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1 Introduction
Integral operators are very useful in the theory of differential equations and boundary
value problems. They are applied to formulate and solve mathematical models of real
world problems; nowadays fractional integral operators are frequently studied to extend
and generalize classical subjects. Fractional integral operators have converted the classical
notions into modern concepts. In the recent past, fractional integral operators were uti-
lized extensively to study the classical inequalities, see [2, 3, 6, 8, 9, 13, 14, 16–18, 20, 22]
and the references therein.

The aim of this paper is to give several integral inequalities for strongly convex functions,
resulting in refinements of the integral inequalities presented in [16], also [8, 9, 12]. For
this purpose, we will need the following integral operators:

Definition 1 ([15]) Let τ1 : [a, b] →R be an integrable function. Also let τ2 be an increas-
ing and positive function on (a, b], having a continuous derivative τ ′

2 on (a, b). The left-
and right-sided fractional integrals of a function τ1 with respect to another function τ2 on
[a, b] of order μ where �(μ) > 0 are defined by:

μ
τ2 Ia+τ1(x) =

1
�(μ)

∫ x

a

(
τ2(x) – τ2(t)

)μ–1
τ ′

2(t)τ1(t) dt, x > a, (1.1)

and

μ
τ2 Ib–τ1(x) =

1
�(μ)

∫ b

x

(
τ2(t) – τ2(x)

)μ–1
τ ′

2(t)τ1(t) dt, x < b, (1.2)

where �(·) is the gamma function.
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A k-analogue of the above definition is defined as follows:

Definition 2 ([1]) Let τ1 : [a, b] →R be an integrable function. Also let τ2 be an increasing
and positive function on (a, b], having a continuous derivative τ ′

2 on (a, b). The left- and
right-sided fractional integrals of a function τ1 with respect to another function τ2 on [a, b]
of order μ;�(μ), k > 0 are defined by:

μ
τ2 Ik

a+τ1(x) =
1

k�k(μ)

∫ x

a

(
τ2(x) – τ2(t)

)μ
k –1

τ ′
2(t)τ1(t) dt, x > a, (1.3)

μ
τ2 Ik

b–τ1(x) =
1

k�k(μ)

∫ b

x

(
τ2(t) – τ2(x)

)μ
k –1

τ ′
2(t)τ1(t) dt, x < b, (1.4)

where �k(·) is defined by [5]

�k(x) =
∫ ∞

0
tx–1e– tk

k dt, �(x) > 0. (1.5)

The integral operators (1.3) and (1.4) produce several fractional integral operators, see
[16, Remark 1]. A well-known Mittag-Leffler function is defined by [19]

Eα(z) =
∞∑

n=0

zn

�(αn + 1)
, (1.6)

where α, z ∈C and �(α) > 0.
This function has been extended and generalized in several different ways. In the follow-

ing, we give a definition of an extended Mittag-Lefffler function with its corresponding
fractional integral operator.

Definition 3 ([2]) Let ω,μ,α, l,γ , c ∈ C, �(μ),�(α),�(l) > 0, �(c) > �(γ ) > 0 with p ≥ 0,
δ > 0 and 0 < k ≤ δ + �(μ). Let τ1 ∈ L1[a, b] and x ∈ [a, b]. Then the generalized fractional
integral operators ε

γ ,δ,k,c
μ,α,l,ω,a+τ1 and ε

γ ,δ,k,c
μ,α,l,ω,b–τ1 are defined by:

(
ε

γ ,δ,k,c
μ,α,l,ω,a+τ1

)
(x; p) =

∫ x

a
(x – t)α–1Eγ ,δ,k,c

μ,α,l
(
ω(x – t)μ; p

)
τ1(t) dt, (1.7)

(
ε

γ ,δ,k,c
μ,α,l,ω,b–τ1

)
(x; p) =

∫ b

x
(t – x)α–1Eγ ,δ,k,c

μ,α,l
(
ω(t – x)μ; p

)
τ1(t) dt, (1.8)

where

Eγ ,δ,k,c
μ,α,l (t; p) =

∞∑
n=0

βp(γ + nk, c – γ )
β(γ , c – γ )

(c)nk

�(μn + α)
tn

(l)nδ

(1.9)

is the extended Mittag-Leffler function.

