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Abstract
Under the assumption that the range of varying uncertain parameters is known,
some results of existence and stability of equilibria for population games with
uncertain parameters are investigated in this paper. On the basis of NS equilibria in
classical noncooperative games, the concept of NS equilibria for population games
with uncertain parameters is defined. Using some hypotheses about the continuity
and convexity of payoff functions, the existence of NS equilibria in population games
is also proved by Fan–Glicksberg fixed point theorem. Furthermore, we establish a
bounded rationality model of population games with uncertain parameters, and
draw the conclusions about the stability of NS equilibrium in this model by
constructing the rationality function and studying its properties.
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1 Introduction
In real life, there are many games concerning strategic interactions among numerous in-
dividuals. Population game theory is a powerful tool in the context of competitions with
large numbers of individuals and is widely applied to various fields, such as biology, traf-
fic, sociology, science, technology and so on. The classical population game theory stems
from“mass-action” explanation of equilibrium points in the doctoral dissertation [1] of
Nash and it has been further studied by many game theorists [2–6]. The monograph [3]
of Sandholm published in 2011 is one of the most representative works, which systemat-
ically elaborated the theory and applications of population games and their evolutionary
dynamics, and provided an important foundation for the subsequent research of popula-
tion games. In recent years, Yang et al. [7, 8] extended single-objective population games
to multiobjective ones. They proposed the concepts of weighted Nash equilibria, Pareto–
Nash equilibria and weakly Pareto–Nash equilibria for multiobjective population games,
then proved the existence of equilibria and studied the stability of equilibrium points by
nonlinear analysis methods. Yang and Zhang [9] first introduced the notion of coopera-
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tive equilibria for population games and analyzed the existence and essential stability of
the relevant equilibrium points.

Most existing economic models are always based on the assumption of complete ratio-
nality, that is to say, every decision maker can maximize his/her own interests under some
constraints. However, people cannot have perfect thinking ability, therefore the assump-
tion of complete rationality is too ideal, which limits the application of the models. Thus,
it is necessary to introduce bounded rationality into the economic models. Anderlini and
Canning [10] established a model of game with abstract bounded rationality functions.
They regarded the economic problems satisfying some certain conditions as an abstract
space, and provided the definitions and conditions of structural stability and robustness.
Considering the assumptions of their model are too demanding and many economic mod-
els fail to meet them, Yu et al. [11–14] weakened these conditions, extended the application
of the model to cover other non-linear problems, and finally made some new and profound
conclusions. As for population games, in which individuals are always bounded rational,
it is thereby necessary to discuss the bounded rationality in population games.

All the above studies are based on the deterministic theory. However, due to the in-
completeness of information, non-complete rationality of behaviors, or the restriction
and influence of uncertain factors such as climate and environment in the real world,
the decision-making environment is often uncertain. As a result, we need to introduce
the uncertain parameters to describe such mathematical models. When the influence of
uncertain parameters is small, it can be ignored, then a satisfactory approximate solu-
tion can be figured out. But when the influence cannot be ignored, its negligence may
give an erroneous solution, so it is of great importance to deal with these uncertain pa-
rameters in such a case. Providing some characteristics of uncertain parameters such as
randomness, fuzziness or fuzzy randomness, the related problems can be investigated by
using Bayesian game [15], fuzzy game [16] or fuzzy Bayesian game [17]. Nevertheless, if
the above characteristics are unknown and the participants can only predict the change
range of uncertain parameters, these parameters need to be dealt with in different ways. By
combining the concepts of classic Nash equilibrium and weak Pareto (or Slater) efficient
solution for multiobjective optimization, Zhukovskii [18] first put forward to the notion
of Nash–Slater (or NS for short)equilibrium for an n-person noncooperative game with
uncertain parameters, and then studied the existence of NS equilibrium. On this basis,
many scholars have conducted a large number of studies to investigate various problems
of games with uncertain parameters [19–21].

In this paper, inspired by the study so far, we introduce the uncertain parameters for
population games, propose the concept of NS equilibrium for population games with un-
certain parameters, and prove the existence of NS equilibrium by using Fan–Glicksberg
fixed point theorem. Moreover, through introducing an abstract rationality function, we
establish a bounded rationality model for population games with uncertain parameters,
and study the stability of NS equilibria in this model.

2 Preliminaries
We first recall some elementary definitions and conclusions, which we will mainly use in
the following sections.

Definition 2.1 ([22]) Let E and H be two topological vector spaces, X be a nonempty
convex set in E and C be a convex cone in H with int C �= ∅. A vector-valued function
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f from X to H is called to be C-quasiconvex-like if for any x1, x2 ∈ X and λ ∈ (0, 1), it
satisfies f (x1) ∈ f (λx1 + (1 – λ)x2) + C or f (x2) ∈ f (λx1 + (1 – λ)x2) + C. f is called to be
C-quasiconcave-like if –f is C-quasiconvex-like.

Remark 2.1 If H = R, C = [0, +∞), then f is C-quasiconvex-like (or C-quasiconcave-like)
is equivalent to f is quasiconvex (or quasiconcave). Therefore C-quasiconvex-like (or C-
quasiconcave-like) is an extension of quasiconvex (or quasiconcave).

