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1 Introduction
If p > 1, 1

p + 1
q = 1, am, bn ≥ 0, 0 <

∑∞
m=1 ap

m < ∞ and 0 <
∑∞

n=1 bq
n < ∞, then we have the

following more accurate Hardy–Hilbert’s inequality with the best possible constant π
sin(π/p)

(cf. [1], Theorem 323):

∞∑

m=1

∞∑

n=1

ambn

m + n – 1
<

π

sin(π/p)

( ∞∑

m=1

ap
m

) 1
p
( ∞∑

n=1

bq
n

) 1
q

. (1)

For p = q = 2, inequality (1) reduces to the more accurate Hilbert’s inequality. Since 1
m+n <

1
m+n–1 , we still have the following Hardy–Hilbert’s inequality (cf. [1], Theorem 315):

∞∑

m=1

∞∑

n=1

ambn

m + n
<

π

sin(π/p)

( ∞∑

m=1

ap
m

) 1
p
( ∞∑

n=1

bq
n

) 1
q

. (2)

Assuming that f (x), g(y) ≥ 0, 0 <
∫ ∞

0 f p(x) dx < ∞ and 0 <
∫ ∞

0 gq(y) dy < ∞, we have the
following integral analogue of (2), namely Hardy–Hilbert’s integral inequality:

∫ ∞

0

∫ ∞

0

f (x)g(y)
x + y

dx dy
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<
π

sin(π/p)

(∫ ∞

0
f p(x) dx

) 1
p
(∫ ∞

0
gq(y) dy

) 1
q

, (3)

with the best possible constant factor π
sin(π/p) (cf. [1], Theorem 316).

By introducing an independent parameter λ > 0, Yang [2, 3] gave an extension of (2) (for
p = q = 2) with the kernel 1

(x+y)λ and the best possible constant factor B( λ
2 , λ

2 ) (B(u, v) :=
∫ ∞

0
tu–1

(1+t)u+v dt (u, v > 0) is the beta function) in 1998. Inequalities (1), (2) and (3) play an
important role in analysis and its applications (cf. [4–15]).

The following half-discrete Hilbert-type inequality was provided in 1934 (cf. [1], The-
orem 351): If K(x) (x > 0) is decreasing, p > 1, 1

p + 1
q = 1, 0 < φ(s) =

∫ ∞
0 K(x)xs–1 dx < ∞,

an ≥ 0, 0 <
∑∞

n=1 ap
n < ∞, then

∫ ∞

0
xp–2

( ∞∑

n=1

K(nx)an

)p

dx < φp
(

1
q

) ∞∑

n=1

ap
n. (4)

Some new extensions and applications of (4) were obtained in recent years [16–21]. In
2016, by the use of the technique of real analysis, Hong et al. [22] provided some equivalent
statements of the extensions of (1) with the best possible constant factor related to several
parameters. Other results about the extensions of (1)–(4) were given by [23–37].

In this paper, following the approach of [22], by means of the weight coefficients, the idea
of introduced parameters and the technique of real analysis, a more accurate Hilbert-type
inequality in the whole plane is given as follows: for r > 1, 1

r + 1
s = 1,

∞∑

|n|=1

∞∑

|m|=1

ambn

|m – 1
2 | + |n – 1

2 |

<
2π

sin(π/r)

( ∞∑

|m|=1

∣
∣
∣
∣m –

1
2

∣
∣
∣
∣

p
s –1

ap
m

) 1
p
( ∞∑

|n|=1

∣
∣
∣
∣n –

1
2

∣
∣
∣
∣

q
r –1

bq
n

) 1
q

, (5)

which is an extension of (1). The general form of (4), as well as an equivalent form, is
obtained. The equivalent statements of the best possible constant factor related to several
parameters, the operator expressions and a few particular cases are considered.

2 Some lemmas
In what follows, we suppose that p > 1, 1

p + 1
q = 1, – 1

2 ≤ ξ ,η ≤ 1
2 , –1 < α,β < 1,λ,λ1,λ2 ∈ R =

(–∞,∞), d := λ – λ1 – λ2, kλ(x, y) (≥ 0) is a homogeneous function of degree –λ, satisfying

kλ(ux, uy) = u–λkλ(x, y) (u, x, y > 0),

kλ(x, y)xλ1–1 (resp. kλ(x, y)yλ2–1) is strictly decreasing and strictly convex with respect to
x > 0 (resp. y > 0), such that (–1)i ∂ i

∂xi (kλ(x, y)xλ1–1) > 0, (–1)i ∂ i

∂yi (kλ(x, y)yλ2–1) > 0 (x, y > 0; i =
1, 2), and

kλ(γ ) :=
∫ ∞

0
kλ(1, u)uγ –1 du ∈ R+ = (0,∞) (γ = λ2,λ – λ1).
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We still assume that am, bn ≥ 0 (|m|, |n| ∈ N = {1, 2, . . .}), satisfy

0 <
∞∑

|m|=1

[|m – ξ | + α(m – ξ )
]p(1–λ1)–d–1ap

m < ∞,

0 <
∞∑

|n|=1

[|n – η| + β(n – η)
]q(1–λ2)–d–1bq

n < ∞,

where,
∑∞

|j|=1 = · · · =
∑–∞

j=–1 + · · · +
∑∞

j=1 · · · (j = m, n).

