by
by by 2
zhH</ / A(x)t(x)oax1~-~<>axn>
by by 2
+mM(/ / A(x)s(x)oax1~--0axn> .

(iv) If mM >0, hH > 0 such that [Ht(x) — ms(y)]|[Ms(y) — ht(x)] > 0 for all X,y € [a;, b;]7,

then
b b
(hm+HM)(/ / )L(x)oaxl---oo,xn>
by by '
X (/a1 /an AX)s(X)E(X) Og X1+ + + O x,,)
b by 2
2hH</ / )\(x)t(x)oax1~~~<>axn>
b by 2
+WIM(/ / A(x)s(x)oaxyuoax,,) .
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Proof Case (i). From the assumption we find that

AX)A(y) (Ht(x) - ms(y)) (Ms(y) - ht(x)) >0,
which means that

HMMX)A(y)s(y)t(x) + hmA(x)1(y)s(y)¢(x)

> hHA (x))h(y)t2 (x) + mM)L(x))L(y)S2 (x).

Therefore

(hm+HM)(/:~-~/:A<x)t(x> uneer o,
x (/:---/:A(ws(y)oaxl..-oaxn>
ol [
. (/:1---/:n)»(x)tz(x)oaxl-~~<>ax,,)
+mM(/:‘...f:u(x)wl...%xn>
. (/:‘...f:x(x)sz(x)oaxl...oax,,).

Case (ii). From AG inequality (5) and Case (i), it is easy to find that (19) holds.
Case (iii). From Cauchy—Schwarz inequality (4) we find that

(/abl---/ahnk(x)oaxl-~~<>axn>(/;bl---/abnk(x)sz(x)oaxl---oaxn)
z( / L / bnk(x)s(x)oaxl---oaxn)z, (20)

and

by by by by
(/ / A(x)oaxl---oaxn></ / A(x)tz(x)oaxl---oax,,>
b by 2
> (/ / AX)E(X) Og X1 -+ - On x,,) . (21)
Combining (7), (20), and (21), we have
b b
(hm+HM)</ / )L(x)oaxl---oo,xn)
by by '
X (/ .- / AX)s(X)E(X) Og X1+ + + O xn)
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b by b1 by
ZhH(/ / }"(x)ouxl"'oaxYI)(/ / A(x)t2(x)0ax1...<>axn>
@ an ay an
by by
+mM(/ / A(x)oaxl...oaxn>
ai an
b1 by
x (/ / A(X)S2(X) Og X1+ -+ Ogr xn)
ai an
b b 2
zhH(/ / A(x)t(x)oax1~-'0axn)
ai an
by b >
+W1M(/ / A(x)s(x)oax1~~~0axn> .
ai an

The proof of Case (iii) is completed.
Case (iv). Combining (18), (20), and (21), we have

caryl b o jn)\(x)s(x) w03,
N (/:1---/ajn)\(x)t(x)oaxl~~~<>ax,,)
ol [ )
8 (/:‘.../a:’”x(x)tz(x)wl...oaxn)
+mM(/:‘.../:Mx)%xl...%xn>
x (f:---/:A(x)sz(maxl~~~<>axn)
zhH(/: ---/ab"Mx)t(x) oaxl---oaxn)z
+mM(fb ---n/:x(x)sm ot -0, xn>2,

which implies that Case (iv) holds. a

Remark 2.13 From Case (i) of Theorem 2.12 we find that

b b 2
(hm+HM)2</ / AX)$(X) 0q X1+ -+ O xn>
ai an
by by >
X (/ / A(x)t(x)oaxl"'oaxn)
ai an
by b 2
Zh2H2</ / A(x)Oaxl"‘Oaxn>
ai an
b b 2
> (/ / AX)E(X) 0 X1 -+ - O xn)
ai an
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by b 2
+m2M2</ / A(x)oaxl---oax,,)
ay an
b b 2
X (/ . / A(X)S2(X) Og X1 - - - Og xn)
ay an
by by 2
+2hmHM</ / A(x)oaxl---oax,,>
ay an
by b 2
X (/ . / AX)E2(X) O X1 - - - O xn>
ay ay
by b 2
X (/ . / AX)S2(X) Og X1 - - - O xn)
ay an
by by 2
Z4hmHM</ / A(x)oaxl---oaxn>
ay an
by b 2
X (/ . / AX)E2(X) O X1 - - - O xn)
ay an
by by 2
X (/ / A(x)s%(x) oaxl-uoaxn) .
ay an

Therefore, if hmHM > 0, we find

(hm +HM)</hl /b 2)S(X) 0 X1+ - 00 x)
by " hnan
X(/al /;n A(x)t(x)oax1~~~oaxn)
Z2x/hmm</bl~-~/bn)»(x)<>o,x1~~-<>axn>
([ [ s e
x X)EA(X) O X1 - - - O X
([ [ e
x X)$%(X) O X1+ -+ O Xy ).

Similarly, from Case (iv) of Theorem 2.12 we have

b b
(hm+HM)(/ / )L(x)oaxl-uoo,xn)
by by '
X (/al /an )L(x)s(x)t(x)oaxl'uoax,,)

b bn
> 2vhmHM</ / AX)E(X) Og X1+ * - On xn>

« (/ﬂhl-~~Lbnk(x)s(x)oax1---oax,,>.

By using methods similar to that in [31], we can prove the following theorem.

Page 12 of 15
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Theorem 2.14 Let A(x),s(x), £(X) : [a;, b;]7 — [0, +00) be o4 -integrable functions.
Case (1).

[(fbl---/b"u)oaxl oaxn)(/:---f:x(x)s%x)oaxl---oaxn)
([ [ st o) |

x[(/bl ./bﬂxx)oaxl M)(fb /b” 0000

+(/b‘ bnkx)t )00 oaxn”

(L [

([ [ o) [ f )]

Case (2). If there are constants h, H, m, M € R such that [Ht(x) — ms(x)][Ms(x) — ht(x)] >
0, then

(hm+HM)2[(/:-~~fﬂj"x(x)oax1---<>axn)
«( [ " [ " SR 0 0 )
(fbl /b" X) 0 % - oaxn>
([ [z o)
z4hmHm[(/a1’”.../as"x(x>oaxl...oaxn)
x(/:‘...faj”x(x)ﬂ(x)wl...oaxn)
A )]
x[(f:.../a:’"x(x)oaxl...oaxn>
x(/:~-o/:"ux)sz(xmm~~<>axn)
: (/b -~-/aj"x(x)«x)oaxl~--<>axn>T.
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Case (3). If there are constants h, H, m, M € R such that [Ht(x) — ms(y)][Ms(y) — ht(x)] > 0
Sorall x,y € [a;, b;]}, then

1= [(/:~~-f:x(x)oo,xl...oaxn>(/:.../:Mx)sz(x)wl...%xn>

x [(/l’ .../ﬂf"x(x)oaxl...%xn)</:.../a:’”k(x)tz(x)wl.._%xn>
[(/:---fajnx(x)oaxl...oaxn)

([ [ st oum )

_ (hm + HM)*
4hmHM

~—
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