Lemma 2.1 ([23]) Let X and Y be two Hausdorff topological spaces. Assume that S : X →
2Y is closed and Y is compact, then S is upper semicontinuous on X.

Lemma 2.2 ([24, 25] Fan–Glicksberg fixed point theorem) Let X be a nonempty compact
convex subset of a locally convex Hausdorff topological vector space E. If S : X → 2X is upper
semicontinuous on X, and S(x) is a nonempty compact convex set for every x ∈ X, then there
is x ∈ X such that x ∈ S(x).

Lemma 2.3 ([11]) Let X, Y be two metric spaces, K(X) be a set containing all nonempty
compact sets in X, Bm, B ∈ K(X), ym, y ∈ Y and pm, p be continuous functions defined on
X ×Y , m = 1, 2, . . . . If h(Bm, B) → 0, where h is the Hausdorff distance defined on X, ym → y
and sup(x,y)∈X×Y |pm(x, y) – p(x, y)| → 0, then maxv∈Bm pm(v, ym) → maxv∈B p(v, y).

Lemma 2.4 ([12]) Let X, Y be two metric spaces, Z be a compact metric space, K(X) be a set
containing all nonempty compact sets in X, Bm, B ∈ K(X), ym, y ∈ Y and pm, p be continuous
functions defined on X × Y × Z, m = 1, 2, . . . . If h(Bm, B) → 0, where h is the Hausdorff
distance defined on X, ym → y and sup(x,y,z)∈X×Y×Z |pm(x, y, z) – p(x, y, z)| → 0, then

max
v∈Bm

min
z∈Z

pm(v, ym, z) → max
v∈B

min
z∈Z

p(v, y, z).

For the following two lemmas, one can refer to [26].

Lemma 2.5 Assume that X and Y are two Hausdorff topological vector spaces, a vector-
valued function S : X × Y → Rk is continuous, a set-valued mapping G : Y → 2X is
continuous on Y with G(y) being a nonempty compact subset of X for any y ∈ Y , and
V (y) = {x ∈ G(y)|S(u, y) – S(x, y) /∈ int Rk

+, for any u ∈ G(y)}, then V (y) is a nonempty com-
pact set, and V : Y → 2X is upper semicontinuous on Y .

Lemma 2.6 If X is a complete metric space and A is a nonempty closed subset of X, then
the subspace A is complete.

3 Existence of NS equilibria for population games with uncertain parameters
Let us recall the concept of NS equilibria for n-person noncooperative games with uncer-
tain parameters, see [18].

We denote an n-person game with uncertain parameters by G = (I, X, Y , f (x, y)). Specif-
ically, I = {1, . . . , n} is the set of players, where n ≥ 1; X =

∏
i∈I Xi and Xi is the set of strate-

gies of the ith player, where i = 1, . . . n; Y is the set of uncertain parameters, Y ⊂ Rm, m ≥ 1
and y ∈ Y is a vector of uncertain parameters; f = (f1, . . . , fn), fi : X × Y → R is the pay-
off function of the ith player. For every i ∈ I , denote xî = (x1, . . . , xi–1, xi+1, . . . , xn) ∈ Xî =
∏

j∈I\{i} Xj.
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In this game, suppose that all players only know the range Y of the uncertain parameter
vector. Every player selects a strategy to maximize his/her own payoff, meanwhile, the
payoff is also a function of uncertain parameters. The game can be described as: we can
obtain the strategy profile x = (xi, xî) ∈ X while each player has selected his/her strategy, if
y ∈ Y is the uncertain parameter vector, then the ith player’s payoff is fi(x, y).

Definition 3.1 A pair (x∗, y∗) ∈ X × Y is an NS equilibrium of G if it satisfies:
(1) ∀i ∈ I , fi(x∗

i , x∗
î
, y∗) ≥ fi(xi, x∗

î
, y∗); and

(2) ∀y ∈ Y , f (x∗, y∗) – f (x∗, y) /∈ int Rn
+,where f = (f1, . . . , fn) and

int Rn
+ = {(u1, . . . , un) ∈ Rn|ui > 0, i = 1, . . . , n}.

Remark 3.1
(1) The first condition shows that x∗ is a Nash equilibrium of the classical

noncooperative game (I, X, f (·, y∗)) given an uncertain parameter vector y = y∗.
(2) The second condition implies that y∗ is a Slater optimal (also known as weak Pareto

optimal) solution of the multiobjective minimization problem miny∈Y f (x∗, y) with
fixed x = x∗. In this case, every player holds pessimistic or conservative attitude
towards uncertain parameters, that is to say, the payoffs of n players can be viewed
as n objectives, we cannot make all n objectives strictly poor under the effect of
uncertain parameters.

(3) If Y = ∅ or y is fixed, the solutions satisfying Definition 3.1 are Nash equilibria for
determined classical noncooperative games.