Recently, a unified integral operator was defined, which unifies several fractional inte-
grals in a compact formula as follows:

Definition 4 ([11]) Let τ1, τ2 : [a, b] −→ R, 0 < a < b, be functions such that τ1 is positive
and τ1 ∈ L1[a, b] and τ2 is differentiable and strictly increasing. Also let φ

x be an increasing
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function on [a,∞) and α, l,γ , c ∈C, �(α),�(l) > 0, �(c) > �(γ ) > 0, p,μ, δ ≥ 0, and 0 < k ≤
δ + μ. Then for x ∈ [a, b], the left and right integral operators are defined by

(
τ2 Fφ,γ ,δ,k,c

μ,α,l,a+ τ1
)
(x,ω; p) =

∫ x

a
Ky

x
(
Eγ ,δ,k,c

μ,α,l , τ2;φ
)
τ1(y) d

(
τ2(y)

)
, (1.10)

(
τ2 Fφ,γ ,δ,k,c

μ,α,l,b– τ1
)
(x,ω; p) =

∫ b

x
Kx

y
(
Eγ ,δ,k,c

μ,α,l , τ2;φ
)
τ1(y) d

(
τ2(y)

)
, (1.11)

where Ky
x (Eγ ,δ,k,c

μ,α,l , τ2;φ) = φ(τ2(x)–τ2(y))
τ2(x)–τ2(y) Eγ ,δ,k,c

μ,α,l (ω(τ2(x) – τ2(y))μ; p).

For suitable settings of functions φ, τ2 and certain values of parameters included in
Mittag-Leffler function (1.9), very interesting consequences are obtained which are de-
scribed in [16, Remarks 6 & 7].

The objective of this paper is to obtain some inequalities for unified integral operators
via strongly convex functions.

Definition 5 A function τ1 : I →R, where I is an interval in R, is said to be convex if

τ1
(
tx + (1 – t)y

) ≤ tτ1(x) + (1 – t)τ1(y) (1.12)

holds for all x, y ∈ I and t ∈ [0, 1].

The following well-known Hadamard inequality holds for convex functions:

Definition 6 ([7]) Let τ1 : I → R be a convex function on an interval I ⊂ R and a, b ∈ I
where a < b. Then

τ1

(
a + b

2

)
≤ 1

b – a

∫ b

a
τ1(t) dt ≤ τ1(a) + τ1(b)

2

holds.

Definition 7 ([21]) Let I be a nonempty convex subset of the normed space X. A real
valued function τ1 is said to be strongly convex with modulus G > 0 on I if for each a, b ∈ I
and t ∈ [0, 1],

τ1
(
tx + (1 – t)y

) ≤ tτ1(x) + (1 – t)τ1(y) – Gt(1 – t)‖b – a‖2. (1.13)

In the following, we give some results which are directly linked with the main findings
of this paper. The following bounds of unified integral operators for convex functions are
established in [16]:

Theorem 1 Let τ1 : [a, b] −→ R be a positive integrable convex function with m ∈ (0, 1]. Let
τ2 : [a, b] −→ R be differentiable and strictly increasing function, also let φ

x be an increasing
function on [a, b]. If α, l,γ , c ∈ C, �(α),�(l) > 0, �(c) > �(γ ) > 0, p,μ, δ ≥ 0, and 0 < k ≤
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δ + μ, then for x ∈ (a, b) we have

(
τ2 Fφ,γ ,δ,k,c

μ,α,l,a+ τ1
)
(x,ω; p) +

(
τ2 Fφ,γ ,δ,k,c

μ,α,l,b– τ1
)
(x,ω; p) (1.14)

≤ Ka
x
(
Eγ ,δ,k,c

μ,α,l , τ2;φ
)((

τ2(x) – τ2(a)
)(

τ1(x) + τ1(a)
))

+ Kx
b
(
Eγ ,δ,k,c

μ,β ,l , τ2;φ
)((

τ2(b) – τ2(x)
)(

τ1(b) + τ1(x)
))

.

The following Hadamard inequality for unified fractional integrals is proved in [16]:

Theorem 2 Under the assumptions of Theorem 1, in addition if τ1(x) = τ1(a + b – x), then
we have

τ1

(
a + b

2

)((
τ2 Fφ,γ ,δ,k,c

μ,α,l,b– 1
)
(a,ω; p) +

(
τ2 Fφ,γ ,δ,k,c

μ,α,l,a+ 1
)
(b,ω; p)

)
(1.15)

≤ (
τ2 Fφ,γ ,δ,k,c

μ,α,l,b– τ1
)
(a,ω; p) +

(
τ2 Fφ,γ ,δ,k,c

μ,α,l,a+ τ1
)
(b,ω; p)

≤ 2Ka
b
(
Eγ ,δ,k,c

μ,α,l , τ2;φ
)
)
(
τ2(b) – τ2(a)

)(
τ1(b) + τ1(a)

)
.

The following modulus inequality is obtained for unified integrals in [16].

