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1 Introduction
In the past two decades, fractional calculus has received much attention. The fast inter-
est in the topic is due to its extensive applications in various fields such as biochemistry,
physics, viscoelasticity, fluid mechanics, computer modeling, and engineering, see [1–7]
for further details. Most of the studies have been devoted to the existence and uniqueness
of solutions for fractional differential or difference equations; see e.g. [8–12].

A fractional differential equation needs a certain inequality for existence and uniqueness
of solution. For this reason, a huge number of mathematicians have competed to seek such
inequalities; see e.g. [13–25].

As always, it is important and necessary to specify which model or definition of frac-
tional calculus is being used because there are many different ways of defining fractional
operators (integrals and derivatives). To further facilitate the discussion of this model, we
present here the definition which is most commonly used for fractional operators, namely
the Riemann–Liouville (RL) definition.

Definition 1.1 ([1, 2]) For any L1 function w̄(x) on an interval [ε3, ε4] with x ∈ [ε3, ε4], the
κth left-RL fractional integral of w̄(x) is given by

RLJκ
ε3+w̄(x) :=

1
�(κ)

∫ x

ε3

(x – ς )κ–1w̄(ς ) dς (1.1)
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for Re(κ) > 0. Also, the κth right-RL fractional integral of w̄(x) is given by

RLJκ
ε4–w̄(x) :=

1
�(κ)

∫ ε4

x
(ς – x)κ–1w̄(ς ) dς . (1.2)

Before starting the main findings, we review some definitions, notations, theorems
which will be necessary later to proceed.

Definition 1.2 ([26]) We say that the function w̄ : J ⊆R→R is convex on J if

w̄
(
ςε3 + (1 – ς )ε4

) ≤ ςw̄(ε3) + (1 – ς )w̄(ε4) (1.3)

holds for every ε3, ε4 ∈ J and ς ∈ [0, 1].

Definition 1.3 ([27]) We say that the function w̄ : J ⊆R→R is exponential type convex
(or briefly exp-convex function) on J if

w̄
(
ςε3 + (1 – ς )ε4

) ≤ (
eς – 1

)
w̄(ε3) +

(
e1–ς – 1

)
w̄(ε4) (1.4)

holds for every ε3, ε4 ∈ J and ς ∈ [0, 1].

The well-known integral inequality of Hermite–Hadamard type (HH-type) for such a
convex function (1.3) is given by

w̄
(

ε3 + ε4

2

)
≤ 1

ε4 – ε3

∫ ε4

ε3

w̄(x) dx ≤ w̄(ε3) + w̄(ε4)
2

. (1.5)

On the same convex function (1.3), in 2013, Sarikaya et al. [28] generalized the HH-
inequality (1.5) to fractional integrals of RL type, which is as follows:

w̄
(

ε3 + ε4

2

)
≤ �(κ + 1)

2(ε4 – ε3)κ
[RLJκ

ε3+w̄(ε4) + RLJκ
ε4–w̄(ε3)

] ≤ w̄(ε3) + w̄(ε4)
2

, (1.6)

where κ > 0 and w̄ : [ε3, ε4] → R is supposed to be an L1 convex function. One year later,
Sarikaya and Yildirim [29] found a new version of the above inequality, which is as follows:

w̄
(

ε3 + ε4

2

)
≤ 2κ–1�(κ + 1)

(ε4 – ε3)κ
[RLJκ

( ε3+ε4
2 )+w̄(ε4) + RLJκ

( ε3+ε4
2 )–w̄(ε3)

]

≤ w̄(ε3) + w̄(ε4)
2

. (1.7)

Again, one can note that this result is valid for any L1 convex function w̄ : [ε3, ε4] →R and
for each κ > 0.

In 2020, Kadakal and Işcan obtained the new refinement of the classical HH-inequality
(1.5) on the exp-convex function (1.4), which is as follows:

1
2(e 1

2 – 1)
w̄

(
ε3 + ε4

2

)
≤ 1

ε4 – ε3

∫ ε4

ε3

w̄(x) dx ≤ (e – 2)
[
w̄(ε3) + w̄(ε4)

]
. (1.8)
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A huge number of generalizations and modifications of classical HH-inequality (1.5)
have been established by means of fractional operators (1.1) and (1.2); e.g. see [20, 26, 30–
44].

In this study, we follow the line of result mentioned above to investigate a new integral
inequality, namely, the RL version of the new HH-type inequality (1.8). The rest of the
attempt is designed as follows: in Sect. 2.1 we prove the HH inequalities of trapezoidal type
by using differintegrals starting from the endpoints of the interval. In Sect. 2.2, we prove
the HH inequalities of midpoint type by using differintegrals starting from the midpoint of
the interval for the RL-fractional operators. Finally, some applications on special functions
are exposed in Sect. 4.

2 Main results
Our main results are split into two subsections. The following facts will be needed in es-
tablishing our main results.