Lemma 1 For any γ > 0, we have the following inequalities:

(1 + |ξ |)–χ

γ

[
(1 – α)–γ –1 + (1 + α)–γ –1]

<
∞∑

|m|=1

[|m – ξ | + α(m – ξ )
]–γ –1

<
1
γ

[
(1 – α)–γ –1 + (1 + α)–γ –1][γ

(
1 – |ξ |)–γ –1 + 1

]
. (6)

Proof Since (–1)i di

dti
1

(t–|ξ |)γ +1 > 0 (t > 3
2 ; i = 1, 2), for 3

2 ≥ 1 + |ξ |, by Hermite–Hadamard’s
inequality (cf. [38]) and using the decreasing property of series, we find

∞∑

|m|=1

[|m – ξ | + α(m – ξ )
]–γ –1

=
–∞∑

m=–1

[
(1 – α)(ξ – m)

]–γ –1 +
∞∑

m=1

[
(1 + α)(m – ξ )

]–γ –1

=
∞∑

m=1

[
(1 – α)(m + ξ )

]–γ –1 +
∞∑

m=1

[
(1 + α)(m – ξ )

]–γ –1

≤ [
(1 – α)–γ –1 + (1 + α)–γ –1]

[
(
1 – |ξ |)–γ –1 +

∞∑

m=2

(
m – |ξ |)–γ –1

]

<
[
(1 – α)–γ –1 + (1 + α)–γ –1]

[
(
1 – |ξ |)–γ –1 +

∫ ∞

3
2

(
x – |ξ |)–γ –1 dx

]

≤ [
(1 – α)–γ –1 + (1 + α)–γ –1]

[
(
1 – |ξ |)–γ –1 +

∫ ∞

1+|ξ |

(
x – |ξ |)–γ –1 dx

]

=
1
γ

[
(1 – α)–γ –1 + (1 + α)–γ –1][γ

(
1 – |ξ |)–γ –1 + 1

]
,

∞∑

|m|=1

[|m – ξ | + α(m – ξ )
]–γ –1

≥ [
(1 – α)–γ –1 + (1 + α)–γ –1]

∞∑

m=1

(
m + |ξ |)–γ –1

>
[
(1 – α)–γ –1 + (1 + α)–γ –1]

∫ ∞

1

(
x + |ξ |)–γ –1 dx
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=
(1 + |ξ |)–γ

γ

[
(1 – α)–γ –1 + (1 + α)–γ –1],

and then we have (6).
The lemma is proved. �

Definition 1 We set

kξ ,η(m, n) := kλ

(|m – ξ | + α(m – ξ ), |n – η| + β(n – η)
) (|m|, |n| ∈ N

)
,

and define the following weight coefficients:

ω(λ2, m) :=
[|m – ξ | + α(m – ξ )

]λ–λ2
∞∑

|n|=1

kξ ,η(m, n)
[|n – η| + β(n – η)

]λ2–1

(|m| ∈ N
)
, (7)

 (λ1, n) :=
[|n – η| + β(n – η)

]λ–λ1
∞∑

|m|=1

kξ ,η(m, n)
[|m – ξ | + α(m – ξ )

]λ1–1

(|n| ∈ N
)
. (8)

Lemma 2 The following inequalities are valid:

ω(λ2, m) <
2

1 – β2 kλ(λ2)
(|m| ∈ N

)
, (9)

 (λ1, n) <
2

1 – α2 kλ(λ – λ1)
(|n| ∈ N

)
. (10)

Proof For fixed |m| ∈ N, we set

k(1)(m, y) := kλ

(|m – ξ | + α(m – ξ ), (1 – β)(η – y)
)
, y < η,

k(2)(m, y) := kλ

(|m – ξ | + α(m – ξ ), (1 + β)(y – η)
)
, y > η,

where from for y > –η, k(1)(m, –y) = kλ(|m – ξ | + α(m – ξ ), (1 – β)(y + η)). We find

ω(λ2, m) =
[|m – ξ | + α(m – ξ )

]λ–λ2

×
{ –∞∑

n=–1

k(1)(m, n)
[
(1 – β)(η – n)

]λ2–1 +
∞∑

n=1

k(2)(m, n)
[
(1 + β)(n – η)

]λ2–1
}

=
[|m – ξ | + α(m – ξ )

]λ–λ2

×
[

(1 – β)λ2–1
∞∑

n=1

k(1)(m, –n)(n + η)λ2–1

+ (1 + β)λ2–1
∞∑

n=1

k(2)(m, n)(n – η)λ2–1

]

.
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In view of the assumptions, k(1)(m, –y)(y + η)λ2–1 (resp. k(2)(m, y)(y – η)λ2–1) is strictly
decreasing and strictly convex with respect to y ∈ (–η,∞) (resp. y ∈ (η,∞)). By Hermite–
Hadamard’s inequality and using the decreasing property of series, for 1

2 ≥ ±η, we obtain

ω(λ2, m)

<
[|m – ξ | + α(m – ξ )

]λ–λ2
[

(1 – β)λ2–1
∫ ∞

1
2

k(1)(m, –y)(y + η)λ2–1 dy

+ (1 + β)λ2–1
∫ ∞

1
2

k(2)(m, y)(y – η)λ2–1 dy
]

