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Abstract
The main objective of this article is to establish a new post quantum version of
Montgomery identity. Some estimates of associated post quantum bounds are also
obtained. In order to obtain the main results of the article, we use the preinvexity
property of the functions. Some special cases are also discussed in detail. Finally, we
present some applications of the obtained results, which shows the significance of
the discussed results.
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1 Introduction and preliminaries
Quantum calculus, which is often known as q-calculus or calculus without limits, is based
on finite difference. In quantum calculus we obtain q-analogues of mathematical objects
which can be recaptured by taking q → 1–. The history of quantum calculus can be
traced back to Euler for investigating the q-binomial formula and Euler’s identities for
q-exponential functions. In the last century extensive research was done on the study of
quantum calculus. Consequently, this particular area of mathematics has expanded in dif-
ferent directions. With the research study of Jackson [6] the in-depth study of quantum
calculus started. He is considered a pioneer in developing the first systematic definitions
of q-derivatives and q-integrals. Geometrical interpretation of the quantum calculus has
been recognized through study on quantum groups. Another reason behind its rapid de-
velopment is that it can be viewed as a bridge between mathematics and physics. It has nu-
merous applications in various branches of mathematics and physics such as ordinary frac-
tional calculus, orthogonal polynomials, basic hypergeometric functions, combinatorics,
the calculus of variations, the theory of relativity, optimal control problems, q-difference
and q-integral equations, q-transform analysis, etc. For some recent studies on quantum
calculus and its applications, see [1, 5, 7]. Tariboon et al. [12] introduced the notion of
q-derivatives and q-integrals on finite intervals and developed several new q-analogues
of classical inequalities. Since then many new q-analogues of classical inequalities have
been obtained using the concept of q-integral on finite interval; for instance, Sudsutad
et al. [11] obtained first q-analogues of certain classical inequalities. Alp et al. [2] gave
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a corrected q-analogue of Hermite–Hadamard’s inequality. Noor et al. [10] obtained q-
analogues of Ostrowski type inequalities using the convexity property of the functions.
Zhang et al. [15] obtained a generalized q-integral identity and obtained many significant
generalized q-analogues of classical integral identities. Another significant development
in the field of quantum calculus is the introduction of post quantum calculus. In quan-
tum calculus we deal with q-number with one base q; however, post quantum calculus
includes p and q-numbers with two independent variables p and q. This was first inves-
tigated by Chakarabarti and Jagannathan [3]. It is worth to mention here that quantum
calculus cannot be obtained directly by substituting q by q

p in q-calculus. But q-calculus
can be recaptured by taking p = 1 in (p, q)-calculus. Recently Tunc and Gov [13] gave the
notion of (p, q)-derivatives and (p, q)-integrals on finite intervals as follows.

Definition 1.1 ([13]) Let � : I → R be a continuous function, and let x ∈ I and 0 < q <
p ≤ 1. Then the (p, q)-derivative on I of function � at x is defined as

DR
p,q�(x) =

�(px + (1 – p)e)) – �(qx + (1 – q)e)
(p – q)(x – e)

, x �= e.

Definition 1.2 ([13]) Let � : I ⊂R →R be a continuous function. Then the (p, q)-integral
on I is defined as follows:

∫ x

e
�(λ) dR

p,qλ = (p – q)(x – e)
∞∑

n=0

qn

pn+1 �

(
qn

pn+1 x +
(

1 –
qn

pn+1

)
e
)

for x ∈ I .

Convexity is one of the most important and significant notions in mathematical anal-
ysis. Although it is very simple in nature, it is very powerful. It has many applications in
various areas of pure and applied sciences, such as in economics, management sciences,
optimization theory, in engineering sciences, etc. Extensive study on the theory of con-
vexity leads to many new extensions and generalizations of classical concepts of convex
functions. Note that convex functions depend on convex sets. In the literature we can see
several new diversified forms of the convex sets. This naturally leads us to several new
generalizations of convex functions. Mititelu [9] introduced an important generalization
of convex sets called invex sets.

Definition 1.3 ([9]) A set X ∈ R is said to be invex with respect to ζ if

x + tζ (y, x) ∈X , ∀x, y ∈X , t ∈ [0, 1].

Note that if we take ζ (y, x) = y – x, then invexity reduces to convexity. Using invex sets
as domain, Weir and Mond [14] introduced the class of preinvex functions. This class is
defined as follows.