Sandholm [3] provided a detailed description about the concepts of population games
and their Nash equilibria. Based on it, we introduce the uncertain parameters into pop-
ulation games and then define the concept of NS equilibria for population games with
uncertain parameters.

Suppose that a society containing N ≥ 1 populations is P = {1, 2, . . . , N}. Each popu-
lation p ∈ P consists of sufficient but finite agents with the same strategy set and payoff
function. The pure strategy set for agents in population p is presented as Sp = {1, 2, . . . , np},
the total number of pure strategies for all populations is n =

∑
p∈P np. The popula-

tion states of population p is denoted as Xp = {xp = (xp
1, xp

2, . . . , xp
np ) ∈ Rnp

+ | ∑np

i=1 xp
i = 1},

where each scalar xp
i of xp indicates the share of agents in population p who select strat-

egy i ∈ Sp, and xp is the state (vector) of population p. Denoted by X =
∏

p∈P Xp =
{x = (x1, x2, . . . , xN ) ∈ Rn

+ | xp ∈ Xp} the social state set, which represents the aggregate be-
havior in the society.

The model of population games with uncertain parameters is denoted by � = (Xp, Fp,
Y )p∈P . Y is the set of uncertain parameters, Y ⊂ Rm. Fp

i : X × Y → R indicates the payoff
of agents selecting strategy i ∈ Sp in population p, Fp = (Fp

1 , Fp
2 , . . . , Fp

np ) : X × Y → Rnp

represents the payoff functions for all strategies in Sp and F = (F1, F2, . . . , FN ) : X ×Y → Rn

is the payoff functions of all populations in the society.

Remark 3.2 Xp is a simplex in Rnp , so it is obviously a nonempty convex compact set.

We propose the notion of NS equilibria for � as follows.

Definition 3.2 A pair (x̃, ỹ) ∈ X × Y is an NS equilibrium of the model � if it satisfies:
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(1) x̃p
i > 0 ⇒ Fp

i (x̃, ỹ) ≥ Fp
j (x̃, ỹ),∀p ∈P , ∀i, j ∈ Sp; and

(2) Fp(x̃, ỹ) – Fp(x̃, y) /∈ int Rnp
+ ,∀p ∈P , ∀y ∈ Y .

Remark 3.3
(1) The first condition shows that x̃ is a classical Nash equilibrium for the population

game (X, F(·, ỹ)) given an uncertain parameter vector y = ỹ (see [3]).
(2) The second condition implies that ỹ is a Slater optimal (also known as weak Pareto

optimal) solution of the multiobjective minimization problem miny∈Y F(x̃, y) with
fixed social state x = x̃. In this case, every individual in all populations holds
pessimistic or conservative attitude towards uncertain parameters, that is to say, the
payoffs of np pure strategies chosen by individuals in population p may be viewed as
np objectives, we cannot make all np objectives strictly poor under the effect of
uncertain parameters.

(3) If Y = ∅ or y is fixed, the solutions satisfying Definition 3.2 are Nash equilibria of
determined population games.

Sandholm established an equivalent description of Nash equilibria for population games
in [3]. Similarly, two equivalent conditions are easily obtained in population games with
uncertain parameters.

Lemma 3.1 Two equivalent conditions are given as following:
(1) x̃p

i > 0 ⇒ Fp
i (x̃, ỹ) ≥ Fp

j (x̃, ỹ),∀p ∈P , ∀i, j ∈ Sp; and
(2)

∑
i∈Sp x̃p

i Fp
i (x̃, ỹ) = maxup∈Xp

∑
i∈Sp up

i Fp
i (x̃, ỹ),∀p ∈P .

Next, we use Fan–Glicksberg fixed point theorem to prove the existence of NS equilibria
for population games with uncertain parameters.

Theorem 3.1 Let � = (Xp, Fp, Y )p∈P be a population game with uncertain parameters,
where Y is a nonempty convex compact subset of Rm. If the payoff functions satisfy the
following conditions:

(1) for each p ∈P and i ∈ Sp, Fp
i : X × Y → R is continuous,

(2) for each x ∈ X, y �→ Fp(x, y) is Rnp
+ -quasiconvex-like, then there exists at least one NS

equilibrium of �.

Proof For each p ∈P , a set-valued mapping Tp : X × Y → 2Xp is given by

Tp(x, y) =
{

zp ∈ Xp
∣
∣
∣
∣

∑

i∈Sp

zp
i Fp

i (x, y) = max
up∈Xp

∑

i∈Sp

up
i Fp

i (x, y)
}

,

then we obtain T : X × Y → 2X by T(x, y) =
∏

p∈P Tp(x, y).
Meanwhile, a set-valued mapping Hp : X → 2Y is given by

Hp(x) =
{

y ∈ Y |Fp(x, y) – Fp(x, w) /∈ int Rnp
+ ,∀w ∈ Y

}
,

then we obtain H : X → 2Y by H(x) =
∏

p∈P Hp(x).
For each p ∈ P , it is clear that Tp(x, y) is a nonempty compact convex set for every