≤ [|m – ξ | + α(m – ξ )
]λ–λ2

×
[

(1 – β)λ2–1
∫ ∞

–η

kλ

(|m – ξ | + α(m – ξ ), (1 – β)(y + η)
)
(y + η)λ2–1 dy

+ (1 + β)λ2–1
∫ ∞

η

kλ

(|m – ξ | + α(m – ξ ), (1 + β)(y – η)
)
(y – η)λ2–1 dy

]

, (11)

ω(λ2, m)

>
[|m – ξ | + α(m – ξ )

]λ–λ2

×
[

(1 – β)λ2–1
∫ ∞

1
kλ

(|m – ξ | + α(m – ξ ), (1 – β)(y + η)
)
(y + η)λ2–1 dy

+ (1 + β)λ2–1
∫ ∞

1
kλ

(|m – ξ | + α(m – ξ ), (1 + β)(y – η)
)
(y – η)λ2–1 dy

]

. (12)

Setting u = (1–β)(y+η)
|m–ξ |+α(m+ξ ) (resp. u = (1+β)(y–η)

|m–ξ |+α(m+ξ ) ) in the first (resp. second) integral of (11),
we obtain

ω(λ2, m) <
[
(1 – β)–1 + (1 + β)–1]

∫ ∞

0
kλ(1, u)uλ2–1 du =

2kλ(λ2)
1 – β2 .

Hence, we have (9).
In the same way, setting v = 1

u , we obtain

 (λ1, n) <
2

1 – α2

∫ ∞

0
kλ(u, 1)uλ1–1 du =

2
1 – α2

∫ ∞

0
kλ(1, v)v(λ–λ1)–1 dv =

2kλ(λ – λ1)
1 – α2 ,

and then (10) follows.
The lemma is proved. �

Lemma 3 If λ1 + λ2 = λ (or d = 0), then for any ε > 0, we have

H̃ :=
∞∑

|m|=1

ω

(

λ2 –
ε

q
, m

)
[|m – ξ | + α(m – ξ )

]–ε–1

>
4

ε2ε(1 – β2)(1 – α2)

(∫ 2

0
kλ(1, u)uλ2+ ε

p –1 du +
∫ ∞

2
kλ(1, u)uλ2– ε

q –1 du
)

. (13)
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Proof By (7) (for λ1 + λ2 = λ) and (12), replacing λ2 (resp. λ1) by λ2 – ε
q (resp. λ1 + ε

q ), we
have

ω

(

λ2 –
ε

q
, m

)

>
[|m – ξ | + α(m – ξ )

]λ1+ ε
q

×
[

(1 – β)(λ2– ε
q )–1

∫ ∞

1
kλ

(|m – ξ | + α(m – ξ ), (1 – β)(y + η)
)
(y + η)(λ2– ε

q )–1 dy

+ (1 + β)(λ2– ε
q )–1

∫ ∞

1
kλ

(|m – ξ | + α(m – ξ ), (1 + β)(y – η)
)
(y – η)(λ2– ε

q )–1 dy
]

.

Then we find

H̃ >
∞∑

|m|=1

[|m – ξ | + α(m – ξ )
](λ1– ε

p )–1(1 – β)(λ2– ε
q )–1

×
∫ ∞

1
kλ

(|m – ξ | + α(m – ξ ), (1 – β)(y + η)
)
(y + η)(λ2– ε

q )–1 dy

+
∞∑

|m|=1

[|m – ξ | + α(m – ξ )
](λ1– ε

p )–1(1 + β)(λ2– ε
q )–1

×
∫ ∞

1
kλ

(|m – ξ | + α(m – ξ ), (1 + β)(y – η)
)
(y – η)(λ2– ε

q )–1 dy

= (1 – β)(λ2– ε
q )–1

∫ ∞

1

∞∑

|m|=1

kλ

(|m – ξ | + α(m – ξ ), (1 – β)(y + η)
)

× [|m – ξ | + α(m – ξ )
](λ1– ε

p )–1(y + η)(λ2– ε
q )–1 dy

+ (1 + β)(λ2– ε
q )–1

∫ ∞

1

∞∑

|m|=1

kλ

(|m – ξ | + α(m – ξ ), (1 + β)(y – η)
)

× [|m – ξ | + α(m – ξ )
](λ1– ε

p )–1(y – η)(λ2– ε
q )–1 dy =

4∑

i=1

Hi,

where we denote

H1 := (1 – β)(λ2– ε
q )–1(1 – α)(λ1– ε

p )–1

×
∫ ∞

1

∞∑

m=1

kλ

(
(1 – α)(m + ξ ), (1 – β)(y + η)

)
(m + ξ )(λ1– ε

p )–1(y + η)(λ2– ε
q )–1 dy,

H2 := (1 – β)(λ2– ε
q )–1(1 + α)(λ1– ε

p )–1

×
∫ ∞

1

∞∑

m=1

kλ

(
(1 + α)(m – ξ ), (1 – β)(y + η)

)
(m – ξ )(λ1– ε

p )–1(y + η)(λ2– ε
q )–1 dy,

H3 := (1 + β)(λ2– ε
q )–1(1 – α)(λ1– ε

p )–1

×
∫ ∞

1

∞∑

m=1

kλ

(
(1 – α)(m + ξ ), (1 + β)(y – η)

)
(m + ξ )(λ1– ε

p )–1(y – η)(λ2– ε
q )–1 dy,
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H4 := (1 + β)(λ2– ε
q )–1(1 + α)(λ1– ε

p )–1

×
∫ ∞

1

∞∑

m=1

kλ

(
(1 + α)(m – ξ ), (1 + β)(y – η)

)
(m – ξ )(λ1– ε

p )–1(y – η)(λ2– ε
q )–1 dy.