Remark 2.1 For Re(κ) > 0, the following identities can hold:

∫ 1

0
ςκ–1eς dς = (–1)κγ (κ , –1); (2.1)

∫ 1

0
ςκ–1e1–ς dς = eγ (κ , 1), (2.2)

where γ (·, ·) is the lower incomplete gamma function [45]:

γ (κ , x) =
∫ x

0
ςκ–1e–ς dς , x ∈ C. (2.3)

Proof By making change of the variable u := –ς in the first integral, we get

∫ 1

0
ςκ–1eς dς = (–1)κ

∫ –1

0
uκ–1e–u du = (–1)κγ (κ , –1),

which ends identity (2.1).
Identity (2.2) can be directly obtained from the original definition (2.3). �

Remark 2.2 For Re(κ) > 0, the following identities can hold:

∫ 1

0
ςκ–1e

ς
2 dς = (–2)κγ

(
κ , –

1
2

)
; (2.4)

∫ 1

0
ςκ–1e1– ς

2 dς = e 2κγ

(
κ ,

1
2

)
. (2.5)

Proof We can use the same method used for Remark 2.1 to produce the results for Re-
mark 2.2. �
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Lemma 2.1 ([28]) If w̄ : [ε3, ε4] →R is L1[ε3, ε4] with 0 < ε3 < ε4 and κ > 0, then we have

w̄(ε3) + w̄(ε4)
2

–
�(κ + 1)

2(ε4 – ε3)κ
[RLJκ

ε3+w̄(ε4) + RLJκ
ε4–w̄(ε3)

]

=
ε4 – ε3

2

∫ 1

0

[
(1 – ς )κ – ςκ

]
w̄′(ςε3 + (1 – ς )ε4

)
dς .

Lemma 2.2 ([29]) If w̄ : [ε3, ε4] →R is L1[ε3, ε4] with 0 < ε3 < ε4 and κ > 0, then we have

2κ–1�(κ + 1)
(ε4 – ε3)κ

[RLJκ

( ε3+ε4
2 )+w̄(ε4) + RLJκ

( ε3+ε4
2 )–w̄(ε3)

]
– w̄

(
ε3 + ε4

2

)

=
ε4 – ε3

4

[∫ 1

0
ςκ w̄′

(
ς

2
ε3 +

2 – ς

2
ε4

)
dς –

∫ 1

0
ςκ w̄′

(
2 – ς

2
ε3 +

ς

2
ε4

)
dς

]
.

2.1 Trapezoidal inequalities
Proposition 2.1 Suppose that w̄ : [ε3, ε4] →R is an L1 and exp-convex function. Then we
have, for κ > 0,

w̄
(

ε3 + ε4

2

)
≤ (e 1

2 – 1)�(κ + 1)
(ε4 – ε3)κ

[RLJκ
ε3+w̄(ε4) + RLJκ

ε4–w̄(ε3)
]

≤ κ
(
e

1
2 – 1

)(
eγ (κ , 1) + (–1)κγ (κ , –1) –

2
κ

)[
w̄(ε3) + w̄(ε4)

]
. (2.6)

Proof By the exp-convexity of f , we have

w̄
(

ε3 + ε4

2

)
= w̄

(
[ςε3 + (1 – ς )ε4] + [(1 – ς )ε3 + ςε4]

2

)

≤ (
e

1
2 – 1

)
w̄

(
ςε3 + (1 – ς )ε4

)
+

(
e

1
2 – 1

)
w̄

(
(1 – ς )ε3 + ςε4

)
.

Multiplying by ςκ–1 on both sides and then integrating over [0, 1], we get

1
κ

w̄
(

ε3 + ε4

2

)
≤ (

e
1
2 – 1

)∫ 1

0
ςκ–1w̄

(
ςε3 + (1 – ς )ε4

)
dς

+
(
e

1
2 – 1

)∫ 1

0
ςκ–1w̄

(
(1 – ς )ε3 + ςε4

)
dς .

Multiplying by κ > 0 on both sides and making the change of variables in the last inequality,
we obtain

w̄
(

ε3 + ε4

2

)

≤ κ
(
e

1
2 – 1

)[ 1
ε4 – ε3

∫ ε3

ε4

(
ε4 – u
ε4 – ε3

)κ–1

w̄(u) du +
1

ε4 – ε3

∫ ε4

ε3

(
v – ε3

ε4 – ε3

)κ–1

w̄(v) dv
]

=
�(κ + 1)(e 1

2 – 1)
(ε4 – ε3)κ

[RLJκ
ε3+w̄(ε4) + RLJκ

ε4–w̄(ε3)
]
. (2.7)

On the other hand, we have by exp-convexity

w̄
(
ςε3 + (1 – ς )ε4

) ≤ (
eς – 1

)
w̄(ε3) +

(
e1–ς – 1

)
w̄(ε4);
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w̄
(
(1 – ς )ε3 + ςε4

) ≤ (
e1–ς – 1

)
w̄(ε3) +

(
eς – 1

)
w̄(ε4).

Adding both inequalities, we get

w̄
(
ςε3 + (1 – ς )ε4

)
+ w̄

(
(1 – ς )ε3 + ςε4

) ≤ (
eς + e1–ς – 2

)[
w̄(ε3) + w̄(ε4)

]
.