Definition 1.4 ([14]) A function F : X →R is said to be preinvex with respect to ζ if

F
(
x + tζ (y, x)

) ≤ (1 – t)F (x) + tF (y), ∀x, y ∈X , t ∈ [0, 1].
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For ζ (y, x) = y–x, the class of preinvex functions reduces to the class of convex functions.
Another charming aspect of the theory of convexity is its close relationship with the

theory of inequalities. Many inequalities are direct consequences of the applications of the
convexity property of functions. One of the most interesting results relating to convexity
is Hermite–Hadamard’s inequality which is just estimates for the integral average of a
continuous convex function on a compact interval. It reads as follows:

Let � : I ⊂R →R be a convex function, then for a, b ∈ I we have

�

(
a + b

2

)
≤ 1

b – a

∫ b

a
�(x) dx ≤ �(a) + �(b)

2
.

This result has a lot of applications in numerical analysis and in theory of means. In recent
years intensive study has been done on the generalizations and applications of Hermite–
Hadamard’s inequality. For example, Dragomir and Pearce [4] wrote a very informative
monograph on the significance of Hermite–Hadamard’s inequality, its recent develop-
ment, and its applications. Interested readers can find very useful information in that
book. Note that the left Hermite–Hadamard inequality can be estimated by the inequality
of Ostrowski which reads as follows:

∣∣∣∣f (x) –
1

b – a

∫ b

a
f (x) dx

∣∣∣∣ ≤
[

1
4

+
(x – a+b

2
b – a

)2]∥∥f ′∥∥∞(b – a)

with the best possible constant 1
4 if f : [a, b] 
→ R is differentiable, where ‖f ′‖∞ =

max{|f (x)| : x ∈ [a, b]}.
Kunt et al. [8] used the concept of post quantum integrals and gave new generalizations

of Hermite–Hadamard’s inequality.
The motivation behind the study of this paper is to derive a new generalization of the

classical Montgomery identity using (p, q)-integrals. We also give estimation of associated
bounds essentially using the class of preinvex functions. Finally, we present some applica-
tions to means of the obtained results. We hope that ideas and techniques of this paper
will attract interested readers.

2 Results and discussions
We now discuss our main results of the paper.

2.1 Post quantum Montgomery identity
We now derive a significant result of this paper. Next results of this paper depend on this
lemma.

Lemma 2.1 Let � : [e, e + ξ (f , e)] →R be a (p, q)-differentiable function such that eDp,q�

is (p, q)-integrable on [e, e + ξ (f , e)], then

�(x) –
1

pξ (f , e)

∫ e+pξ (f ,e)

e
�(λ) edp,qλ = ξ (f , e)

∫ 1

0
Kq(λ) eDp,q�

(
e + λξ (f , e)

)
0dp,qλ,

where

Kq(λ) =

⎧⎨
⎩

qλ for λ ∈ [0, x–e
ξ (f ,e) ],

qλ – 1 for λ ∈ ( x–e
ξ (f ,e) , 1].
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Proof It suffices to show that

ξ (f , e)
∫ 1

0
Kq(λ) eDp,q�

(
e + λξ (f , e)

)
0dp,qλ

= ξ (f , e)
[∫ x–e

ξ (f ,e)

0
qλ eDp,q�

(
e + λξ (f , e)

)
0dp,qλ

+
∫ 1

x–e
ξ (f ,e)

(qλ – 1) eDp,q�
(
e + λξ (f , e)

)
0dp,qλ

]

= ξ (f , e)
[∫ x–e

ξ (f ,e)

0
qλ eDp,q�

(
e + λξ (f , e)

)
0dp,qλ

+
∫ 1

0
(qλ – 1) eDp,q�

(
e + λξ (f , e)

)
0dp,qλ

–
∫ x–e

ξ (f ,e)

0
(qλ – 1) eDp,q�

(
e + λξ (f , e)

)
0dp,qλ

]

= ξ (f , e)
[∫ 1

0
(qλ – 1) eDp,q�

(
e + λξ (f , e)

)
0dp,qλ

+
∫ x–e

ξ (f ,e)

0
eDp,q�

(
e + λξ (f , e)

)
0dp,qλ

]

= ξ (f , e)
[∫ 1

0
qλ eDp,q�

(
e + λξ (f , e)