Theorem 3 Let τ1 : [a, b] −→ R be a differentiable function. Let |τ ′
1| be convex with m ∈

(0, 1] and τ2 : [a, b] −→R be differentiable and strictly increasing function, also let φ

x be an
increasing function on [a, b]. If α, l,γ , c ∈ C, �(α),�(l) > 0, �(c) > �(γ ) > 0, p,μ, δ ≥ 0, and
0 < k ≤ δ + μ, then for x ∈ (a, b) we have

∣∣(
τ2 Fφ,γ ,δ,k,c

μ,α,l,a+ τ1 ∗ τ2
)
(x,ω; p) +

(
τ2 Fφ,γ ,δ,k,c

μ,α,l,b– τ1 ∗ τ2
)
(x,ω; p)

∣∣ (1.16)

≤ Ka
x
(
Eγ ,δ,k,c

μ,α,l , τ2;φ
)((

τ2(x) – τ2(a)
)(∣∣τ ′

1(x)
∣∣ +

∣∣τ ′
1(a)

∣∣))

+ Kx
b
(
Eγ ,δ,k,c

μ,α,l , τ2;φ
)
(
(
τ2(b) – τ2(x)

)(∣∣τ ′
1(b)

∣∣ +
∣∣τ ′

1(x)
∣∣),

where

(
τ2 Fφ,γ ,δ,k,c

μ,α,l,a+ τ1 ∗ τ2
)
(x,ω; p) :=

∫ x

a
Kt

x
(
Eγ ,δ,k,c

μ,α,l , τ2;φ
)
τ ′

1(t) d
(
τ2(t)

)
,

(
τ2 Fφ,γ ,δ,k,c

μ,α,l,b– τ1 ∗ τ2
)
(x,ω; p) :=

∫ b

x
Kx

t
(
Eγ ,δ,k,c

μ,α,l , τ2;φ
)
τ ′

1(t) d
(
τ2(t)

)
.

In the upcoming section, we establish the bounds of a unified integral operator using
strongly convexity. An Hadamard inequality is obtained for these integral operators via
strongly convex function. A modulus inequality is obtained for differentiable functions by
utilizing strongly convexity of |τ ′

1| for unified integral operators. Furthermore, refinements
of results given in [8, 16] are identified. In the whole paper we will use

I(a, b, τ2) =:
1

b – a

∫ b

a
τ2(t) dt.

2 Main results
Bounds of unified integral operators (1.10) and (1.11) are studied in the following result:
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Theorem 4 Let τ1 : [a, b] −→R be a positive, integrable and strongly convex function with
m ∈ (0, 1]. Let τ2 : [a, b] −→R be differentiable and strictly increasing function, also let φ

x be
an increasing function on [a, b]. If α,β , l,γ , c ∈C, �(α),�(l) > 0, �(c) > �(γ ) > 0, p,μ, δ ≥ 0,
and 0 < k ≤ δ + μ, then for x ∈ (a, b) we have

(
τ2 Fφ,γ ,δ,k,c

μ,α,l,a+ τ1
)
(x,ω; p) +

(
τ2 Fφ,γ ,δ,k,c

μ,β ,l,b– τ1
)
(x,ω; p) (2.1)

≤ Ka
x
(
Eγ ,δ,k,c

μ,α,l , τ2;φ
)((

τ2(x) – τ2(a)
)(

τ1(x) + τ1(a)
)

– G(x – a)
(
2I(a, x, Idτ2) – (a + x)I(a, x, τ2)

))

+ Kx
b
(
Eγ ,δ,k,c

μ,β ,l , τ2;φ
)((

τ2(b) – τ2(x)
)(

τ1(b) + τ1(x)
)

– G(b – x)
(
2I(x, b, Idτ2) – (x + b)I(x, b, τ2)

))
,

where Id is the identity function.

Proof Let t ∈ (a, x). Then the following inequality holds:

Kt
x
(
Eγ ,δ,k,c

μ,α,l , τ2;φ
)
τ ′

2(t) ≤ Ka
x
(
Eγ ,δ,k,c

μ,α,l , τ2;φ
)
τ ′

2(t), x ∈ (a, b). (2.2)

Since τ1 is a strongly convex function, for τ1 the following inequality holds true:

τ1(t) ≤
(

x – t
x – a

)
τ1(a) +

(
t – a
x – a

)
τ1(x) – G(x – t)(t – a). (2.3)

Multiplying (2.2) with (2.3) and integrating over [a, x], one can obtain

∫ x

a
Kt

x
(
Eγ ,δ,k,c

μ,α,l , τ2;φ
)
τ1(t) d

(
τ2(t)

)

≤ Ka
x
(
Eγ ,δ,k,c

μ,α,l , τ2;φ
)(

τ1(a)
∫ x

a

(
x – t
x – a

)
d
(
τ2(t)

)
+ τ1(x)

∫ x

a

(
t – a
x – a

)
d
(
τ2(t)

)

– G
∫ x

a
(x – t)(t – a) d

(
τ2(t)

))
.