Multiplying by ςκ–1 on both sides and then integrating over [0, 1], we get

∫ 1

0
ςκ–1w̄

(
ςε3 + (1 – ς )ε4

)
dς +

∫ 1

0
ςκ–1w̄

(
(1 – ς )ε3 + ςε4

)
dς

≤ [
w̄(ε3) + w̄(ε4)

] ∫ 1

0
ςκ–1(eς + e1–ς – 2

)
dς .

By making the change of variables and Remark 2.1, we get

�(κ)
(ε4 – ε3)κ

[RLJκ
ε3+w̄(ε4) + RLJκ

ε4–w̄(ε3)
]

≤
(

eγ (κ , 1) + (–1)κγ (κ , –1) –
2
κ

)[
w̄(ε3) + w̄(ε4)

]
.

Multiplying by positive constants κ > 0 and (e 1
2 – 1) > 0 on both sides, we get

(e 1
2 – 1)�(κ + 1)

(ε4 – ε3)κ
[RLJκ

ε3+w̄(ε4) + RLJκ
ε4–w̄(ε3)

]

≤ κ
(
e

1
2 – 1

)(
eγ (κ , 1) + (–1)κγ (κ , –1) –

2
κ

)[
w̄(ε3) + w̄(ε4)

]
. (2.8)

Both of inequalities (2.7) and (2.8) rearrange to the required result. �

Remark 2.3 The expression (–1)κγ (κ , –1) occurring in inequality (2.6) may not be clear
for the readers, and they will imagine that this value is complex, or does it make sense?
Actually, the complex part coming from (–1)κ cancels out the complex part coming from
the incomplete gamma γ (κ , –1). Furthermore, this value came from the integral formula
(2.1): from looking at the integral we can clearly see that it is real (and positive). Therefore,
the answer is yes, it does make sense; the overall expression is real and positive.

On the other hand, we can clarify the above expression by using the Taylor expansion
for the integral formula (2.1):

(–1)κγ (κ , –1) =
∫ 1

0
ςκ–1eς dς =

∫ 1

0
ςκ–1

(
1 + ς +

ς2

2!
+ · · ·

)
dς

=
1
κ

+
1

κ + 1
+

1
2!(κ + 2)!

+
1

3!(κ + 3)
+ · · ·

=
∞∑
ι=0

1
ι!(κ + ι)

.

This formula confirms that (–1)κγ (κ , –1) > 0 for κ > 0.
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Remark 2.4 Inequality (2.6) with κ = 1 becomes inequality (1.8).

Theorem 2.1 Let w̄ : [ε3, ε4] → R be L1[ε3, ε4] with 0 < ε3 < ε4 and κ > 0. If |w̄′| is an
exp-convex function, then we have

∣∣∣∣ w̄(ε3) + w̄(ε4)
2

–
�(κ + 1)

2(ε4 – ε3)κ
[RLJκ

ε3+w̄(ε4) + RLJκ
ε4–w̄(ε3)

]∣∣∣∣
≤ ε4 – ε3

2
([

δ0(κ ,�0) + δ1(κ ,�1)
]∣∣w̄′(ε3)

∣∣ +
[
δ0(κ ,�1) + δ1(κ ,�0)

]∣∣w̄′(ε4)
∣∣

+
[
δ1(κ ,�0) + δ0(κ ,�1)

]∣∣w̄′(ε3)
∣∣ +

[
δ1(κ ,�1) + δ0(κ ,�0)

]∣∣w̄′(ε4)
∣∣)

= (ε4 – ε3)
|w̄′(ε3)| + |w̄′(ε4)|

2

1∑
i=0

1∑
j=0

δi(κ ,�j), (2.9)

where

δ0(κ ,�j) = (–1)j
�j

[
γ
(
κ + 1, (–1)j) – γ

(
κ + 1,

(–1)j

2

)]
+ (–1)j+1 1

κ + 1

[
1 –

(
1
2

)κ+1]
;

δ1(κ ,�j) =
1

κ + 1

(
1
2

)κ+1

+ (–1)j+1
�jγ

(
κ + 1,

(–1)j

2

)
,

and

�j =

⎧⎨
⎩

e, if j = 0,

(–1)κ , if j = 1.

Proof From Lemma 2.1, we have

∣∣∣∣ w̄(ε3) + w̄(ε4)
2

–
�(κ + 1)

2(ε4 – ε3)κ
[RLJκ

ε3+w̄(ε4) + RLJκ
ε4–w̄(ε3)

]∣∣∣∣

≤ ε4 – ε3

2

∫ 1

0

∣∣(1 – ς )κ – ςκ
∣∣∣∣w̄′(ςε3 + (1 – ς )ε4

)∣∣dς

=
ε4 – ε3

2

[∫ 1
2

0

[
(1 – ς )κ – ςκ

]∣∣w̄′(ςε3 + (1 – ς )ε4
)∣∣dς

+
∫ 1

1
2

[
ςκ – (1 – ς )κ

]∣∣w̄′(ςε3 + (1 – ς )ε4
)∣∣dς

]
.