In the following, we estimate H1. Still using the decreasing property of series, for fixed
x > –ξ , 2

1–η
≥ 1(η = α,β), setting u = (1–β)(y+η)

(1–α)(x+ξ ) , we obtain

H1 > (1 – β)λ2– ε
q –1(1 – α)λ1– ε

p –1
∫ ∞

2
1–α

[∫ ∞

2
1–β

kλ

(
(1 – α)(x + ξ ), (1 – β)(y + η)

)

× (x + ξ )λ1– ε
p –1(y + η)λ2– ε

q –1 dy
]

dx

=
(1 – α)–ε–1

1 – β

∫ ∞

2
1–α

(x + ξ )–ε–1
∫ ∞

2
(1–α)(x+ξ )

kλ(1, u)uλ2– ε
q –1 du dx

v=(1–α)(x+ξ )=
1

(1 – β)(1 – α)

∫ ∞

2
v–ε–1

∫ ∞

2
v

kλ(1, u)uλ2– ε
q –1 du dv

=
1

(1 – β)(1 – α)

[∫ ∞

2
v–ε–1

∫ 2

2
v

kλ(1, u)uλ2– ε
q –1 du dv

+
∫ ∞

2
v–ε–1

∫ ∞

2
kλ(1, u)uλ2– ε

q –1 du dv
]

=
1

(1 – β)(1 – α)

[∫ 2

0

(∫ ∞

2
u

v–ε–1 dv
)

kλ(1, u)uλ2– ε
q –1 du

+
1

ε2ε

∫ ∞

2
kλ(1, u)uλ2– ε

q –1 du
]

= H̃1 :=
1

ε2ε(1 – β)(1 – α)

(∫ 2

0
kλ(1, u)uλ2+ ε

p –1 du +
∫ ∞

2
kλ(1, u)uλ2– ε

q –1 du
)

.

In the same way, we can find that

H2 > H̃2 :=
1

ε2ε(1 – β)(1 + α)

(∫ 2

0
kλ(1, u)uλ2+ ε

p –1 du +
∫ ∞

2
kλ(1, u)uλ2– ε

q –1 du
)

,

H3 > H̃3 :=
1

ε2ε(1 + β)(1 – α)

(∫ 2

0
kλ(1, u)uλ2+ ε

p –1 du +
∫ ∞

2
kλ(1, u)uλ2– ε

q –1 du
)

,

H3 > H̃3 :=
1

ε2ε(1 + β)(1 + α)

(∫ 2

0
kλ(1, u)uλ2+ ε

p –1 du +
∫ ∞

2
kλ(1, u)uλ2– ε

q –1 du
)

.

In view of the above results, we have

H̃ >
4∑

i=1

H̃i =
4

ε2ε(1 – β2)(1 – α2)

(∫ 2

0
kλ(1, u)uλ2+ ε

p –1 du +
∫ ∞

2
kλ(1, u)uλ2– ε

q –1 du
)

,

and then (13) follows.
The lemma is proved. �
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Lemma 4 The following inequality holds:

H :=
∞∑

|n|=1

∞∑

|m|=1

kξ ,η(m, n)ambn

<
2k

1
p
λ (λ2)k

1
q
λ (λ – λ1)

(1 – β2)1/p(1 – α2)1/q

{ ∞∑

|m|=1

[|m – ξ | + α(m – ξ )
]p(1–λ1)–d–1ap

m

} 1
p

×
{ ∞∑

|n|=1

|n – η| + β(n – η)]q(1–λ2)–d–1bq
n

} 1
q

. (14)

Proof By Hölder’s inequality with weight (cf. [38]), (7) and (8), we obtain

H =
∞∑

|n|=1

∞∑

|m|=1

kξ ,η(m, n)
{

[|n – η| + β(n – η)](λ2–1)/p

[|m – ξ | + α(m – ξ )](λ1–1)/q am

}

×
{

[|m – ξ | + α(m – ξ )](λ1–1)/q

[|n – η| + β(n – η)](λ2–1)/p bn

}

≤
{ ∞∑

|m|=1

∞∑

|n|=1

kξ ,η(m, n)
[|n – η| + β(n – η)]λ2–1

[|m – ξ | + α(m – ξ )](λ1–1)(p–1) ap
m

} 1
p

×
{ ∞∑

|n|=1

∞∑

|m|=1

kξ ,η(m, n)
[|m – ξ | + α(m – ξ )]λ1–1

[|n – η| + β(n – η)](λ2–1)(q–1) bq
n

} 1
q

=

{ ∞∑

|m|=1

ω(λ2, m)
[|m – ξ | + α(m – ξ )

]p(1–λ1)–d–1ap
m

} 1
p

×
{ ∞∑

|n|=1

 (λ1, n)(|n – η| + β(n – η)]q(1–λ2)–d–1bq
n

} 1
q

.