By using (1.10) of Definition 4 and integrating by parts, the following inequality is ob-
tained:

(
τ2 Fφ,γ ,δ,k,c

μ,α,l,a+ τ1
)
(x,ω; p) (2.4)

≤ Ka
x
(
Eγ ,δ,k,c

μ,α,l , τ2;φ
)((

τ2(x) – τ2(a)
)

× (
τ1(x) + τ1(a)

))
– G(x – a)

(
2I(a, x, Idτ2) – (a + x)I(a, x, τ2)

))
.

On the other hand, the following inequality holds true:

Kt
x
(
Eγ ,δ,k,c

μ,α,l , τ2;φ
)
τ ′

2(t) ≤ Kx
b
(
Eγ ,δ,k,c

μ,β ,l , τ2;φ
)
τ ′

2(t), x ∈ (a, b). (2.5)

Using strongly convexity of τ1, we have

τ1(t) ≤
(

t – x
b – x

)
τ1(b) +

(
b – t
b – x

)
τ1(x) – G(t – x)(b – t). (2.6)
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Adopting the same procedure as we did for (2.2) and (2.3), the following inequality from
(2.5) and (2.6) can be obtained:

(
τ2 Fφ,γ ,δ,k,c

μ,β ,l,b– τ1
)
(x,ω; p) (2.7)

≤ Kx
b
(
Eγ ,δ,k,c

μ,β ,l , τ2;φ
)

× ((
τ2(b) – τ2(x)

)(
τ1(b) + τ1(x)

)
– G(b – x)

(
2I(x, b, Idτ2) – (x + b)I(x, b, τ2)

))
.

By adding (2.4) and (2.7), (2.1) is obtained. �

Remark 1 (i) If we take G = 0 in (2.1), then (1.14) is obtained. In other words, (2.1) provides
a refinement of (1.14).

(ii) If we take φ(t) = �(α)t
α
k

k�k (α) , G = 0, τ2(x) = x, and p = ω = 0 in (1.14), then [9, Theorem 1]
is obtained. For G �= 0, we get its refinement.

(iii) If we take α = β in the result of (ii), then [9, Corollary 1] is obtained. For G �= 0, we
get its refinement.

(iv) If we take φ(t) = �(α)t
α
k

k�k (α) , G = 0, and p = ω = 0 in (1.14), then [12, Theorem 6] is ob-
tained. For G �= 0, we get its refinement.

(v) If we take α = β in the result of (iv), then [12, Corollary 7] is obtained. For G �= 0, we
get its refinement.

(vi) If we take φ(t) = �(α)tα , G = 0, and τ2(t) = t in (1.14), then [4, Corollary 1] is obtained.
For G �= 0, we get its refinement.

Corollary 1 If we take φ(t) = �(α)tα , p = ω = 0 in (2.1), then the following inequality is
obtained for fractional integral operators defined in [15]:

�(α)Iα,τ2
a+ τ1(x) + �(β)Iβ ,τ2

b– τ1(x) (2.8)

≤ (
τ2(x) – τ2(a)

)α–1((
τ1(x)τ2(x) – τ1(a)τ2(a)

)
–

(
τ1(x) – τ1(a)

)
I(a, x, τ2)

)

+
(
τ2(b) – τ2(x)

)β–1((
τ1(b)τ2(b) – τ1(x)τ2(x)

)
–

(
τ1(b) – τ1(x)

)
I(x, b, g)

)

– G(
(
τ2(b) – τ2(x)

)β–1(b – x)(2I(x, b, Idτ2) – (x + b)I(x, b, τ2)

+
(
τ2(x) – τ2(a)

)α–1(x – a)
(
2I(a, x, Idτ2) – (x + a)I(a, x, τ2)

)
.

Remark 2 (i) If we take G = 0 and α = β in (2.8), then [13, Theorem 1] is obtained. For
G �= 0, we get its refinement.

(ii) If α = β in the result of (i), then [13, Corollary 1] is obtained. For G �= 0, we get its
refinement.

(iii) If we take τ2(x) = x and G = 0 in (2.8), then [8, Theorem 1] is obtained. For G �= 0, we
get its refinement.

(iv) If we take α = β in the result of (iii), then [8, Corollary 1] is obtained. For G �= 0, we
get its refinement.

(v) If we take α = β = 1 and x = a or x = b in the result of (iv), then [8, Corollary 2] is
obtained. For G �= 0, we get its refinement.

(vi) If we take α = β = 1 and x = a+b
2 in the result of (iv), then [8, Corollary 3] is obtained.

For G �= 0, we get its refinement.
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To prove the the next result we need the following lemma.