)
0dp,qλ

–
∫ 1

0
eDp,q�

(
e + λξ (f , e)

)
0dp,qλ

+
∫ x–e

ξ (f ,e)

0
eDp,q�

(
e + λξ (f , e)

)
0dp,qλ

]

=
1

p – q

[
q
[∫ 1

0
�

(
e + qλξ (f , e)

)
0dp,qλ –

∫ 1

0
�

(
e + qλξ (f , e)

)
0dp,qλ

]

–
[∫ 1

0

�(e + qλξ (f , e))
λ

0dp,qλ –
∫ 1

0

�(e + qλξ (f , e))
λ

0dp,qλ

]

+
[∫ x–e

ξ (f ,e)

0

�(e + qλξ (f , e))
λ

0dp,qλ –
∫ x–e

ξ (f ,e)

0

�(e + qλξ (f , e))
λ

0dp,qλ

]]

=
1

p – q

[
q(p – q)

[ ∞∑
n=0

qn

pn+1 �

(
e +

qn

pn ξ (f , e)
)

–
∞∑

n=0

qn

pn+1 �

(
e +

qn+1

pn+1 ξ (f , e)
)]

– (p – q)

[ ∞∑
n=0

�

(
e +

qn

pn ξ (f , e)
)

–
∞∑

n=0

�

(
e +

qn+1

pn+1 ξ (f , e)
)]

+ (p – q)
(

x – e
ξ (f , e)

)[ ∞∑
n=0

�(e + qn

pn ( x–e
ξ (f ,e) )ξ (f , e))
x–e

ξ (f ,e)
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–
∞∑

n=0

�(e + qn+1

pn+1 ( x–e
ξ (f ,e) )ξ (f , e))

x–e
ξ (f ,e)

]]

=

[
q

[ ∞∑
n=0

qn

pn+1 �

(
e +

qn

pn ξ (f , e)
)

–
∞∑

n=0

qn

pn+1 �

(
e +

qn+1

pn+1 ξ (f , e)
)]

–

[ ∞∑
n=0

�

(
e +

qn

pn ξ (f , e)
)

–
∞∑

n=0

�

(
e +

qn+1

pn+1 ξ (f , e)
)]

+

[ ∞∑
n=0

�

(
e +

qn

pn

(
x – e
ξ (f , e)

)
ξ (f , e)

)

–
∞∑

n=0

�

(
e +

qn+1

pn+1

(
x – e
ξ (f , e)

)
ξ (f , e)

)]]

=

[
q

[ ∞∑
n=0

qn

pn+1 �

(
e + p

qn

pn+1 ξ (f , e)
)

–
p
q

∞∑
n=0

qn+1

pn+2 �

(
e + p

qn+1

pn+2 ξ (f , e)
)]

–
[
�

(
e + ξ (f , e)

)
– �(e)

]

+
[
�

(
e +

(
x – e
ξ (f , e)

)
ξ (f , e)

)
– �(e)

]]

=

[
q

[ ∞∑
n=0

qn

pn+1 �

(
e + p

qn

pn+1 ξ (f , e)
)

–
p
q

∞∑
n=1

qn

pn+1 �

(
e + p

qn

pn+1 ξ (f , e)
)]

– �
(
e + ξ (f , e)

)
+ �

(
e +

(
x – e
ξ (f , e)

)
ξ (f , e)

)]

=

[
q

[
�(e + ξ (f , e))

q
–

(
p
q

– 1
) ∞∑

n=0

qn

pn+1 �

(
e + p

qn

pn+1 ξ (f , e)
)]

– �
(
e + ξ (f , e)

)
+ �

(
e +

(
x – e
ξ (f , e)

)
ξ (f , e)

)]

=

[
q

[
�(e + ξ (f , e))

q
–

(
p – q

q

) ∞∑
n=0

qn

pn+1 �

(
e + p

qn

pn+1 ξ (f , e)
)]

– �
(
e + ξ (f , e)

)
+ �

(
e +

(
x – e
ξ (f , e)

)
ξ (f , e)

)]



Chu et al. Journal of Inequalities and Applications          (2021) 2021:9 Page 6 of 12

= �(x) – (p – q)
∞∑

n=0

qn

pn+1 �

(
e + p

qn

pn+1 ξ (f , e)
)

= �(x) –
1

pξ (f , e)

∫ e+pξ (f ,e)

e
�(λ) edp,qλ.