Then by (9) and (10), we have (14).
The lemma is proved. �

Remark 1 (i) By (14), for λ1 + λ2 = λ (or d = 0), we find

0 <
∞∑

|m|=1

[|m – ξ | + α(m – ξ )
]p(1–λ1)–1ap

m < ∞,

0 <
∞∑

|n|=1

[|n – η| + β(n – η)
]q(1–λ2)–1bq

n < ∞,

and the following more accurate Hilbert-type inequality in the whole plane:

∞∑

|n|=1

∞∑

|m|=1

kλ

(|m – ξ | + α(m – ξ ), |n – η| + β(n – η)
)
ambn



Huang and Yang Journal of Inequalities and Applications         (2021) 2021:10 Page 9 of 17

<
2kλ(λ2)

(1 – β2)1/p(1 – α2)1/q

{ ∞∑

|m|=1

[|m – ξ | + α(m – ξ )
]p(1–λ1)–1ap

m

} 1
p

×
{ ∞∑

|n|=1

[|n – η| + β(n – η)
]q(1–λ2)–1bq

n

} 1
q

. (15)

In particular, for α = β = ξ = η = 0, a–m = am, b–n = bn (m, n ∈ N) in (15), we have

∞∑

n=1

∞∑

m=1

kλ(m, n)ambn < kλ(λ2)

[ ∞∑

m=1

mp(1–λ1)–1ap
m

] 1
p
[ ∞∑

n=1

nq(1–λ2)–1bq
n

] 1
q

. (16)

(ii) For λ = 1,λ1 = 1
q ,λ2 = 1

p in (16), we have

∞∑

n=1

∞∑

m=1

k1(m, n)ambn < k1

(
1
p

)( ∞∑

m=1

ap
m

) 1
p
( ∞∑

n=1

bq
n

) 1
q

; (17)

for λ = 1,λ1 = 1
p ,λ2 = 1

q in (16), we have the dual form of (17) as follows:

∞∑

n=1

∞∑

m=1

k1(m, n)ambn < k1

(
1
q

)( ∞∑

m=1

mp–2ap
m

) 1
p
( ∞∑

n=1

nq–2bq
n

) 1
q

; (18)

for p = q = 2, both (17) and (18) reduce to the following Hilbert-type inequality:

∞∑

n=1

∞∑

m=1

k1(m, n)ambn < k1

(
1
2

)( ∞∑

m=1

a2
m

∞∑

n=1

b2
n

) 1
2

. (19)

(iii) For α = β = 0, ξ = η = 1
2 ,λ = 1, k1(m, n) = 1

m+n ,λ1 = 1
r ,λ2 = 1

s (r > 1, 1
r + 1

s = 1), (15)
reduces to (5). Hence, (14) and (15) are general extensions of (5).

Lemma 5 The constant factor 2kλ(λ2)
(1–β2)1/p(1–α2)1/q in (15) is the best possible.

Proof For any ε > 0, we set

ãm :=
[|m – ξ | + α(m – ξ )

](λ1– ε
p )–1, b̃n :=

[|n – η| + β(n – η)
](λ2– ε

q )–1 (|m|, |n| ∈ N
)
.

If there exists a constant M(≤ 2kλ(λ2)
(1–β2)1/p(1–α2)1/q ), such that (15) is valid when replacing

2kλ(λ2)
(1–β2)1/p(1–α2)1/q by M, then in particular, in view of λ1 + λ2 = λ, by Lemma 1, we have

H̃ =
∞∑

|n|=1

∞∑

|m|=1

kλ

(|m – ξ | + α(m – ξ ), |n – η| + β(n – μ)
)
ãmb̃n

< M

{ ∞∑

|m|=1

[|m – ξ | + α(m – ξ )
]p(1–λ1)–1ãp

m

} 1
p

{
∞∑

|n|=1

[|n – η| + β(n – η)
]q(1–λ2)–1b̃q

n]
1
q .

= M

{ ∞∑

|m|=1

[|m – ξ | + α(m – ξ )
]–ε–1

} 1
p
{ ∞∑

|n|=1

[|n – η| + β(n – η)
]–ε–1

} 1
q
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<
M
ε

{[
(1 – α)–ε–1 + (1 + α)–ε–1][ε

(
1 – |ξ |)–ε–1 + 1

]} 1
p

× {[
(1 – β)–ε–1 + (1 + β)–ε–1][ε

(
1 – |η|)–ε–1 + 1

]} 1
q .

In view of the above result and (13), we have

4
2ε(1 – β2)(1 – α2)

(∫ 2

0
kλ(1, u)uλ2+ ε

p –1 du +
∫ ∞

2
kλ(1, u)uλ2– ε

q –1 du
)

< εH̃ < M
{[

(1 – α)–ε–1 + (1 + α)–ε–1][ε
(
1 – |ξ |)–ε–1 + 1

]} 1
p

× {[
(1 – β)–ε–1 + (1 + β)–ε–1][ε

(
1 – |η|)–ε–1 + 1

]} 1
q .