Lemma 1 Let τ1 : [a, b] → R be a strongly convex function. If τ1 is symmetric about a+b
2 ,

then the following inequality holds true:

τ1

(
a + b

2

)
≤ τ1(x) –

G
4

(a + b – 2x)2, (2.9)

for all x ∈ [a, b].

Proof Since τ1 is strongly convex, we have

τ1

(
a + b

2

)
≤ 1

2

[
τ1

(
x – a
b – a

b +
b – x
b – a

a
)

+ τ1

(
x – a
b – a

a +
b – x
b – a

b
)]

–
G
4

(a + b – 2x)2

=
1
2
(
τ1(x) + τ1(a + b – x)

)
–

G
4

(a + b – 2x)2.

As τ1 is symmetric about a+b
2 , we have τ1(x) = τ1(a + b – x) and (2.9) holds. �

Remark 3 Lemma 1 is a refinement of [8, Lemma 1].

The upcoming result gives the Hadamard inequality.

Theorem 5 Under the assumptions of Theorem 4, in addition if τ1(x) = τ1(a + b – x), then
we have

τ1

(
a + b

2

)(
τ2 Fφ,γ ,δ,k,c

μ,α,l,b– 1
)
(a,ω; p) +

G
4

(
τ2 Fφ,γ ,δ,k,c

μ,α,l,b– (a + b – 2x)2)(a,ω; p) (2.10)

+ τ1

(
a + b

2

)(
τ2 Fφ,γ ,δ,k,c

μ,β ,l,a+ 1
)
(b,ω; p) +

G
4

(
τ2 Fφ,γ ,δ,k,c

μ,β ,l,a+ (a + b – 2x)2)(b,ω; p)

≤ (
τ2 Fφ,γ ,δ,k,c

μ,α,l,b– τ1
)
(a,ω; p) +

(
τ2 Fφ,γ ,δ,k,c

μ,β ,l,a+ τ1
)
(b,ω; p)

≤ (
Ka

b
(
Eγ ,δ,k,c

μ,α,l , τ2;φ
)

+ Ka
b
(
Eγ ,δ,k,c

μ,β ,l , τ2;φ
))

× ((
τ2(b) – τ2(a)

)(
τ1(b) + τ1(a)

)
– (b – a)G

(
2I(a, b, Idτ2) – (a + b)I(a, b, g)

))
.

Proof The following inequality holds true:

Ka
x
(
Eγ ,δ,k,c

μ,α,l , τ2;φ
)
τ ′

2(x) ≤ Ka
b
(
Eγ ,δ,k,c

μ,α,l , τ2;φ
)
τ ′

2(x), x ∈ (a, b). (2.11)

Using strongly convexity of τ1 for x ∈ (a, b), we have

τ1(x) ≤
(

x – a
b – a

)
τ1(b) +

(
b – x
b – a

)
τ1(a) – G(x – a)(b – x). (2.12)
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Multiplying (2.11) and (2.12) and integrating the resulting inequality over [a, b], one can
obtain

∫ b

a
Ka

x
(
Eγ ,δ,k,c

μ,α,l , τ2;φ
)
τ1(x) d

(
τ2(x)

)

≤ Ka
b
(
Eγ ,δ,k,c

μ,α,l , τ2;φ
)(

τ1(a)
∫ b

a

(
b – x
b – a

)
d
(
τ2(x)

)

+ τ1(b)
∫ b

a

(
x – a
b – a

)
d
(
τ2(x)

)
– G

∫ b

a
(b – x)(x – a) d

(
τ2(x)

))
.

By using Definition 4 and integrating by parts, the following inequality is obtained:

(
τ2 Fφ,γ ,δ,k,c

μ,α,l,b– τ1
)
(a,ω; p) (2.13)

≤ Ka
b
(
Eγ ,δ,k,c

μ,α,l , τ2;φ
)

× ((
τ2(b) – τ2(a)

)(
τ1(b) + τ1(a)

)
– G(b – a)

(
2I(a, b, Idτ2) – (a + b)I(a, b, g)

))
.

On the other hand, the following inequality holds true:

Kx
b
(
Eγ ,δ,k,c

μ,β ,l , τ2;φ
)
τ ′

2(x) ≤ Ka
b
(
Eγ ,δ,k,c

μ,β ,l , τ2;φ
)
τ ′

2(x), x ∈ (a, b). (2.14)

Adopting the same pattern of simplification as we did for (2.11) and (2.12), the following
inequality can be observed from (2.12) and (2.14):

(
τ2 Fφ,γ ,δ,k,c

μ,β ,l,a+ τ1
)
(b,ω; p) (2.15)

≤ Ka
b
(
Eγ ,δ,k,c

μ,β ,l , τ2;φ
)

× ((
τ2(b) – τ2(a)

)(
τ1(b) + τ1(a)

)
– G(b – a)

(
2I(a, b, Idτ2) – (a + b)I(a, b, g)

))
.