This completes the proof. �

Remark 2.2 If we take x = (p+q)e+pξ (f ,e)
p+q in Lemma 2.1, then we have the following new equal-

ity:

�

(
(p + q)e + pξ (f , e)

p + q

)
–

1
pξ (f , e)

∫ e+pξ (f ,e)

e
�(λ) edp,qλ

= ξ (f , e)
[∫ p

p+q

0
qλ eDp,q�

(
+λξ (f , e)

)
0dp,qλ

+
∫ 1

p
p+q

(qλ – 1) eDp,q�
(
e + λξ (f , e)

)
0dp,qλ

]
.

2.2 Estimation of bounds
We now discuss some results depending upon Lemma 2.1.

Theorem 2.3 Let � : [e, e + ξ (f , e)] be a function such that eDp,q� is (p, q)-integrable on
[e, e + ξ (f , e)]. If |eDp,q�|r , r > 1 is preinvex on [e, e + ξ (f , e)], then

∣∣∣∣�(x) –
1

pξ (f , e)

∫ e+pξ (f ,e)

e
�(λ) edp,qλ

∣∣∣∣
≤ ξ (f , e)

[
L1– 1

r
1

[∣∣eDp,q�(e)
∣∣rL2 +

∣∣eDp,q�(f )
∣∣rL3

] 1
r

+ L1– 1
r

4
[∣∣eDp,q�(e)

∣∣rL5 +
∣∣eDp,q�(f )

∣∣rL6
] 1

r
]
,

where

L1 =
∫ x–e

ξ (f ,e)

0
qλ 0dp,qλ =

q
p + q

(
x – e
ξ (f , e)

)2

,

L2 =
∫ x–e

ξ (f ,e)

0

(
qλ – qλ2)

0dp,qλ = L1 – L3,

L3 =
∫ x–e

ξ (f ,e)

0
qλ2

0dp,qλ =
q

p + pq + q2

(
x – e
ξ (f , e)

)3

,

L4 =
∫ 1

x–e
ξ (f ,e)

(1 – qλ) 0dp,qλ =
p

p + q
–

q
p + q

(
x – e
ξ (f , e)

)(
1 –

q
p + q

x – e
ξ (f , e)

)
,

L5 =
∫ 1

x–e
ξ (f ,e)

(
1 – qλ – λ + qλ2)

0dp,qλ = L4 – L6,

L6 =
∫ 1

x–e
ξ (f ,e)

(
λ – qλ2)

0dp,qλ

=
p2

(p + q)(p2 + pq + q2)
–

1
p + q

(
x – e
ξ (f , e)

)2

+
q

p2 + pq + q2

(
x – e
ξ (f , e)

)3

.
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Proof Using Lemma 2.1, the power mean integral inequality, and the preinvexity of
|eDp,q�|r , we obtain

∣∣∣∣�(x) –
1

pξ (f , e)

∫ e+pξ (f ,e)

e
�(λ) edp,qλ

∣∣∣∣

≤ ξ (f , e)
[∫ x–e

ξ (f ,e)

0
qλ

∣∣eDp,q�
(
e + λξ (f , e)

)∣∣0dp,qλ

+
∫ 1

x–e
ξ (f ,e)

(1 – qλ)
∣∣eDp,q�

(
e + λξ (f , e)

)∣∣0dp,qλ

]

≤ ξ (f , e)
[(∫ x–e

ξ (f ,e)

0
qλ 0dp,qλ

)1– 1
r
(∫ x–e

ξ (f ,e)

0
qλ

∣∣eDp,q�
(
e + λξ (f , e)

)∣∣r
0dp,qλ

) 1
r

+
(∫ 1

x–e
ξ (f ,e)

(1 – qλ) 0dp,qλ

)1– 1
r
(∫ 1

x–e
ξ (f ,e)

(1 – qλ)
∣∣eDp,q�

(
e + λξ (f , e)

)∣∣r
0dp,qλ

) 1
r
]

≤ ξ (f , e)
[(∫ x–e

ξ (f ,e)

0
qλ 0dp,qλ

)1– 1
r

×
(∣∣eDp,q�(e)

∣∣r
∫ x–e

ξ (f ,e)

0

(
qλ – qλ2)

0dp,qλ +
∣∣eDp,q�(f )