(x, y) ∈ X × Y . Next, we show that Tp is upper semicontinuous. From Lemma 2.1, we only
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need to show the graph of Tp is closed. Namely, let {(xm, ym)}∞m=1 ⊂ X ×Y be any sequence
with (xm, ym) → (x, y), for each zp,m ∈ Tp(xm, ym) with zp,m → zp, it needs to verify zp ∈
Tp(x, y). Since zp,m ∈ Tp(xm, ym), then

∑
i∈Sp zp,mFp

i (xm, ym) = maxup∈Xp
∑

i∈Sp up
i Fp

i (xm, ym).
Furthermore, as Fp

i is continuous, we get
∑

i∈Sp zp,mFp
i (xm, ym) → ∑

i∈Sp zp
i Fp

i (x, y) and
maxup∈Xp

∑
i∈Sp up

i Fp
i (xm, ym) → maxup∈Xp

∑
i∈Sp up

i Fp
i (x, y) by Lemma 2.3. It then follows

that
∑

i∈Sp zp
i Fp

i (x, y) = maxup∈Xp
∑

i∈Sp up
i Fp

i (x, y), thus we have zp ∈ Tp(x, y).
To sum up, Tp is upper semicontinuous and Tp(x, y) is a nonempty compact convex set.

Hence, T =
∏

p∈P Tp is upper semicontinuous and T(x, y) is a nonempty compact convex
set.

On the other hand, for each p ∈ P , we can easily obtain Hp is upper semicontinuous
with a nonempty compact set Hp(x) by Lemma 2.5. We next show Hp(x) is a convex set
for any x ∈ X. For any y1, y2 ∈ Hp(x) and λ ∈ (0, 1), suppose that λy1 + (1 – λ)y2 /∈ Hp(x),
then there is w0 ∈ Y such that Fp(x,λy1 + (1 – λ)y2) – Fp(x, w0) ∈ int Rnp

+ . From condition
(2), we get Fp(x, y1) ∈ Fp(x,λy1 + (1 – λ)y2) + Rnp

+ , then

Fp(x, y1) – Fp(x, w0)

= Fp(x, y1) – Fp(x,λy1 + (1 – λ)y2
)

+ Fp(x,λy1 + (1 – λ)y2
)

– Fp(x, w0)

∈ Rnp
+ + int Rnp

+ ⊂ int Rnp
+ ,

which contradicts that y1 ∈ Hp(x). Consequently, Hp(x) is a convex set for every x ∈ X.
To sum up, Hp is upper semicontinuous and Hp(x, y) is a nonempty compact convex set.

Hence, H =
∏

p∈P Hp is upper semicontinuous and H(x, y) is a nonempty compact convex
set.

We now define W : X × Y → 2X×Y by W (x, y) = T(x, y) × H(x). From the discussion
above, we know W is upper semicontinuous and W (x, y) is a nonempty compact convex
set. From Lemma 2.2, there is (x̃, ỹ) ∈ X × Y such that (x̃, ỹ) ∈ W (x̃, ỹ). Hence, for each
p ∈ P , we have x̃ ∈ Tp(x̃, ỹ), then

∑
i∈Sp x̃p

i Fp
i (x̃, ỹ) = maxup∈Xp

∑
i∈Sp up

i Fp
i (x̃, ỹ) can be ob-

tained. It is equivalent to x̃p
i > 0 ⇒ Fp

i (x̃, ỹ) ≥ Fp
j (x̃, ỹ),∀p ∈ P , ∀i, j ∈ Sp from Lemma 3.1;

also for each p ∈P , we obtain ỹ ∈ H(x̃), this implies that Fp(x̃, ỹ)–Fp(x̃, y) /∈ int Rnp
+ ,∀p ∈P ,

∀y ∈ Y . Consequently, (x̃, ỹ) is an NS equilibrium of � as it satisfies two conditions of Def-
inition 3.2. �

4 Stability of equilibria for population games with uncertain parameters under
bounded rationality

In this section, let us first recall the model of bounded rationality established by Anderlini
and Canning in [10]. We assume that (X, d) is a metric space and K(X) is the set of all
nonempty compact subsets of X throughout this section.

An abstract model of bounded rationality is expressed as M = (�, X, T , R), where �

is a parameter space; X is an action space; T : � × X → 2X represents the feasibil-
ity mapping and its induced further mapping is f : � → 2X , and for any λ ∈ �, f (λ) =
{x ∈ X : x ∈ T(λ, x)} and Graph(f ) = {(λ, x) ∈ � × X : x ∈ f (λ)}; R : Graph(f ) → R+ is a ra-
tionality function. For any λ ∈ � and ε ≥ 0, we define the set of ε-equilibria at λ as
E(λ, ε) = {x ∈ f (λ) | R(λ, x) ≤ ε} (corresponding to the bounded rationality of agents when
ε > 0 is small sufficiently). In particular, E(λ) = E(λ, 0) = {x ∈ f (λ) | R(λ, x) = 0} is the set of
equilibria at λ, which corresponds to the complete rationality of agents.