By adding (2.13) and (2.15), the following inequality can be obtained:

(
τ2 Fφ,γ ,δ,k,c

μ,α,l,b– τ1
)
(a,ω; p) +

(
τ2 Fφ,γ ,δ,k,c

μ,β ,l,a+ τ1
)
(b,ω; p) (2.16)

≤ (
Ka

b
(
Eγ ,δ,k,c

μ,α,l , τ2;φ
)

+ Ka
b
(
Eγ ,δ,k,c

μ,β ,l , τ2;φ
))

× ((
τ2(b) – τ2(a)

)(
τ1(b) + τ1(a)

)
– G(b – a)

(
2I(a, b, Idτ2) – (a + b)I(a, b, g)

))
.

Multiplying both sides of (2.9) by Kx
b (Eγ ,δ,k,c

μ,β ,l , τ2;φ)d(τ2(x)) and integrating over [a, b], we
have

τ1

(
a + b

2

)∫ b

a
Kx

b
(
Eγ ,δ,k,c

μ,β ,l , τ2;φ
)

d
(
τ2(x)

)

≤
∫ b

a
Kx

b
(
Eγ ,δ,k,c

μ,β ,l , τ2;φ
)
τ1(x) d

(
τ2(x)

)

–
G
4

∫ b

a
Kx

b
(
Eγ ,δ,k,c

μ,β ,l , τ2;φ
)
(a + b – 2x)2 d

(
τ2(x)

)
.
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From Definition 4, the following inequality is obtained:

τ1

(
a + b

2

)(
τ2 Fφ,γ ,δ,k,c

μ,β ,l,a+ 1
)
(b,ω; p) (2.17)

≤ (
τ2 Fφ,γ ,δ,k,c

μ,β ,l,a+ τ1
)
(b,ω; p)

–
G
4

(
τ2 Fφ,γ ,δ,k,c

μ,β ,l,a+ (a + b – 2x)2)(b,ω; p).

Similarly, multiplying both sides of (2.9) by Ka
x (Eγ ,δ,k,c

μ,α,l , τ2;φ) d(τ2(x)) and integrating over
[a, b], we have

τ1

(
a + b

2

)(
τ2 Fφ,γ ,δ,k,c

μ,α,l,b– 1
)
(a,ω; p) (2.18)

≤ (
τ2 Fφ,γ ,δ,k,c

μ,α,l,b– τ1
)
(a,ω; p)

–
G
4

(
τ2 Fφ,γ ,δ,k,c

μ,α,l,b– (a + b – 2x)2)(a,ω; p).

By adding (2.17) and (2.18), following inequality is obtained:

τ1

(
a + b

2

)(
τ2 Fφ,γ ,δ,k,c

μ,α,l,b– 1
)
(a,ω; p) +

G
4

(
τ2 Fφ,γ ,δ,k,c

μ,α,l,b– (a + b – 2x)2)(a,ω; p) (2.19)

+ τ1

(
a + b

2

)(
τ2 Fφ,γ ,δ,k,c

μ,β ,l,a+ 1
)
(b,ω; p) +

G
4

(
τ2 Fφ,γ ,δ,k,c

μ,β ,l,a+ (a + b – 2x)2)(b,ω; p)

≤ (
τ2 Fφ,γ ,δ,k,c

μ,α,l,b– τ1
)
(a,ω; p) +

(
τ2 Fφ,γ ,δ,k,c

μ,β ,l,a+ τ1
)
(b,ω; p).

Using (2.16) and (2.19), inequality (2.10) can be established. �

Remark 4 (i) If we take G = 0 and α = β in (2.10), then (1.15) is obtained, for G �= 0, we get
its refinement.

(ii) If we take φ(t) = �(α)tα+1, p = ω = 0 and G = 0 in (2.10), then [13, Theorem 3] is
obtained. For G �= 0, we get its refinement.

(iii) If α = β in the result of (ii), then [13, Corollary 3] is obtained. For G �= 0, we get its
refinement.

(iv) If we take φ(t) = �(α)t
α
k +1, G = 0, τ2(x) = x and p = ω = 0 in (2.10), then [9, Theo-

rem 3] is obtained. For G �= 0, we get its refinement.
(v) If we take α = β in the result of (iv), then [9, Corollary 6] is obtained. For G �= 0, we

get its refinement.
(vi) If we take φ(t) = �(α)t

α
k +1, G = 0 and p = ω = 0 in (2.10), then [12, Theorem 11] is

obtained. For G �= 0, we get its refinement.
(vii) If we take α = β in the result of (vi), then [12, Corollary 12] is obtained. For G �= 0,

we get its refinement.
(viii) If we take φ(t) = tα+1, τ2(t) = t and G = 0 in (2.10), then [4, Corollary 3] is obtained.