∣∣r
∫ x–e

ξ (f ,e)

0
qλ2

0dp,qλ

) 1
r

+
(∫ 1

x–e
ξ (f ,e)

(1 – qλ) 0dp,qλ

)1– 1
r

×
(∣∣eDp,q�(e)

∣∣r
∫ 1

x–e
ξ (f ,e)

(
1 – qλ – λ + qλ2)

0dp,qλ

+
∣∣eDp,q�(f )

∣∣r
∫ 1

x–e
ξ (f ,e)

(
λ – qλ2)

0dp,qλ

) 1
r
]

,

The proof is accomplished. �

Corollary 2.4 In Theorem 2.3, the following quantum estimates hold under the following
conditions:

I. r = 1

∣∣∣∣�(x) –
1

ξ (f , e)

∫ e+ξ (f ,e)

e
�(λ) edp,qλ

∣∣∣∣
≤ ξ (f , e)

[∣∣eDp,q�(e)
∣∣[L2 + L5] +

∣∣eDp,q�(f )
∣∣[L3 + L6]

]
.

II. x = (p+q)e+pξ (f ,e)
p+q , then we have a new inequality:

∣∣∣∣�(x) –
1

pξ (f , e)

∫ e+pξ (f ,e)

e
�(λ) edp,qλ

∣∣∣∣
≤ ξ (f , e)

[
L1– 1

r
7

[∣∣eDp,q�(e)
∣∣rL8 +

∣∣eDp,q�(f )
∣∣rL9

] 1
r

+ L1– 1
r

10
[∣∣eDp,q�(e)

∣∣rL11 +
∣∣eDp,q�(f )

∣∣rL12
] 1

r
]
,
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where

L7 =
∫ p

p+q

0
qλ 0dp,qλ =

q
p + q

(
p

p + q

)2

,

L8 =
∫ p

p+q

0

(
qλ – qλ2)

0dp,qλ = L7 – L9,

L9 =
∫ p

p+q

0
qλ2

0dp,qλ =
q

p + pq + q2

(
p

p + q

)3

,

L10 =
∫ 1

p
p+q

(1 – qλ) 0dp,qλ =
q

p + q

(
1 –

p
p + q

)(
1 –

q
p + q

x – e
ξ (f , e)

)
,

L11 =
∫ 1

p
p+q

(
1 – qλ – λ + qλ2)

0dp,qλ = L10 – L12,

L12 =
∫ 1

p
p+q

(
λ – qλ2)

0dp,qλ =
1

p + q
–

p2

(p + q)3 +
1

p2 + q2 + pq

(
1 –

(
p

p + q

)3)
.

Theorem 2.5 Let � : [e, e + ξ (f , e)] be a function such that eDp,q� is (p, q)-integrable on
[e, e + ξ (f , e)]. If |eDp,q�|r , r > 1, s–1 + r–1 = 1 is preinvex on [e, e + ξ (f , e)], then

∣∣∣∣�(x) –
1

pξ (f , e)

∫ e+pξ (f ,e)

e
�(λ) edp,qλ

∣∣∣∣
≤ qξ (f , e)

[
K

1
s

1
[∣∣eDp,q�(e)

∣∣rK2 +
∣∣eDp,q�(f )

∣∣rK3
] 1

r

+ K
1
s

4
[∣∣eDp,q�(e)

∣∣rK5 +
∣∣eDp,q�(f )

∣∣rK6
] 1

r
]
,

where

K1 =
∫ x–e

ξ (f ,e)

0
λs

0dp,qλ =
(

x – e
ξ (f , e)

)s+1 p – q
ps+1 – qs+1 ,

K2 =
∫ x–e

ξ (f ,e)

0
(1 – λ) 0dp,qλ =

x – e
ξ (f , e)

–
1

p + q

(
x – e
ξ (f , e)

)2

,

K3 =
∫ x–e

ξ (f ,e)

0
λ 0dp,qλ =

1
p + q

(
x – e
ξ (f , e)

)2

,

K4 =
∫ 1

x–e
ξ (f ,e)

(
1
q

– λ

)s

0dp,qλ

= (p – q)

[ ∞∑
n=0

qn

pn+1

(
1
q

–
qn

pn+1

)s

–
x – e
ξ (f , e)

∞∑
n=0

qn

pn+1

(
1
q

–
qn

pn+1

(
x – e
ξ (f , e)