Yu and Yu [11] gave the following definitions and stability results.
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Definition 4.1 ([11]) The model M is robust to ε-equilibria at λ ∈ � if for any δ > 0,
there is an ε̄ > 0 such that, for any ε with 0 < ε < ε̄ and any λ′ ∈ � with ρ(λ,λ′) <
ε̄, h(E(λ′, ε), E(λ′)) < δ, where h is the Hausdorff distance defined on X.

Definition 4.2 ([11]) The model M is structurally stable at λ ∈ � if the equilibrium map-
ping E : � → K(X) is continuous at λ ∈ �, namely, ∀λn ∈ �,λn → λ, then h(E(λn), E(λ)) →
0.

Lemma 4.1 ([11]) Suppose that the metric space � is complete and the metric space X is
compact. If f : � → K(X) is upper semicontinuous and R : Graph(f ) → R+ is lower semi-
continuous, then the following results hold true.

(1) The equilibrium mapping E : � → K(X) is upper semicontinuous.
(2) There is a dense residual subset Q in � such that M is structurally stable at each

λ ∈ Q.
(3) M is robust to ε-equilibria at λ ∈ � and thus robust to ε-equilibria at λ ∈ Q, when

M is structurally stable at λ ∈ �.
(4) For any λ ∈ Q,λn → λ, and any εn → 0, then h(E(λn, εn), E(λ)) → 0.
(5) If E(λ) is a singleton set for any λ ∈ �, then M is structurally stable and robust to

ε-equilibria at λ ∈ �.

Next, we establish a bounded rationality model in population games with uncertain pa-
rameters by constructing an abstract rationality function, and then investigate the stability
results of the NS equilibrium in our model.

� = (Xp, Fp, Y )p∈P is the model of population games with uncertain parameters.
Let F ={F = (F1, F2, . . . , FN ) | ∀p ∈ P , ∀i ∈ Sp, Fp

i is continuous on X × Y ; ∀x ∈ X, y �→
Fp

i (x, y) is Rnp
+ -quasiconvex-like}. Denoted by ENS(F) the collection of all NS equilibria of

the population game F ∈F , it is obviously that ENS(F) �= ∅ from Theorem 3.1.
For any F = (F1, F2, . . . , FN ), G = (G1, G2, . . . , GN ) ∈F , define

ρ(F , G) = max
(x,y)∈X×Y

∑

p∈P

np
∑

i=1

∣
∣Fp

i (x, y) – Gp
i (x, y)

∣
∣.

Lemma 4.2 (F ,ρ) is a complete metric space.

Proof Let B = {F : X × Y → Rn|sup(x,y)∈X×Y ‖F(x, y)‖ < +∞}. For any F , G ∈ B, define
ρ(F , G) = max(x,y)∈X×Y

∑
p∈P

∑np

i=1 |Fp
i (x, y) – Gp

i (x, y)|, it is clear that (B,ρ) is a complete
metric space. So we need only show that F is a closed subset of B by Lemma 2.6. That is,
let {Fm = (F1m, F2m, . . . , FNm)}∞m=1 be a sequence of F , and Fm → F = (F1, F2, . . . , FN ), we
prove that F ∈F .

For each p ∈ P and i ∈ Sp, we first show the continuity of Fp
i . Since Fm → F , for any

ε > 0, there exists a positive integer M(ε) such that, for any m ≥ M(ε),

∣
∣Fp

i (x, y) – Fp,m
i (x, y)

∣
∣ ≤ ε, (4.1)

for all (x, y) ∈ X × Y . Fix m ≥ M(ε), then, for any (x, y) ∈ X × Y , since Fp,m
i (x, y) is continu-

ous on X × Y , there exists an open neighborhood U(x, y) of (x, y), for any (x′, y′) ∈ U(x, y),



Zhao et al. Journal of Inequalities and Applications         (2021) 2021:15 Page 8 of 13

we have

∣
∣Fp,m

i
(
x′, y′) – Fp,m

i (x, y)
∣
∣ ≤ ε. (4.2)

For the above (x′, y′) ∈ U(x, y), from(4.1), we obtain

∣
∣Fp

i
(
x′, y′) – Fp,m

i
(
x′, y′)∣∣ ≤ ε. (4.3)

By (4.1) and (4.2),

∣
∣Fp,m

i
(
x′, y′) – Fp

i (x, y)
∣
∣ ≤ 2ε. (4.4)

Furthermore, by (4.3) and (4.4), we derive |Fp
i (x′, y′) – Fp

i (x, y)| ≤ 3ε, thus Fp
i is continuous

at (x, y).
Next, it will be proven that y �→ Fp(x, y) is Rnp

+ -quasiconvex-like for any x ∈ X. For every
p ∈P , consider a sequence {Fp,m = (Fp,m

1 , Fp,m
2 , . . . , Fp,m

np )}∞m=1. Let V be any open neighbor-
hood of zero element θ in Rnp

+ . For any (x, y) ∈ X × Y , since Fp,m → Fp, there is a positive
integer M0, such that Fp,m(x, y) ∈ Fp(x, y) + V

2 and Fp(x, y) ∈ Fp,m(x, y) + V
2 for any m ≥ M0.