By using the exp-convexity of |w̄′|, it follows that

∣∣∣∣ w̄(ε3) + w̄(ε4)
2

–
�(κ + 1)

2(ε4 – ε3)κ
[RLJκ

ε3+w̄(ε4) + RLJκ
ε4–w̄(ε3)

]∣∣∣∣

≤ ε4 – ε3

2

[∫ 1
2

0

[
(1 – ς )κ – ςκ

][(
eς – 1

)∣∣w̄′(ε3)
∣∣ +

(
e1–ς – 1

)∣∣w̄′(ε4)
∣∣]dς

+
∫ 1

1
2

[
ςκ – (1 – ς )κ

][(
eς – 1

)∣∣w̄′(ε3)
∣∣ +

(
e1–ς – 1

)∣∣w̄′(ε4)
∣∣]dς

]

=
ε4 – ε3

2
([

δ0(κ ,�0) + δ1(κ ,�1)
]∣∣w̄′(ε3)

∣∣ +
[
δ0(κ ,�1) + δ1(κ ,�0)

]∣∣w̄′(ε4)
∣∣
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+
[
δ1(κ ,�0) + δ0(κ ,�1)

]∣∣w̄′(ε3)
∣∣ +

[
δ1(κ ,�1) + δ0(κ ,�0)

]∣∣w̄′(ε4)
∣∣)

=
ε4 – ε3

2
[
δ0(κ ,�0) + δ1(κ ,�1) + δ0(κ ,�1) + δ1(κ ,�0)

](∣∣w̄′(ε3)
∣∣ +

∣∣w̄′(ε4)
∣∣),

where the following identities are used:

δ0(κ ,�0) =
∫ 1

2

0
(1 – ς )κ

(
eς – 1

)
dς =

∫ 1

1
2

ςκ
(
e1–ς – 1

)
dς ;

δ0(κ ,�1) =
∫ 1

2

0
(1 – ς )κ

(
e1–ς – 1

)
dς =

∫ 1

1
2

ςκ
(
eς – 1

)
dς ;

δ1(κ ,�0) = –
∫ 1

2

0
ςκ

(
e1–ς – 1

)
dς = –

∫ 1

1
2

(1 – ς )κ
(
eς – 1

)
dς ;

δ1(κ ,�1) = –
∫ 1

2

0
ςκ

(
eς – 1

)
dς = –

∫ 1

1
2

(1 – ς )κ
(
e1–ς – 1

)
dς .

Thus, our proof is completed. �

Remark 2.5 Inequality (2.9) with κ = 1 becomes the following inequality:
∣∣∣∣ w̄(ε3) + w̄(ε4)

2
–

1
ε4 – ε3

∫ ε4

ε3

w̄(x) dx
∣∣∣∣

≤ (ε4 – ε3)
(

4e
1
2 – e –

7
2

) |w̄′(ε3)| + |w̄′(ε4)|
2

, (2.10)

which was obtained by Kadakal and Işcan [27].

2.2 Midpoint inequalities
Proposition 2.2 If w̄ : [ε3, ε4] → R is an L1 and exp-convex function and κ > 0, then we
have

w̄
(

ε3 + ε4

2

)
≤ (e 1

2 – 1)2κ�(κ + 1)
(ε4 – ε3)κ

[RLJκ

( ε3+ε4
2 )+w̄(ε4) + RLJκ

( ε3+ε4
2 )–w̄(ε3)

]

≤ κ
(
e

1
2 – 1

)[
e 2κγ

(
κ ,

1
2

)
+ (–2)κγ

(
κ , –

1
2

)
–

2
κ

][
w̄(ε3) + w̄(ε4)

]
. (2.11)

Proof By the exp-convexity of f , we have

w̄
(

ε3 + ε4

2

)
= w̄

( [ ς

2 ε3 + 2–ς

2 ε4] + [ 2–ς

2 ε3 + ς

2 ε4]
2

)

≤ (
e

1
2 – 1

)
w̄

(
ς

2
ε3 +

2 – ς

2
ε4

)
+

(
e

1
2 – 1

)
w̄

(
2 – ς

2
ε3 +

ς

2
ε4

)
.

Multiplying by ςκ–1 on both sides and then integrating over [0, 1], we get

1
κ

w̄
(

ε3 + ε4

2

)
≤ (

e
1
2 – 1

)∫ 1

0
ςκ–1w̄

(
ς

2
ε3 +

2 – ς

2
ε4

)
dς

+
(
e

1
2 – 1

)∫ 1

0
ςκ–1w̄

(
2 – ς

2
ε3 +

ς

2
ε4

)
dς .
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Multiplying by κ > 0 on both sides and making the change of variables, we get

w̄
(

ε3 + ε4

2

)
≤ κ

(
e

1
2 – 1

)[ 1
ε4 – ε3

∫ ε3+ε4
2

ε4

(
ε4 – u
ε4 – ε3

)κ–1

w̄(u) du

+
1

ε4 – ε3

∫ ε3+ε4
2

ε3

(
v – ε3

ε4 – ε3

)κ–1

w̄(v) dv
]

=
(e 1

2 – 1)2κ�(κ + 1)
(ε4 – ε3)κ

[RLJκ

( ε3+ε4
2 )+w̄(ε4) + RLJκ

( ε3+ε4
2 )–w̄(ε3)

]
. (2.12)

On the other hand, we have by exp-convexity

w̄
(

ς

2
ε3 +

2 – ς

2
ε4

)
≤ (

e
ς
2 – 1

)
w̄(ε3) +

(
e1– ς

2 – 1
)
w̄(ε4);

w̄
(

2 – ς

2
ε3 +

ς

2
ε4

)
≤ (

e1– ς
2 – 1

)
w̄(ε3) +

(
e

ς
2 – 1

)
w̄(ε4).