))s
]

,

K5 =
∫ 1

x–e
ξ (f ,e)

(1 – λ) 0dp,qλ =
p + q – 1

p + q
–

x – e
ξ (f , e)

+
1

p + q

(
x – e
ξ (f , e)

)2

,

K6 =
∫ 1

x–e
ξ (f ,e)

λ 0dp,qλ =
1

p + q

(
1 –

(
x – e
ξ (f , e)

)2)
.
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Proof Using Lemma 2.1, Holder’s inequality, and the preinvexity of |eDp,q�|r , we obtain

∣∣∣∣�(x) –
1

pξ (f , e)

∫ e+pξ (f ,e)

e
�(λ) edp,qλ

∣∣∣∣

≤ ξ (f , e)
[∫ x–e

ξ (f ,e)

0
qλ

∣∣eDp,q�
(
e + ξ (f , e)

)∣∣0dp,qλ

+
∫ 1

x–e
ξ (f ,e)

(1 – qλ)
∣∣eDp,q�

(
e + ξ (f , e)

)∣∣0dp,qλ

]

≤ ξ (f , e)
[(∫ x–e

ξ (f ,e)

0
(qλ)s

0dp,qλ

) 1
s
(∫ x–e

ξ (f ,e)

0

∣∣eDp,q�
(
e + ξ (f , e)

)∣∣r
0dp,qλ

) 1
r

+
(∫ 1

x–e
ξ (f ,e)

(1 – qλ)s
0dp,qλ

) 1
s
(∫ 1

x–e
ξ (f ,e)

∣∣eDp,q�
(
e + ξ (f , e)

)∣∣r
0dp,qλ

) 1
r
]

≤ qξ (f , e)
[(∫ x–e

ξ (f ,e)

0
λs

0dp,qλ

) 1
s

×
(∣∣eDp,q�(e)

∣∣r
∫ x–e

ξ (f ,e)

0
(1 – λ) 0dp,qλ +

∣∣eDp,q�(f )
∣∣r

∫ x–e
ξ (f ,e)

0
λ 0dp,qλ

) 1
r

+
(∫ 1

x–e
ξ (f ,e)

(
1
q

– λ

)s

0dp,qλ

) 1
s

×
(∣∣eDp,q�(e)

∣∣r
∫ 1

x–e
ξ (f ,e)

(1 – λ) 0dp,qλ +
∣∣eDp,q�(f )

∣∣r
∫ 1

x–e
ξ (f ,e)

λ 0dp,qλ

) 1
r
]

.

The proof is accomplished. �

Remark 2.6 If we take x = e+q(e+ξ (f ,e))
1+q in Theorem 2.5, then we have a new inequality:

∣∣∣∣�(x) –
1

pξ (f , e)

∫ e+pξ (f ,e)

e
�(λ) edp,qλ

∣∣∣∣
≤ qξ (f , e)

[
K

1
s

7
[∣∣eDp,q�(e)

∣∣rK8 +
∣∣eDp,q�(f )

∣∣rK9
] 1

r

+ K
1
s

10
[∣∣eDp,q�(e)

∣∣rK11 +
∣∣eDp,q�(f )

∣∣rK12
] 1

r
]
,

where

K7 =
∫ p

p+q

0
λs

0dp,qλ =
(

p
p + q

)s+1 p – q
ps+1 – qs+1 ,

K8 =
∫ p

p+q

0
(1 – λ) 0dp,qλ =

p
p + q

–
p2

(p + q)3 ,

K9 =
∫ p

p+q

0
λ 0dp,qλ =

p2

(p + q)3 ,
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K10 =
∫ 1

p
p+q

(
1
q

– λ

)s

0dp,qλ,

= (p – q)

[ ∞∑
n=0

qn

pn+1

(
1
q

–
qn

pn+1

)s

–
1

p + q

∞∑
n=0

qn

pn

(
1
q

–
qn

pn

(
1

p + q

))s
]

,

K11 =
∫ 1

p
p+q

(1 – λ) 0dp,qλ =
q – 1
p + q

–
p2

(p + q)3 ,

K12 =
∫ 1

p
p+q

λ 0dp,qλ =
1

p + q
–

p2

(p + q)3 .