Also since Fm ∈F , then, for any x ∈ X, y → Fp,m(x, y) is Rnp
+ -quasiconvex-like, i.e., for any

y1, y2 ∈ Y and any λ ∈ (0, 1),

Fp,m(x, y1) ∈ Fp,m(
x,λy1 + (1 – λ)y2

)
+ Rnp

+ ,

or

Fp,m(x, y2) ∈ Fp,m(
x,λy1 + (1 – λ)y2

)
+ Rnp

+ .

Thus, fix m ≥ M0, for each x ∈ X, for any y1, y2 ∈ Y and λ ∈ (0, 1),

Fp(x, y1) ∈ Fp,m(x, y1) +
V
2

⊂ Fp,m(
x,λy1 + (1 – λ)y2

)
+

V
2

+ Rnp
+

⊂ Fp(x,λy1 + (1 – λ)y2
)

+ V + Rnp
+ ,

or Fp(x, y2) ∈ Fp(x,λy1 +(1–λ)y2)+V +Rnp
+ can be proved similarly. Due to the arbitrariness

of V , it follows that Fp(x, y1) ∈ Fp(x,λy1 +(1–λ)y2)+Rnp
+ or Fp(x, y2) ∈ Fp(x,λy1 +(1–λ)y2)+

Rnp
+ . Namely, for each x ∈ X, y → Fp(x, y) is Rnp

+ -quasiconvex-like.
To sum up, F is a closed subset of B and therefore (F ,ρ) is a complete metric space. �

Now, we establish the model of bounded rationality for population games with uncertain
parameters. Consider the model M1 = (F , X, Y , T , R): F is the space we mentioned above;
X =

∏
p∈P Xp is a set of social states; Y is a space of uncertain parameters; T : F×X ×Y →

2X×Y represents the feasibility mapping and its induced further mapping is f : F → 2X×Y .
Define T(F , x, y) = X × Y , then, for any F ∈F , f (F) = {(x, y) ∈ X × Y : (x, y) ∈ T(F , x, y)} =
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X × Y . Clearly, f is continuous and f (F) is nonempty and compact. Now we define the
rationality function R : F × X × Y → R+ as

R(F , x, y)

= max
p∈P

max
up∈Xp

∑

i∈Sp

(
up

i – xp
i
)
Fp

i (x, y) + max
p∈P

max
v∈Y

min
‖wp‖=1,wp∈Rnp

+

〈
wp, Fp(x, y) – Fp(x, v)

〉
.

We will show the following results about the rationality function.

Lemma 4.3
(1) For any F ∈F and (x, y) ∈ X × Y , we have R(F , x, y) ≥ 0.
(2) R(F , x, y) = 0 if and only if (x, y) ∈ ENS(F).

Proof (1) For any F ∈F and (x, y) ∈ X × Y , we obtain

R(F , x, y)

≥ max
p∈P

∑

i∈Sp

(
xp

i – xp
i
)
Fp

i (x, y) + max
p∈P

min
‖wp‖=1,wp∈Rnp

+

〈
wp, Fp(x, y) – Fp(x, y)

〉

= 0.

(2) If R(F , x, y) = 0, then

max
p∈P

max
up∈Xp

∑

i∈Sp

(
up

i – xp
i
)
Fp

i (x, y) = 0, (4.5)

max
p∈P

max
v∈Y

min
‖wp‖=1,wp∈Rnp

+

〈
wp, Fp(x, y) – Fp(x, v)

〉
= 0. (4.6)

By (4.5), for every p ∈P and up ∈ Xp, we can get
∑

i∈Sp xp
i Fp

i (x, y) = maxup∈Xp
∑

i∈Sp up
i Fp

i (x,
y) since

∑
i∈Sp (up

i – xp
i )Fp

i (x, y) ≤ 0. Note that it is equivalent to xp
i > 0 ⇒ Fp

i (x, y) ≥
Fp

j (x, y),∀p ∈ P ,∀i, j ∈ Sp from Lemma 3.1. Thus (x, y) satisfies condition (1) of Defini-
tion 3.2.

On the other hand, if there is v0 ∈ Y and p0 ∈ P such that Fp0 (x, y) – Fp0 (x, v0) ∈
int Rnp

+ . Let W p0 = {wp0 : ‖wp0‖ = 1, wp0 ∈ Rnp0
+ }, then, for any wp0 ∈ W p0 , we obtain

〈wp0 , Fp0 (x, y) – Fp0 (x, v0)〉 > 0. Since W p0 is compact, then

min
‖wp0 ‖=1,wp0 ∈Rnp0

+

〈
wp0 , Fp0 (x, y) – Fp0 (x, v0)

〉
> 0.

Thus

max
p∈P

max
v∈Y

min
‖wp‖=1,wp∈Rnp

+

〈
wp, Fp(x, y) – Fp(x, v)

〉

≥ max
p∈P

min
‖wp‖=1,wp∈Rnp

+

〈
wp, Fp(x, y) – Fp(x, v0)

〉

≥ min
‖wp0 ‖=1,wp0 ∈Rnp0

+

〈
wp0 , Fp0 (x, y) – Fp0 (x, v0)

〉

> 0.



