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Abstract
In this paper, we introduce a new inertial self-adaptive projection method for finding
a common element in the set of solution of pseudomonotone variational inequality
problem and set of fixed point of a pseudocontractive mapping in real Hilbert spaces.
The self-adaptive technique ensures the convergence of the algorithm without any
prior estimate of the Lipschitz constant. With the aid of Moudafi’s viscosity
approximation method, we prove a strong convergence result for the sequence
generated by our algorithm under some mild conditions. We also provide some
numerical examples to illustrate the accuracy and efficiency of the algorithm by
comparing with other recent methods in the literature.
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1 Introduction
Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖. Let C be a nonempty,
closed and convex subset of H and A : H → H be a single-valued operator. The variational
inequality problem (shortly, VIP) is formulated as

Find x† ∈ C such that
〈
Ax†, y – x†

〉 ≥ 0, ∀y ∈ C. (1.1)

We denote the solution set of problem (1.1) VI(C, A). It is well known that the VIP is
a very fundamental problem in nonlinear analysis. It serves as a useful mathematical
model which unifies in several ways, many important concepts in applied mathematics
such as optimization, equilibrium problem, Nash equilibrium problem, complementarity
problem, fixed point problems and system of nonlinear equations; see for instance [19–
21, 31, 33]. Moreover, its solutions have been an important part of optimization theory.
For these reasons, several researchers have focused on studying iterative methods for ap-
proximating the solutions of the VIP (1.1). Two important approaches for solving the VIP
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are regularized and projection methods. In this paper, we focus on the projection method.
The simplest known projection method is the Goldstein gradient projection method [14]
which involve a single projection onto the feasible set C per each iteration as follows:

⎧
⎨

⎩
x0 ∈ C ⊂R

n,

xn+1 = PC(xn – λAxn),

where λ ∈ (0, 2η

L2 ), η and L are the strongly monotonicity constant and Lipschitz constant of
A, respectively, and PC is the orthogonal projection onto C. It is well known that the gradi-
ent projection method converges weakly to a solution of the VIP if and only if the operator
A is strongly monotone and L-Lipschitz continuous. When A is monotone, the gradient
projection method fails to converge to solution of the VIP. Korpelevich [28] introduced
the following extragradient method (EGM) for solving the VIP when A is monotone and
L-Lipschitz continuous:

⎧
⎪⎪⎨

⎪⎪⎩

x0 ∈ C, λ > 0,

yn = PC(xn – λAxn),

xn+1 = PC(yn – λAyn), n ≥ 0.

(1.2)

Moreover, the sequence {xn} generated by (1.2) converges weakly to a solution of the VIP
if the stepsize condition λ ∈ (0, 1

L ) is satisfied. It should be noted that in the EGM, one
needs to calculate two projections onto the feasible set C in each iteration. If the set C
is not so simple, then the EGM become very difficult and its implementation is costly. In
order to address such situation, Censor et al. [6, 7] introduced the following subgradient
extragradient method (SEGM) which involves a projecting onto a constructible half-space
Tn:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x0 ∈ C,λ > 0,

yn = PC(xn – λAxn),

Tn = {x ∈ H : 〈xn – λAxn – yn, x – yn〉 ≤ 0},
xn+1 = PTn (xn – λAyn).

(1.3)

The authors also proved that the sequence {xn} generated by the SEGM converges weakly
to a solution of the VIP (1.1) if the stepsize condition λ ∈ (0, 1

L ). Several modifications of the
EGM and SEGM have been introduced by many authors; see for instance [12, 22, 24–26,
41–43]. Recently, He [17] modified the EGM and introduced a projection and contraction
method (PCM) which requires only a single projection per each iteration as follows:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x0 ∈ H ,

yn = PC(xn – λAxn),

d(xn, yn) = xn – yn – λ(Axn – Ayn),

xn+1 = xn – γ ηnd(xn, yn), ∀n ≥ 0,

(1.4)



Jolaoso and Aphane Journal of Inequalities and Applications        (2020) 2020:261 Page 3 of 22

where γ ∈ (0, 2), λ ∈ (0, 1
L ) and

ηn =
〈xn – yn, d(xn, yn)〉

‖d(xn, yn)‖2 .

He proved that the sequence {xn} generated by the PCM converges weakly to a solution
of VIP.