For G �= 0, we get its refinement.
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Corollary 2 If we take p = ω = 0 in (2.10), then the following Hadamard inequality is ob-
tained for fractional integral operators defined in [10]:

τ1

(
a + b

2

)(
1

�(α)
Fφ,τ2

b– 1
)

(a) +
G
4

(
1

�(α)
Fφ,τ2

b– (a + b – 2x)2
)

(a) (2.20)

+ τ1

(
a + b

2

)(
1

�(β)
Fφ,τ2

a+ 1
)

(b) +
G
4

(
1

�(β)
Fφ,τ2

a+ (a + b – 2x)2
)

(b)

≤
(

1
�(α)

Fφ,τ2
b– τ1

)
(a) +

(
1

�(β)
Fφ,τ2

a+ τ1

)
(b)

≤ 2Kτ2 (t, x;φ)

× ((
τ2(b) – τ2(a)

)(
τ1(b) + τ1(a)

)
– G(b – x)

(
2I(x, b, Idτ2) – (x + b)I(x, b, τ2)

))
.

Remark 5 (i) If we take φ(t) = �(α)tα+1, p = ω = 0, G = 0, and τ2(t) = t in (2.20), [8, Theo-
rem 3] is obtained. For G �= 0, we get its refinement.

(ii) If we take α = β in the result of (i), then [8, Corollary 6] is obtained. For G �= 0, we get
its refinement.

Theorem 6 Let τ1 : [a, b] −→ R be a differentiable function. Let |τ ′
1| be strongly convex

with m ∈ (0, 1] and τ2 : [a, b] −→ R be differentiable and strictly increasing function, also
let φ

x be an increasing function on [a, b]. If α,β , l,γ , c ∈ C, �(α),�(l) > 0, �(c) > �(γ ) > 0,
p,μ, δ ≥ 0, and 0 < k ≤ δ + μ, then for x ∈ (a, b) we have

∣∣(
τ2 Fφ,γ ,δ,k,c

μ,α,l,a+ τ1 ∗ τ2
)
(x,ω; p) +

(
τ2 Fφ,γ ,δ,k,c

μ,β ,l,b– τ1 ∗ τ2
)
(x,ω; p)

∣∣ (2.21)

≤ Ka
x
(
Eγ ,δ,k,c

μ,α,l , τ2;φ
)

× ((
τ2(x) – τ2(a)

)(∣∣τ ′
1(x)

∣∣ +
∣∣τ ′

1(a)
∣∣) – G(x – a)

(
2I(a, x, Idτ2) – (a + x)I(a, x, τ2)

))

+ Kx
b
(
Eγ ,δ,k,c

μ,β ,l , τ2;φ
)((

τ2(b) – τ2(x)
)(∣∣τ ′

1(b)
∣∣ +

∣∣τ ′
1(x)

∣∣)

– G(b – x)
(
2I(x, b, Idτ2) – (x + b)I(x, b, τ2)

))
.

Proof Using strongly convexity of |τ ′
1|, we have

∣∣τ ′
1(t)

∣∣ ≤
(

x – t
x – a

)∣∣τ ′
1(a)

∣∣ +
(

t – a
x – a

)∣∣τ ′
1(x)

∣∣ – G(x – t)(t – a). (2.22)

Inequality (2.22) can be written as follows:

–
((

x – t
x – a

)∣∣τ ′
1(a)

∣∣ +
(

t – a
x – a

)∣∣τ ′
1(x)

∣∣ – G(x – t)(t – a)
)

(2.23)

≤ τ ′
1(t)

≤
((

x – t
x – a

)∣∣τ ′
1(a)

∣∣ +
(

t – a
x – a

)∣∣τ ′
1(x)

∣∣ – G(x – t)(t – a)
)

.

Let us consider the second inequality of (2.23), namely

τ ′
1(t) ≤

(
x – t
x – a

)∣∣τ ′
1(a)

∣∣ +
(

t – a
x – a

)∣∣τ ′
1(x)

∣∣ – G(x – t)(t – a). (2.24)
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Multiplying (2.2) and (2.24) and integrating over [a, x], we can obtain

∫ x

a
Kt

x
(
Eγ ,δ,k,c

μ,α,l , τ2;φ
)
τ ′

1(t) d
(
τ2(t)

)

≤ Ka
x
(
Eγ ,δ,k,c

μ,α,l , τ2;φ
)(∣∣τ ′

1(a)
∣∣
∫ x

a

(
x – t
x – a

)
d
(
τ2(t)

)

+
∣∣τ ′

1(x)
∣∣
∫ x

a

(
t – a
x – a

)
d
(
τ2(t)

)
– G

∫ x

a
(x – t)(t – a) d

(
τ2(t)

))
.