Adding both inequalities, we get

w̄
(

ς

2
ε3 +

2 – ς

2
ε4

)
+ w̄

(
2 – ς

2
ε3 +

ς

2
ε4

)
≤ (

e
ς
2 + e1– ς

2 – 2
)[

w̄(ε3) + w̄(ε4)
]
.

Multiplying by ςκ–1 on both sides and then integrating over [0, 1], we get

∫ 1

0
ςκ–1w̄

(
ς

2
ε3 +

2 – ς

2
ε4

)
dς +

∫ 1

0
ςκ–1w̄

(
2 – ς

2
ε3 +

ς

2
ε4

)
dς

≤ [
w̄(ε3) + w̄(ε4)

] ∫ 1

0
ςκ–1(e

ς
2 + e1– ς

2 – 2
)

dς .

By making the change of variables and Remark 2.2, we get

2κ�(κ)
(ε4 – ε3)κ

[RLJκ

( ε3+ε4
2 )+w̄(ε4) + RLJκ

( ε3+ε4
2 )–w̄(ε3)

]

≤
[

e 2κγ

(
κ ,

1
2

)
+ (–2)κγ

(
κ , –

1
2

)
–

2
κ

][
w̄(ε3) + w̄(ε4)

]
.

Multiplying by positive constants κ > 0 and (e 1
2 – 1) > 0 on both sides, we get

(e 1
2 – 1)2κ�(κ + 1)

(ε4 – ε3)κ
[RLJκ

( ε3+ε4
2 )+w̄(ε4) + RLJκ

( ε3+ε4
2 )–w̄(ε3)

]

≤ κ
(
e

1
2 – 1

)[
e 2κγ

(
κ ,

1
2

)
+ (–2)κγ

(
κ , –

1
2

)
–

2
κ

][
w̄(ε3) + w̄(ε4)

]
. (2.13)

Both of inequalities (2.12) and (2.13) rearrange to the required result. �
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Theorem 2.2 Let w̄ : [ε3, ε4] → R be L1[ε3, ε4] with 0 < ε3 < ε4 and κ > 0. If |w̄′| is an
exp-convex function, then we have

∣∣∣∣2κ–1�(κ + 1)
(ε4 – ε3)κ

[RLJκ

( ε3+ε4
2 )+w̄(ε4) + RLJκ

( ε3+ε4
2 )–w̄(ε3)

]
– w̄

(
ε3 + ε4

2

)∣∣∣∣

≤ (ε4 – ε3)
|w̄′(ε3)| + |w̄′(ε4)|

4

1∑
j=0

δ̄(κ ,�j), (2.14)

where �j is as before, and

δ̄(κ ,�j) = (–1)j
�j2κ+1γ

(
κ + 1,

(–1)j

2

)
–

1
κ + 1

.

Proof With the help of Lemma 2.2 and the exp-convexity of |w̄′|, we have

∣∣∣∣2κ–1�(κ + 1)
(ε4 – ε3)κ

[RLJκ

( ε3+ε4
2 )+w̄(ε4) + RLJκ

( ε3+ε4
2 )–w̄(ε3)

]
– w̄

(
ε3 + ε4

2

)∣∣∣∣

≤ ε4 – ε3

4

∫ 1

0
ςκ

[∣∣∣∣w̄′
(

ς

2
ε3 +

2 – ς

2
ε4

)∣∣∣∣ +
∣∣∣∣w̄′

(
2 – ς

2
ε3 +

ς

2
ε4

)∣∣∣∣
]

dς

≤ ε4 – ε3

4

{∫ 1

0
ςκ

[(
e

ς
2 – 1

)∣∣w̄′(ε3)
∣∣ +

(
e

2–ς
2 – 1

)∣∣w̄′(ε4)
∣∣]dς

+
∫ 1

0
ςκ

[(
e

2–ς
2 – 1

)∣∣w̄′(ε3)
∣∣ +

(
e

ς
2 – 1

)∣∣w̄′(ε4)
∣∣]dς

}

=
ε4 – ε3

4
{
δ̄(κ ,�1)

∣∣w̄′(ε3)
∣∣ + δ̄(κ ,�0)

∣∣w̄′(ε4)
∣∣ + δ̄(κ ,�0)

∣∣w̄′(ε3)
∣∣ + δ̄(κ ,�1)

∣∣w̄′(ε4)
∣∣},

where the following identities are used:

δ̄(κ ,�0) =
∫ 1

0
ςκ

(
e

ς
2 – 1

)
dς ;

δ̄(κ ,�1) =
∫ 1

0
ςκ

(
e

2–ς
2 – 1

)
dς .