2.3 Applications
We now discuss some applications of the results obtained in the previous section. First of
all we recall some previously known concepts. For arbitrary real numbers, consider the
following means:

Arithmetic mean : A(e, f ) =
e + f

2
,

Generalized logarithmic mean : Lq(e, f ) =
[

f q+1 – eq+1

(q + 1)(f – e)

] 1
q

,

where q ∈R \ {–1, 0}, e, f ∈ R with e �= f .

Proposition 2.7 Let 0 < e < f , n ∈N, 0 < q < p < 1, then

∣∣∣∣An(e, f ) –
(n + 1)(p – q)
p(pn+1 – qn+1)

Ln
n
(
e, (1 – p)e + pf

)∣∣∣∣

≤ (f – e)
[

H1– 1
r

1

[∣∣nen–1∣∣rH2 +
∣∣∣∣ (pf + (1 – p)e)n – (qf + (1 – q)e)n

(f – e)(1 – q)

∣∣∣∣
r

H3

] 1
r

+ H1– 1
r

4

[∣∣nen–1∣∣rH5 +
∣∣∣∣ (pf + (1 – p)e)n – (qf + (1 – q)e)n

(f – e)(1 – q)

∣∣∣∣
r

H6

] 1
r
]

,

where

H1 =
∫ 1

2

0
qλ 0dp,qλ =

q
4(p + q)

,

H2 =
∫ 1

2

0

(
qλ – qλ2)

0dp,qλ =
q(p + 2pq + 2q2 – q)

8(p + q)(p2 + pq + q2)
,

H3 =
∫ 1

2

0
qλ2

0dp,qλ =
q

8(p + pq + q2)
,

H4 =
∫ 1

1
2

(1 – qλ) 0dp,qλ =
2p – q

4(p + q)
,
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H5 =
∫ 1

1
2

(
1 – qλ – λ + qλ2)

0dp,qλ =
4p3 + 2pq2 + 2p2q – 2q3 – 6p2 + pq + q2

8(p + q)(p2 + pq + q2)
,

H6 =
∫ 1

1
2

(
λ – qλ2)

0dp,qλ =
6p2 – pq – q2

8(p + q)(p2 + pq + q2)
.

Proof The proof directly follows from Theorem 2.3 applied for �(x) = xn, ξ (f , e) = f – e
and considering x = e+f

2 . �

Proposition 2.8 Let 0 < e < f , n ∈N, 0 < q < 1, then

∣∣∣∣An(e, f ) –
(n + 1)(p – q)
p(pn+1 – qn+1)

Ln
n
(
e, (1 – p)e + pf

)∣∣∣∣

≤ q(f – e)
[

M
1
s

1

[∣∣nen–1∣∣rM2 +
∣∣∣∣ (pf + (1 – p)e)n – (qf + (1 – q)e)n

(f – e)(1 – q)

∣∣∣∣
r

M3

] 1
r

+ M
1
s

4

[∣∣nen–1∣∣rM5 +
∣∣∣∣ (pf + (1 – p)e)n – (qf + (1 – q)e)n

(f – e)(1 – q)

∣∣∣∣
r

M6

] 1
r
]

,

where

M1 =
∫ 1

2

0
λs

0dp,qλ =
1

2s+1
p – q

ps+1 – qs+1 ,

M2 =
∫ 1

2

0
(1 – λ) 0dp,qλ =

2p + 2q – 1
4(p + q)

,

M3 =
∫ 1

2

0
λ 0dp,qλ =

1
4(p + q)

,

M4 =
∫ 1

1
2

(
1
q

– λ

)s

0dp,qλ

= (p – q)

[ ∞∑
n=0

qn

pn+1

(
1
q

–
qn

pn+1

)s

–
1
2

∞∑
n=0

qn

pn+1

(
1
q

–
qn

2pn+1

)s
]

,

M5 =
∫ 1

1
2

(1 – λ) 0dp,qλ =
2p + 2q – 3

4(p + q)
,

M6 =
∫ 1

1
2

λ 0dp,qλ =
3

4(p + q)
.

Proof The proof directly follows from Theorem 2.5 applied for �(x) = xn, ξ (f , e) = f – e
and considering x = e+f

2 . �

3 Conclusion
In the article, we have found a new post quantum version of Montgomery identity and
presented several inequalities involving the post quantum bounds via certain properties of
the preinvex functions. Our obtained results are the generalizations and improvements of
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some previously known results. Moreover, we also provided some applications to support
our obtained results.
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