Zhao et al. Journal of Inequalities and Applications         (2021) 2021:15 Page 10 of 13

which contradicts (4.6). So for each p ∈ P and v ∈ Y , we have Fp(x, y) – Fp(x, v) /∈ int Rnp
+ ,

then (x, y) satisfies condition (2) of Definition 3.2.
To sum up, (x, y) ∈ ENS(F).
Conversely, if (x, y) ∈ ENS(F), from Definition 3.2, we get

xp
i > 0 ⇒ Fp

i (x, y) ≥ Fp
j (x, y), ∀p ∈P ,∀i, j ∈ Sp, (4.7)

Fp(x, y) – Fp(x, v) /∈ int Rnp
+ , ∀p ∈P ,∀v ∈ Y . (4.8)

Due to (4.7), we obtain
∑

i∈Sp xp
i Fp

i (x, y) = maxup∈Xp
∑

i∈Sp up
i Fp

i (x, y) for each p ∈ P by
Lemma 3.1. Consequently, it holds true that maxp∈P maxup∈Xp

∑
i∈Sp (up

i – xp
i )Fp

i (x, y) = 0.
Furthermore, for any p ∈P and v ∈ Y , let I(v) = {i : Fp

i (x, y) – Fp
i (x, v) ≤ 0}. Clearly, I(v) �=

∅ by (4.8). Let i0 ∈ I(v) and define
	

w
p ∈ {wp ∈ Rnp

+ : ‖wp‖ = 1}, where
	

w
p
i0 = 1 and

	

w
p
i = 0(i �=

i0), then 〈	

w
p
, Fp(x, y) – Fp(x, v)〉 = Fp

i0 (x, y) – Fp
i0 (x, v) ≤ 0. Therefore

min
‖wp‖=1,wp∈Rnp

+

〈
wp,Fp(x, y) – Fp(x, v)

〉 ≤ 0.

Thus

max
p∈P

max
v∈Y

min
‖wp‖=1,wp∈Rnp

+

〈
wp, Fp(x, y) – Fp(x, v)

〉 ≤ 0.

Similar to the proof of (1), it is easy to see that

max
p∈P

max
v∈Y

min
‖wp‖=1,wp∈Rnp

+

〈
wp, Fp(x, y) – Fp(x, v)

〉 ≥ 0,

then

max
p∈P

max
v∈Y

min
‖wp‖=1,wp∈Rnp

+

〈
wp, Fp(x, y) – Fp(x, v)

〉
= 0.

To sum up, R(F , x, y) = 0. �

Lemma 4.4 R(F , x, y) is continuous on F × X × Y .

Proof For any (Fn, xn, yn) ∈ F × X × Y with (Fn, xn, yn) → (F , x, y)(n → +∞), we need to
prove that R(Fn, xn, yn) → R(F , x, y) as n → +∞.

For each p ∈P , let

ϕp(u, x, y) =
∑

i∈Sp

(
up

i – xp
i
)
Fp

i (x, y),

ϕp,n(u, xn, yn) =
∑

i∈Sp

(
up

i – xp,n
i

)
Fp,n

i
(
xn, yn),

φp(wp, v, x, y
)

=
〈
wp, Fp(x, y) – Fp(x, v)

〉
,

φp,n(wp, v, xn, yn) =
〈
wp, Fp,n(xn, yn) – Fp,n(xn, v

)〉
.

(1) We first prove that maxp∈P maxup∈Xp ϕp,n(u, xn, yn) → maxp∈P maxup∈Xp ϕp(u, x, y).
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Since X is compact, for each p ∈P , Xp is compact. So there exists K > 0 such that ‖xp‖ ≤
K for every xp ∈ Xp. As Fp,n → Fp, then, for any ε1 > 0, there is a positive integer N1 such
that ‖Fp,n – Fp‖ < ε1

2K for any n ≥ N1. Thus, for the above n, for each p ∈P , we have

∣
∣ϕp,n(u, x, y) – ϕp(u, x, y)

∣
∣

=
∣
∣
∣
∣

∑

i∈Sp

(
up

i – xp
i
)
Fp,n

i (x, y) –
∑

i∈Sp

(
up

i – xp
i
)
Fp

i (x, y)
∣
∣
∣
∣

=
∣
∣
〈
up – xp, Fp,n(x, y) – Fp(x, y)

〉∣
∣

≤ ∥
∥up – xp∥∥

∥
∥Fp,n(x, y) – Fp(x, y)

∥
∥

≤ (∥
∥up∥∥ +

∥
∥xp∥∥

)∥
∥Fp,n(x, y) – Fp(x, y)

∥
∥

≤ 2K · ε1

2K
= ε1.

This shows that ϕp,n(u, x, y) → ϕp(u, x, y) as n → +∞.
It implies that maxup∈Xp ϕp,n(u, xn, yn) → maxup∈Xp ϕp(u, x, y) from Lemma 2.3. Hence,

we have maxp∈P maxup∈Xp ϕp,n(u, xn, yn) → maxp∈P maxup∈Xp ϕp(u, x, y).
(2) Next, we show that

max
p∈P

max
v∈Y

min
‖wp‖=1,wp∈Rnp

+

φp,n(wp, v, xn, yn) → max
p∈P

max
v∈Y

min
‖wp‖=1,wp∈Rnp

+

φp(wp, v, x, y
)
.