By using (1.10) of Definition 4 and integrating by parts, the following inequality is ob-
tained:

(
τ2 Fφ,γ ,δ,k,c

μ,α,l,a+ τ1 ∗ τ2
)
(x,ω; p) (2.25)

≤ Ka
x
(
Eγ ,δ,k,c

μ,α,l , τ2;φ
)((

τ2(x) – τ2(a)
)

× (∣∣τ ′
1(x)

∣∣ +
∣∣τ ′

1(a)
∣∣) – G(x – a)

(
2I(a, x, Idτ2) – (a + x)I(a, x, τ2)

))
.

If we consider the left-hand side of inequality (2.23) and adopt the same argument as for
the right-hand side inequality, then we get

(
τ2 Fφ,γ ,δ,k,c

μ,α,l,a+ (τ1 ∗ τ2)
)
(x,ω; p) (2.26)

≥ –Ka
x
(
Eγ ,δ,k,c

μ,α,l , τ2;φ
)((

τ2(x) – τ2(a)
)

× (∣∣τ ′
1(x)

∣∣ +
∣∣τ ′

1(a)
∣∣) – G(x – a)

(
2I(a, x, Idτ2) – (a + x)I(a, x, τ2)

))
.

From (2.25) and (2.26), the following inequality is obtained:

∣∣(
τ2 Fφ,γ ,δ,k,c

μ,α,l,a+ (τ1 ∗ τ2)
)
(x,ω; p)

∣∣ (2.27)

≤ Ka
x
(
Eγ ,δ,k,c

μ,α,l , τ2;φ
)((

τ2(x) – τ2(a)
)

× (∣∣τ ′
1(x)

∣∣ +
∣∣τ ′

1(a)
∣∣) – G(x – a)

(
2I(a, x, Idτ2) – (a + x)I(a, x, τ2)

))
.

Now using the strongly convexity of |τ ′
1|, we have

∣∣τ ′
1(t)

∣∣ ≤
(

t – x
b – x

)∣∣τ ′
1(b)

∣∣ +
(

b – t
b – x

)∣∣τ ′
1(x)

∣∣ – G(t – x)(b – t). (2.28)

With the same procedure as that used for (2.2) and (2.22), one can obtain the following
inequality from (2.5) and (2.28):

∣∣(
τ2 Fφ,γ ,δ,k,c

μ,β ,l,b– (τ1 ∗ τ2)
)
(x,ω; p)

∣∣ (2.29)

≤ Kx
b
(
Eγ ,δ,k,c

μ,β ,l , τ2;φ
)((

τ2(b) – τ2(x)
)

× (∣∣τ ′
1(b)

∣∣ +
∣∣τ ′

1(x)
∣∣) – G(b – x)

(
2I(x, b, Idτ2) – (x + b)I(x, b, τ2)

))
.

By adding (2.27) and (2.29), inequality (2.21) can be achieved. �
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Remark 6 (i) If we take G = 0 and α = β in (2.21), then (1.16) is obtained. For G �= 0, we get
its refinement.

(ii) If we take φ(t) = �(α)t
α
k +1, G = 0, τ2(x) = x and p = ω = 0 in (2.21), then [9, Theorem 2]

is obtained. For G �= 0, we get its refinement.
(iii) If we take α = β in the result of (ii), then [9, Corollary 4] is obtained. For G �= 0, we

get its refinement.
(iv) If we take α = β = k = 1 and x = a+b

2 , in the result of (iii), then [9, Corollary 5] is
obtained. For G �= 0, we get its refinement.

(v) If we take φ(t) = tα+1, τ2(x) = x, p = ω = 0 and G = 0 in (2.21), then [8, Theorem 2] is
obtained. For G �= 0, we get its refinement.

(vi) If we take α = β in the result of (v), then [8, Corollary 5] is obtained. For G �= 0, we
get its refinement.

(vii) If we take φ(t) = �(α)t
α
k +1, τ2(x) = x, p = ω = 0 and G = 0 in (2.21), then [12, Theo-

rem 8] is obtained. For G �= 0, we get its refinement.
(viii) If we take α = β in the result of (vii), then [12, Corollary 9] is obtained. For G �= 0,

we get its refinement.
(ix) If we take φ(t) = tα , τ2(x) = x and G = 0 in (2.21), then [4, Corollary 2] is obtained.

For G �= 0, we get its refinement.

3 Concluding remarks
This research provides inequalities for unified integral operators for strongly convex func-
tions, refined form of convex functions. These inequalities provide refinements of the re-
sults proved in already published works. The special cases also provide results for frac-
tional integral operators and their refinements.
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