For ε → 0+, by Fatou lemma (cf. [39]), we find

4
(1 – β2)(1 – α2)

kλ(λ2)

≤ lim
ε→0+

4
2ε(1 – β2)(1 – α2)

(∫ 2

0
kλ(1, u)uλ2+ ε

p –1 du +
∫ ∞

2
kλ(1, u)uλ2– ε

q –1 du
)

≤ 2M
(1 – α2)1/p(1 – β2)1/q ,

namely, 2kλ(λ2)
(1–β2)1/p(1–α2)1/q ≤ M, which means that M = 2kλ(λ2)

(1–β2)1/p(1–α2)1/q is the best possible
constant factor of (15).

The lemma is proved. �

Remark 2 (i) In view of Lemma 5, the constant factors in (16)–(19) are also the best pos-
sible.

(ii) Setting λ̂1 := λ–λ2
p + λ1

q = λ1 + d
p , λ̂2 := λ–λ1

q + λ2
p = λ2 + d

q , we find

λ̂1 + λ̂2 =
λ – λ2

p
+

λ1

q
+

λ – λ1

q
+

λ2

p
=

λ

p
+

λ

q
= λ,

and then by Hölder’s inequality (cf. [38]), it follows that

0 < kλ(λ̂2) = kλ

(
λ2

p
+

λ – λ1

q

)

=
∫ ∞

0
kλ(1, u)u

λ2
p + λ–λ1

q –1 du =
∫ ∞

0
kλ(1, u)

(
u

λ2–1
p

)(
u

λ–λ1–1
q

)
du

≤
(∫ ∞

0
kλ(1, u)uλ2–1 du

) 1
p
(∫ ∞

0
kλ(1, u)u(λ–λ1)–1 du

) 1
q

= k
1
p
λ (λ2)k

1
q
λ (λ – λ1) < ∞. (20)

We can rewrite (14) as follows:

H <
2k

1
p
λ (λ2)k

1
q
λ (λ – λ1)

(1 – β2)1/p(1 – α2)1/q

{ ∞∑

|m|=1

[|m – ξ | + α(m – ξ )
]p(1–λ̂1)–1ap

m

} 1
p
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×
{ ∞∑

|n|=1

[|n – η| + β(n – η)
]q(1–λ̂2)–1bq

n

} 1
q

. (21)

Lemma 6 If the constant factor 2k
1
p
λ (λ2)k

1
q
λ (λ–λ1)

(1–β2)1/p(1–α2)1/q in (14) (or (21)) is the best possible, then we
have λ1 + λ2 = λ.

Proof If the constant factor 2k
1
p
λ (λ2)k

1
q
λ (λ–λ1)

(1–β2)1/p(1–α2)1/q in (14) (or (21)) is the best possible, then by
(21) and (15) (for λi = λ̂i (i = 1, 2)), we have the following inequality:

2k
1
p
λ (λ2)k

1
q
λ (λ – λ1)

(1 – β2)1/p(1 – α2)1/q ≤ 2kλ(λ̂2)
(1 – β2)1/p(1 – α2)1/q (∈ R+),

namely, k
1
p
λ (λ2)k

1
q
λ (λ – λ1) ≤ kλ(λ̂2), which means that (20) is an equality.

We observe that (20) is an equality if and only if there exist constants A and B, such that
they are not both zero and (cf. [38])

Auλ2–1 = Buλ–λ1–1 a.e. in R+.

Assuming that A �= 0, it follows that uλ2+λ1–λ = B
A a.e. in R+, and then λ2 + λ1 – λ = 0,

namely, λ1 + λ2 = λ.
The lemma is proved. �

3 Main results
Theorem 1 Inequality (14) is equivalent to the following more accurate Hilbert-type in-
equality in the whole plane:

L :=

{ ∞∑

|n|=1

[|n – η| + β(n – η)
]p(λ2+d)–d–1

( ∞∑

|m|=1

kξ ,η(m, n)am

)p} 1
p

<
2k

1
p
λ (λ2)k

1
q
λ (λ – λ1)

(1 – β2)1/p(1 – α2)1/q

{ ∞∑

|m|=1

[|m – ξ | + α(m – ξ )
]p(1–λ1)–d–1ap

m

} 1
p

. (22)

Proof Suppose that (22) is valid. By Hölder’s inequality (cf. [38]), we find

H =
∞∑

|n|=1

{
[|n – η| + β(n – η)

] –1
p +λ2+ d

q
∞∑

|m|=1

kξ ,η(m, n)am

}
{[|n – η| + β(n – η)

] 1
p –λ2– d

q bn
}

≤ L ·
{ ∞∑

|n|=1

[|n – ξ | + β(n – ξ )
]q(1–λ2)–d–1bq

n

} 1
q

. (23)

Then by (22), we obtain (14). On the other hand, assuming that (14) is valid, we set

bn :=
[|n – η| + β(n – η)

]p(λ2+d)–d–1
( ∞∑

|m|=1

kξ ,η(m, n)am

)p–1

, |n| ∈ N.
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Then we have

Lp =
∞∑

|n|=1

[|n – η| + β(n – η)
]q(1–λ2)–d–1bq

n = H . (24)

If L = 0, then (22) is naturally valid; if L = ∞, then it is impossible that (22) is valid,
namely, L < ∞. Suppose that 0 < L < ∞. By (14), it follows that

∞∑

|n|=1

[|n – η| + β(n – η)
]q(1–λ2)–d–1bq

n

= Lp = H <
2k

1
p
λ (λ2)k

1
q
λ (λ – λ1)