Thus, our proof is completed. �

Remark 2.6 Inequality (2.14) with κ = 1 becomes the following inequality:

∣∣∣∣ 1
ε4 – ε3

∫ ε4

ε3

w̄(x) dx – w̄
(

ε3 + ε4

2

)∣∣∣∣ ≤ (ε4 – ε3)
(
3 + 4e – 8e

1
2
) |w̄′(ε3)| + |w̄′(ε4)|

4
. (2.15)

3 He’s inequality
This section deals with the HH-inequality in the sense of He’s fractional derivatives as
introduced in Definition 3.1. As we discussed before, there are many definitions on frac-
tional derivatives in the literature. Herewith we recall the fractional derivatives by the
variational iteration method [46, 47]. A complete review on variational iteration method
and its application and development are available in references [48, 49].

Let us recall the following fractional derivative introduced by He [47].
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Definition 3.1 For any L1 function w̄ on an interval [0, s], the κth He’s fractional derivative
of w̄(s) is defined by

Dκ
s w̄(s) =

1
�(n – κ)

dn

dsn

∫ s

0
(ς – s)n–κ–1w̄(ς ) dς .

Now, by making use of exp-convexity of w̄, we have

w̄
(

ε3 + ε4

2

)
= w̄

(
[ςε3 + (1 – ς )ε4] + [(1 – ς )ε3 + ςε4]

2

)

≤ (
e

1
2 – 1

)[
w̄

(
ςε3 + (1 – ς )ε4

)
+ w̄

(
(1 – ς )ε3 + ςε4

)]
. (3.1)

Taking ε3 = 0 and ε4 > 0 for all s ∈ (0, 1), multiplying by (ς–s)n–κ–1

�(n–κ) on both sides of (3.1), and
integrating with respect to t over [0, 1], we get

1
�(n – κ)

w̄
(

ε4

2

)∫ s

0
(ς – s)n–κ–1 dς

≤ (e 1
2 – 1)

�(n – κ)

[∫ s

0
(t – s)n–κ–1w̄

(
(1 – ς )ε4

)
dς +

∫ s

0
(ς – s)n–κ–1w̄(ςε4) dς

]
.

Hence

(–1)n–κ–1sn–κ

�(n – κ)
w̄

(
ε4

2

)

≤ (e 1
2 – 1)

�(n – κ)

[∫ s

0
(ς – s)n–κ–1w̄(ςε4) dς +

∫ s

0
(ς – s)n–κ–1w̄

(
(1 – ς )ε4

)
dς

]
. (3.2)

After getting the n–th derivatives on both sides of (3.2) with respect to s and using Defini-
tion 3.1, we obtain

(–1)n–κ–1w̄
(

ε4

2

)
≤ (e 1

2 – 1)sκ

ε4n–κ

[
Dκ

sbw̄(sb) + (–1)n–κ–1Dκ
(1–s)bw̄

(
(1 – s)b

)]
. (3.3)

4 Examples
In this section, some examples in the frame of special functions, matrices, and fractional
Zakharov–Kuznetsov functions are selected to fulfil the applicability of obtained results.

Example 4.1 Let the function Jρ̄ : R→ [1,∞) be defined by [50]

Jρ̄(z) = 2ρ̄�(ρ̄ + 1)z–vIρ̄(z), z ∈R.

In our attempt, we consider the first kind modified Bessel function Iρ̄ , given by [50]

Iρ̄(z) =
∞∑

n=0

( z
2 )ρ̄+2n

n!�(ρ̄ + n + 1)
.
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Then, the first and second order derivatives of Jρ̄(z) are given as follows:

J ′
ρ̄(z) =

z
2(ρ̄ + 1)

Jρ̄+1(z),

J ′′
ρ̄ (z) =

1
4(ρ̄ + 1)

[
z2

ρ̄ + 2
Jρ̄+2(z) + 2Jρ̄+1(z)

]
.

(4.1)

Let w̄(z) := J ′
ρ̄(z). Then, with the help of Remark 2.5 and the two identities in (4.1), we can

deduce

∣∣∣∣ε3Jρ̄+1(ε3) + ε4Jρ̄+1(ε4)
4(ρ̄ + 1)

–
Jρ̄(ε4) – Jρ̄(ε3)

ε4 – ε3

∣∣∣∣

≤ (ε4 – ε3)
(

4e
1
2 – e –

7
2

){
ε2

3 Jρ̄+2(ε3) + ε2
4 Jρ̄+2(ε4)

8(ρ̄ + 1)(ρ̄ + 2)
+
Jρ̄+1(ε3) + Jρ̄+1(ε4)

4(ρ̄ + 1)

}
.

Also, from Remark 2.6 and the two identities in (4.1), we can deduce

∣∣∣∣Jρ̄(ε4) – Jρ̄(ε3)
ε4 – ε3

– Jρ̄+1

(
ε3 + ε4

2

)∣∣∣∣

≤ (ε4 – ε3)
(
3 + 4e – 8e

1
2
){ε2

3 Jρ̄+2(ε3) + ε2
4 Jρ̄+2(ε4)

16(ρ̄ + 1)(ρ̄ + 2)
+
Jρ̄+1(ε3) + Jρ̄+1(ε4)

8(ρ̄ + 1)

}

for ρ̄ > –1, ε3, ε4 ∈R with 0 < ε3 < ε4.