For every p ∈ P , as Fp,n → Fp, then, for any ε2 > 0, there exists a positive integer N2

such that ‖Fp,n(xn, yn) – Fp(xn, yn)‖ < ε2
4 and ‖Fp,n(xn, v) – Fp(xn, v)‖ < ε2

4 can be satisfied
simultaneously for any n ≥ N2.

Besides, for each i ∈ Sp, since Fp
i is continuous at (x, y) and (xn, yn) → (x, y), there exists a

positive integer N3 such that ‖Fp(xn, yn) – Fp(x, y)‖ < ε2
4 and ‖Fp(xn, v) – Fp(x, v)‖ < ε2

4 can
be satisfied simultaneously for any n ≥ N3.

Let N = max{N2, N3}, for any n > N , we have

∣
∣φp,n(wp, v, xn, yn) – φp(w, v, x, y)

∣
∣

=
∣
∣
〈
wp, Fp,n(xn, yn) – Fp,n(xn, v

)〉
–

〈
wp, Fp(x, y) – Fp(x, v)

〉∣
∣

≤ ∣
∣
〈
wp, Fp,n(xn, yn) – Fp(x, y)

〉∣
∣ +

∣
∣
〈
wp, Fp,n(xn, v

)
– Fp(x, v)

〉∣
∣

≤ ∥
∥wp∥∥

∥
∥Fp,n(xn, yn) – Fp(xn, yn)∥∥ +

∥
∥wp∥∥

∥
∥Fp(xn, yn) – Fp(x, y)

∥
∥

+
∥
∥wp∥∥

∥
∥Fp,n(xn, v

)
– Fp(xn, v

)∥
∥ +

∥
∥wp∥∥

∥
∥Fp(xn, v

)
– Fp(x, v)

∥
∥

≤ ε2

4
+

ε2

4
+

ε2

4
+

ε2

4
= ε2.

Therefore, we obtain φp,n(wp, v, xn, yn) → φp(wp, v, x, y) for each p ∈P . From Lemma 2.4,
it follows that

max
v∈Y

min
‖wp‖=1,wp∈Rnp

+

φp,n(wp, v, xn, yn) → max
v∈Y

min
‖wp‖=1,wp∈Rnp

+

φp(wp, v, x, y
)
.

Then

max
p∈P

max
v∈Y

min
‖wp‖=1,wp∈Rnp

+

φp,n(wp, v, xn, yn) → max
p∈P

max
v∈Y

min
‖wp‖=1,wp∈Rnp

+

φp(wp, v, x, y
)
.
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To sum up,

R
(
Fn, xn, yn)

= max
p∈P

max
up∈Xp

ϕp,n(u, xn, yn) + max
p∈P

max
v∈Y

min
‖wp‖=1,wp∈Rnp

+

φp,n(wp, v, xn, yn)

→ max
p∈P

max
up∈Xp

ϕp(u, x, y) + max
p∈P

max
v∈Y

min
‖wp‖=1,wp∈Rnp

+

φp(w, v, x, y)

= R(F , x, y). �

Remark 4.1 For any ε ≥ 0 and F ∈ F , we define the set of ε-equilibria at F by ENS(F , ε) =
{(x, y) ∈ f (F) :R(F , x, y) ≤ ε}, it describes the bounded rationality in population games with
uncertain parameters. Especially, by Lemma 4.3, ENS(F , ε) = ENS(F , 0) is the set of NS equi-
libria for F as ε = 0, which describes the complete rationality in population games with
uncertain parameters.

Remark 4.2 M1 = (F , X, Y , T , R) is the model of bounded rationality for population games
with uncertain parameters. Similar to Definition 4.1 and Definition 4.2, we can define the
model M1 to be structurally stable and robust to ε-equilibria at F ∈F , here we will not go
into details.

Now we give the following stability results.

Theorem 4.1 If M1 = (F , X, Y , T , R) is the model of bounded rationality for popula-
tion games with uncertain parameters we mentioned above, then all stability results of
Lemma 4.1 are applicable for it.

Proof From our discussions above, (F ,ρ) is complete, X × Y is compact, f : F → X × Y
and R : F × X × Y → R+ are continuous, so Lemma 4.1 holds for M1. �

5 Conclusion
In this paper, we proved the existence theorem of NS equilibria for population games with
uncertain parameters. Meanwhile, some stability results of NS equilibria have been ob-
tained by establishing a model of bounded rationality. Due to the uncertainty of decision-
making environment for game problems, the population games with uncertain parameters
expand the application scope of classical population games, so they are more practical and
have a more popularly theoretic value. However, the paper only focuses on the equilibria
for single-objective population games with uncertain parameters, the equilibria for mul-
tiobjective ones will be the next research direction in the future.
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