(1 – β2)1/p(1 – α2)1/q

{ ∞∑

|m|=1

[|m – ξ | + α(m – ξ )
]p(1–λ1)–d–1ap

m

} 1
p

Lp–1,

L =

{ ∞∑

|n|=1

[|n – η| + β(n – η)
]q(1–λ2)–d–1bq

n

} 1
p

<
2k

1
p
λ (λ2)k

1
q
λ (λ – λ1)

(1 – β2)1/p(1 – α2)1/q

{ ∞∑

|m|=1

[|m – ξ | + α(m – ξ )
]p(1–λ1)–d–1ap

m

} 1
p

,

namely, (22) follows, which is equivalent to (14).
The theorem is proved. �

Theorem 2 The following statements are equivalent:

(i) Both k
1
p
λ (λ2)k

1
q
λ (λ – λ1) and kλ( λ2

p + λ–λ1
q ) are independent of p, q;

(ii) k
1
p
λ (λ2)k

1
q
λ (λ – λ1) ≤ kλ( λ2

p + λ–λ1
q );

(iii) λ1 + λ2 = λ;

(iv) 2k
1
p
λ (λ2)k

1
q
λ (λ–λ1)

(1–β2)1/p(1–α2)1/q is the best possible constant factor of (14);

(v) 2k
1
p
λ (λ2)k

1
q
λ (λ–λ1)

(1–β2)1/p(1–α2)1/q is the best possible constant factor of (22).

If the statement (iii) follows, namely, λ1 + λ2 = λ (or d = 0), then we have the following
inequality equivalent to (15) with the best possible constant factor 2kλ(λ2)

(1–β2)1/p(1–α2)1/q :

{ ∞∑

|n|=1

[|n – η| + β(n – η)
]pλ2–1

[ ∞∑

|m|=1

kλ

(|m – ξ | + α(m – ξ ), |n – η| + β(n – η)
)
am

]p} 1
p

<
2kλ(λ2)

(1 – β2)1/p(1 – α2)1/q

{ ∞∑

|m|=1

[|m – ξ | + α(m – ξ )
]p(1–λ1)–1ap

m

} 1
p

. (25)

In particular, for α = β = ξ = η = 0, a–m = am, b–n = bn (m, n ∈ N) in (25), we have the
following inequality equivalent to (16) with the best possible constant factor kλ(λ2):

[ ∞∑

n=1

npλ2–1

( ∞∑

m=1

kλ(m, n)am

)p] 1
p

< kλ(λ2)

[ ∞∑

m=1

mp(1–λ1)–1ap
m

] 1
p

. (26)
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Proof (i) ⇒ (ii). Since k
1
p
λ (λ2)k

1
q
λ (λ – λ1) is independent of p, q, we find

k
1
p
λ (λ2)k

1
q
λ (λ – λ1) = lim

q→∞ lim
p→1+

k
1
p
λ (λ2)k

1
q
λ (λ – λ1) = kλ(λ2).

Then by Fatou lemma (cf. [39]), we have the following inequality:

kλ

(
λ2

p
+

λ – λ1

q

)

= lim
q→∞ kλ

(

λ2 +
c
q

)

≥ kλ(λ2) = k
1
p
λ (λ2)k

1
q
λ (λ – λ1).

(ii) ⇒ (iii). If k
1
p
λ (λ2)k

1
q
λ (λ – λ1) ≤ kλ( λ2

p + λ–λ1
q ), then (20) is an equality. By the proof of

Lemma 6, it follows that λ1 + λ2 = λ.
(iii) ⇒ (i). If λ1 + λ2 = λ, then we have

kλ

(
λ2

p
+

λ – λ1

q

)

= k
1
p
λ (λ2)k

1
q
λ (λ – λ1) = kλ(λ2).

Both k
1
p
λ (λ2)k

1
q
λ (λ – λ1) and kλ( λ2

p + λ–λ1
q ) are independent of p, q.

Hence, we have (i) ⇔ (ii) ⇔ (iii).
(iii) ⇔ (iv). By Lemmas 5 and 6, we obtain the conclusions.
(iv) ⇔ (v). If the constant factor in (14) is the best possible, then so is the constant factor

in (22). Otherwise, by (23), we would reach a contradiction that the constant factor in (14)
is not the best possible. On the other hand, if the constant factor in (22) is the best possible,
then so is the constant factor in (14). Otherwise, by (24), we would reach a contradiction
that the constant factor in (22) is not the best possible.

Therefore, the statements (i)–(v) are equivalent.
The theorem is proved. �

4 Operator expressions
We define functions

φ(m) :=
[|m – ξ | + α(m – ξ )

]p(1–λ1)–d–1, ψ(n) :=
[|n – η| + β(n – η)

]q(1–λ2)–d–1,

where

ψ1–p(n) =
[|n – η| + β(n – η)

]p(λ2+d)–d–1 (|m|, |n| ∈ N
)
.