Example 4.2 In this example, we deal with the second kind modified Bessel function Kρ̄ ,
given by [50]

Kρ̄(z) =
π

2
J–ρ̄(z) + Jρ̄(z)

sin(ρ̄π )
.

Let w̄(z) := –(Kρ̄ (z)
zρ̄ )′ with ρ̄ ∈ R. Following [50], we have the following integral represen-

tation:

Kρ̄(z) =
∫ ∞

0
e–z cosh t cosh(ρ̄t) dt, z > 0.

One can easily observe that the function z �→ Kρ̄(z) is completely monotonic on (0,∞)
for each ρ̄ ∈R. Also, we know that the product of two completely monotonic functions is
also completely monotonic, then z �→ w̄(z) is a strictly completely monotonic function on
(0,∞) for each ρ̄ > 1. Thus, the function

w̄(z) = –
(Kρ̄(z)

zρ̄

)′
=
Kρ̄+1(z)

zρ̄
;

w̄′(z) =
Kρ̄+2(z)

zρ̄
–
Kρ̄+1(z)

zρ̄+1

(4.2)

becomes strictly completely monotonic on (0,∞) for each ρ̄ > 1. Hence w̄(z) becomes a
convex function. Then, with the help of identities (4.2), and Remark 2.5 and Remark 2.6,
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respectively, we can deduce

∣∣∣∣ε
ρ̄
3Kρ̄+1(ε4) + ε

ρ̄
4Kρ̄+1(ε3)

2
+

ε
ρ̄
3Kρ̄(ε4) – ε

ρ̄
4Kρ̄(ε3)

ε4 – ε3

∣∣∣∣
≤ (ε4 – ε3)

(
4e

1
2 – e –

7
2

)

×
{

ε
ρ̄
4Kρ̄+1(ε3) + ε

ρ̄
3Kρ̄+1(ε4)

2
+

ε
ρ̄+1
4 Kρ̄+2(ε3) + ε

ρ̄+1
3 Kρ̄+2(ε4)

2ε3 ε4

}

and

∣∣∣∣ε
ρ̄
3Kρ̄(ε4) – ε

ρ̄
4Kρ̄(ε3)

ε4 – ε3
+

(
2ε3ε4

ε3 + ε4

)ρ̄

Kρ̄+1

(
ε3 + ε4

2

)∣∣∣∣
≤ (ε4 – ε3)

(
3 + 4e – 8e

1
2
)

×
{

ε
ρ̄
4Kρ̄+1(ε3) + ε

ρ̄
3Kρ̄+1(ε4)

4
+

ε
ρ̄+1
4 Kρ̄+2(ε3) + ε

ρ̄+1
3 Kρ̄+2(ε4)

4ε3 ε4

}

for each ρ̄ > 1 and ε3, ε4 ∈R with 0 < ε3 < ε4.

Example 4.3 In this example, we deal with the q-digamma function �ρ , given by [50]

�ρ(z) = – ln(1 – ρ) + ln(ρ)
∞∑
ι=0

ρι+z

1 – ρι+z

= – ln(1 – ρ) + ln(ρ)
∞∑
ι=1

ρι z

1 – ρι z for 0 < ρ < 1,

or equivalently,

�ρ(z) = – ln(ρ – 1) + ln(ρ)

(
z –

1
2

–
∞∑
ι=0

ρ–(ι+z)

1 – ρ–(ι+z)

)

= – ln(ρ – 1) + ln(ρ)

(
z –

1
2

–
∞∑
ι=1

ρ–ι z

1 – ρ–ι z

)
for ρ > 1 and z > 0.

From the above definitions, we can observe that the function z �→ � ′
ρ(z) is completely

monotonic on (0,∞) for each ρ > 0. Consequently, we see that z �→ � ′
ρ(z) is a convex

function on (0,∞).
Set w̄(z) := � ′

ρ(z) with ρ > 0, then we see that w̄′(z) := � ′′
ρ (z) is completely monotonic on

(0,∞). Then, with the help of Remark 2.5, we can obtain

� ′
ρ

(
ε3 + ε4

2

)
≤

∣∣∣∣�ρ(ε4) – �ρ(ε3)
ε4 – ε3

∣∣∣∣ ≤ � ′
ρ(ε3) + � ′

ρ(ε4)
2

. (4.3)

Combining inequalities (1.5) and (2.10), we obtain

∣∣∣∣
� ′

ρ(ε3) + � ′
ρ(ε4)

2
–

�ρ(ε4) – �ρ(ε3)
ε4 – ε3

∣∣∣∣ ≤ ε4 – ε3

2

(
4e

1
2 – e –

7
2

)(∣∣� ′′
ρ (ε3)

∣∣ +
∣∣� ′′

ρ (ε4)
∣∣).
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Also, combining inequalities (1.5) and (2.15), we obtain
∣∣∣∣�ρ(ε4) – �ρ(ε3)

ε4 – ε3
– � ′

ρ

(
ε3 + ε4

2

)∣∣∣∣ ≤ ε4 – ε3

4
(
3 + 4e – 8e

1
2
)(∣∣� ′′

ρ (ε3)
∣∣ +

∣∣� ′′
ρ (ε4)

∣∣).