Define the following real normed spaces:

lp,φ :=

{

a = {am}∞|m|=1;‖a‖p,φ :=

( ∞∑

|m|=1

φ(m)|am|p
) 1

p

< ∞
}

,

lq,ψ :=

{

b = {bn}∞|n|=1;‖b‖q,ψ :=

( ∞∑

|n|=1

ψ(n)|bn|q
) 1

q

< ∞
}

,

lp,ψ1–p :=

{

c = {cn}∞|n|=1;‖c‖p,ψ1–p :=

( ∞∑

|n|=1

ψ1–p(n)|bn|p
) 1

p

< ∞
}

.
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Assuming that a ∈ lp,φ and setting

c = {cn}∞|n|=1, cn :=
∞∑

|m|=1

kξ ,η(m, n)am, |n| ∈ N,

we can rewrite (22) as follows:

‖c‖p,ψ1–p <
2k

1
p
λ (λ2)k

1
q
λ (λ – λ1)

(1 – β2)1/p(1 – α2)1/q ‖a‖p,φ < ∞,

namely, c ∈ lp,ψ1–p .

Definition 2 Define a Hilbert-type operator T : lp,φ → lp,ψ1–p as follows: For any a ∈ lp,φ ,
there exists a unique representation Ta = c ∈ lp,ψ1–p , satisfying for any |n| ∈ N, Ta(n) = cn.
Define the formal inner product of Ta and b ∈ lq,ψ , and the norm of T , as follows:

(Ta, b) :=
∞∑

|n|=1

( ∞∑

|m|=1

kξ ,η(m, n)am

)

bn = H ,

‖T‖ := sup
a( �=θ )∈lp,φ

‖Ta‖p,ψ1–p

‖a‖p,φ
.

By Theorems 1 and 2, we have

Theorem 3 If a ∈ lp,φ , b ∈ lq,ψ ,‖a‖p,φ ,‖b‖q,ψ > 0, then we have the following equivalent
inequalities:

(Ta, b) <
2k

1
p
λ (λ2)k

1
q
λ (λ – λ1)

(1 – β2)1/p(1 – α2)1/q ‖a‖p,φ‖b‖q,ψ , (27)

‖Ta‖p,ψ1–p <
2k

1
p
λ (λ2)k

1
q
λ (λ – λ1)

(1 – β2)1/p(1 – α2)1/q ‖a‖p,φ . (28)

Moreover, λ1 + λ2 = λ if and only if the constant factor

2k
1
p
λ (λ2)k

1
q
λ (λ – λ1)

(1 – β2)1/p(1 – α2)1/q

(

=
2kλ(λ2)

(1 – β2)1/p(1 – α2)1/q

)

in (27) and (28) is the best possible, namely,

‖T‖ =
2kλ(λ2)

(1 – β2)1/p(1 – α2)1/q . (29)

Example 1 For λ > 0, 0 < σ ≤ 1,λi ∈ (0,λ)∩ (0, 1] (i = 1, 2), setting kλ(x, y) = 1
(xσ +yσ )λ/σ (x, y >

0) yields that

kξ ,η(m, n) =
1

{[|m – ξ | + α(m – ξ )]σ + [|n – η| + β(n – η)]σ }λ/σ

(|m|, |n| ∈ N
)
,
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kλ(x, y)xλ1–1 (resp. kλ(x, y)yλ2–1) is strictly decreasing and strictly convex with respect to
x > 0 (resp. y > 0), such that

kλ(γ ) =
∫ ∞

0

uγ –1

(1 + uσ )λ/σ du v=uσ

=
1
σ

∫ ∞

0

v(γ /σ )–1

(1 + v)λ/σ dv

=
1
σ

B
(

γ

σ
.
λ – γ

σ

)

∈ R+ (γ = λ2,λ – λ1).

By Theorem 3, it follows that λ1 + λ2 = λ if and only if

‖T‖ =
2

(1 – β2)1/p(1 – α2)1/q
1
σ

B
(

λ1

σ
.
λ2

σ

)

. (30)

Example 2 For 0 < λ ≤ 1,λi ∈ (0,λ) ∩ (0, 1] (i = 1, 2), setting kλ(x, y) = ln(x/y)
xλ–yλ (x, y > 0) yields

that

kξ ,η(m, n) =
ln |m–ξ |+α(m–ξ )

|n–η|+β(n–η)

[|m – ξ | + α(m – ξ )]λ – [|n – η| + β(n – η)]λ
(|m|, |n| ∈ N

)
,

kλ(x, y)xλ1–1 (resp. kλ(x, y)yλ2–1) is strictly decreasing and strictly convex with respect to
x > 0 (resp. y > 0), such that

kλ(γ ) =
∫ ∞

0

uγ –1 ln u
uλ – 1

du =
[

π

λ sin(πγ /λ)

]2

∈ R+ (γ = λ2,λ – λ1).

By Theorem 3, it follows that λ1 + λ2 = λ if and only if

‖T‖ =
2

(1 – β2)1/p(1 – α2)1/q

[
π

λ sin(πλ2/λ)

]2

. (31)

5 Conclusions
In this paper, by means of the weight coefficients, the idea of introduced parameters and
the technique of real analysis, a more accurate Hilbert-type inequality in the whole plane
is obtained in Lemma 4, which is an extension of (1). An equivalent form is given in The-
orem 1. The equivalent statements of the best possible constant factor related to several
parameters are considered in Theorem 2. The operator expressions and some particular
cases are provided in Theorem 3, Remark 1 and Examples 1–2. The lemmas and theorems
provide an extensive account of this type of inequalities.
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