Example 4.4 We denote by C
n the set of n × n complex matrices, by Mn the algebra of

n × n complex matrices, and by M
+
n the strictly positive matrices in Mn. That is, A ∈ M

+
n

if 〈Ax, x〉 > 0 for all nonzero x ∈C
n.

In [51], Sababheh proved that the function

f (ν) =
∥∥AνXB1–ν + A1–νXBν

∥∥, A, B ∈M
+
n , X ∈Mn

is convex for all ν ∈ [0, 1]. Then, from [27], this nonnegative function is exp-convex on
[0, 1].

Then, by using Propositions 2.1 and 2.2 with A, B ∈ M+
n , X ∈ Mn, respectively, we have

∥∥A
ε3+ε4

2 XB1– ε3+ε4
2 + A1– ε3+ε4

2 XB
ε3+ε4

2
∥∥

≤ (e 1
2 – 1)�(κ + 1)

(ε4 – ε3)κ
[
Jκ
ε3+

∥∥Aε4 XB1–ε4 + A1–ε4 XBε4
∥∥ + Jκ

ε4–
∥∥Aε3 XB1–ε3 + A1–ε3 XBε3

∥∥]

≤ κ
(
e

1
2 – 1

)(
eγ (κ , 1) + (–1)κγ (κ , –1) –

2
κ

)

× [∥∥Aε3 XB1–ε3 + A1–ε3 XBε3
∥∥ +

∥∥Aε4 XB1–ε4 + A1–ε4 XBε4
∥∥]

(4.4)

and

∥∥A
ε3+ε4

2 XB1– ε3+ε4
2 + A1– ε3+ε4

2 XB
ε3+ε4

2
∥∥

≤ (e 1
2 – 1)2κ�(κ + 1)

(ε4 – ε3)κ

× [
Jκ

( ε3+ε4
2 )+

∥∥Aε4 XB1–ε4 + A1–ε4 XBε4
∥∥ + Jκ

( ε3+ε4
2 )–

∥∥Aε3 XB1–ε3 + A1–ε3 XBε3
∥∥]

≤ κ
(
e

1
2 – 1

)(
e 2κγ

(
κ ,

1
2

)
+ (–2)κγ

(
κ , –

1
2

)
–

2
κ

)

× [∥∥Aε3 XB1–ε3 + A1–ε3 XBε3
∥∥ +

∥∥Aε4 XB1–ε4 + A1–ε4 XBε4
∥∥]

(4.5)

for all ε3, ε4 ∈ [0, 1], where ε3 < ε4 and κ > 0.

The following two examples are dedicated to Sect. 3.

Example 4.5 Consider the fractional Zakharov–Kuznetsov ZK(2, 2, 2) equation [52]:

Dκ
ς u +

(
u2)

x +
1
8
(
u2)

xxx +
1
8
(
u2)

yyx = 0. (4.6)

Denote f = u(x, y, T), where T = tκ
�(1+κ) . Also, suppose that ε4 > 0 for all s ∈ (0, 1). From

equation (4.6), we have

Dκ
ς u = –

[(
u2)

x +
1
8
(
u2)

xxx +
1
8
(
u2)

yyx

]
. (4.7)
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Applying inequality (3.3), we get

(–1)n–κ–1u
(

x, y,
ε4

2

)

≤ (e 1
2 – 1)sκ

ε4n–κ

[
Dκ

sε4 u(x, y, sε4) + (–1)n–κ–1Dκ
(1–s)ε4

u
(
x, y, (1 – s)ε4

)]
, (4.8)

where Dκ
ς u is defined by (4.7).

Example 4.6 Consider the fractional Zakharov–Kuznetsov ZK(3, 3, 3) equation [52]

Dκ
ς w +

(
w3)

x + 2
(
w3)

xxx + 2
(
w3)

yyx = 0. (4.9)

Let us denote f = w(x, y, T), where T = tκ
�(1+κ) . Also, suppose that ε4 > 0 for all s ∈ (0, 1).

From equation (4.9), we have

Dκ
ς w = –

[(
w3)

x + 2
(
w3)

xxx + 2
(
w3)

yyx

]
. (4.10)

Applying inequality (3.3), we obtain

(–1)n–κ–1w
(

x, y,
ε4

2

)

≤ (e 1
2 – 1)sκ

ε4n–κ

[
Dκ

sε4 w(x, y, sε4) + (–1)n–κ–1Dκ
(1–s)ε4

w
(
x, y, (1 – s)ε4

)]
, (4.11)

where Dκ
ς w is defined by (4.10).

5 Conclusion
The study dealt with investigating new inequalities of HH-type for the new type of con-
vex functions, namely the exp-convex function. The new results are established via the
Riemann–Liouville fractional operators. Finally, we have applied our findings on special
functions. By examining this, we can see the usefulness and efficiency of our results.
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