On the other hand, the inertial-type algorithm which is a two-step iteration process was
introduced by Polyak [38] as a means of accelerating the speed of convergence of itera-
tive algorithms. Recently, many inertial-type algorithms have been introduced by some
authors, this includes the inertial proximal method [1, 37], inertial forward–backward
method [29], inertial split equilibrium method [23], inertial proximal ADMM [9] and fast
iterative shrinkage thresholding algorithm FISTA [5, 8].

In order to accelerate the convergence of the PCM, Dong et al. [11] introduced the fol-
lowing inertial PCM and proved its weak convergence to a solution x̄ ∈ VI(C, A) ∩ F(T),
where F(T) = {x ∈ H : Tx = x} is the set of fixed points of a nonexpansive mapping T :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x0, x1 ∈ H ,

wn = xn + αn(xn – xn–1),

yn = PC(wn – λAwn),

d(wn, yn) = (wn – yn) – λ(Awn – Ayn),

ηn = 〈wn–yn ,d(wn ,yn)〉
‖d(wn ,yn)‖2 ,

xn+1 = (1 – τn)wn + τnT(wn – γ ηnd(wn, yn)), n ≥ 1,

(1.5)

where γ ∈ (0, 2), λ ∈ (0, 1
L ), {αn} is a non-decreasing sequence with α1 = 0, 0 ≤ αn ≤ α < 1

and σ , δ > 0 are constants such that

δ >
α2(1 + α) + ασ

1 – α2 and 0 < τ ≤ τn ≤ [δ – α((1 + α) + αδ + σ )]
δ[1 + α(1 + α) + αδ + σ ]

= τ̄ .

It is important to mention that in solving optimization problems, strong convergence al-
gorithms are more desirable than the weak convergence counterparts (see [3, 15]). Tian
and Jiang [45] recently introduced the following hybrid-inertial PCM: x0, x1 ∈ H ,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

wn = xn + αn(xn – xn–1),

yn = PC(wn – λnAwn),

d(wn, yn) = (wn – yn) – λ(Awn – Ayn),

ηn =

⎧
⎨

⎩

〈wn–yn ,d(wn ,yn)〉
‖d(wn ,yn)‖2 , if d(wn, yn) �= 0,

0, otherwise,

zn = wn – γ ηnd(wn, yn),

Cn =
{

u ∈ H : ‖zn – u‖2 ≤ ‖xn – u‖2 + α2
n‖xn–1 – xn‖2

–2αn〈xn – u, xn–1 – xn〉
}

,

Qn =
{

u ∈ H : 〈u – xn, x1 – xn〉 ≤ 0
}

,

xn+1 = PCn∩Qn x1.

(1.6)
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The authors proved that the sequence generated by (1.6) converges strongly to a solution
of the VIP with the aid of this stepsize condition: 0 < a ≤ λn ≤ b < 1

L . Moreover, other au-
thors have further introduced some strong convergence inertial PCM with certain stepsize
conditions in real Hilbert spaces; see e.g. [10, 18, 26, 27, 39, 40, 44]. Note that the stepsize
conditions in the above methods restrict the applicability of the methods due to the prior
estimate of the Lipschitz constant L. In reality, the Lipschitz constant is very difficult to
estimate and even when it is estimated, it is often too small and deteriorates the conver-
gence of the methods. Moreover, the convergence of Algorithm 1.6 involves computing
two subsets Cn and Qn, and the projection of x1 onto their intersection Cn ∩ Qn, which
can be very computationally expensive. Hence, it becomes necessary to propose an effi-
cient iterative method which does not depends on the Lipschitz constant and converges
strongly to solution of the VIP.

In this paper, we introduce a new self-adaptive inertial projection and contraction
method for finding common element in the set of solution of pseudomonotone varia-
tional inequalities and the set of fixed points of strictly pseudocontractive mappings in
real Hilbert spaces. Our algorithm is designed such that its convergence does not require
prior estimate of the Lipschitz constant and we prove a strong convergence result using
viscosity approximation method [36]. We also provide some numerical experiments to
illustrate the efficiency and accuracy of our proposed method by comparing with other
methods in the literature.

2 Preliminaries
Let H be a real Hilbert space and let C be a nonempty, closed and convex subset of H .
We use xn → x (resp. xn ⇀ x) to denote that the sequence {xn} converges strongly (resp.
weakly) to a point x as n → ∞.

For each x ∈ H , there exists a unique nearest point in C, denoted by PCx satisfying

‖x – PCx‖ ≤ ‖x – y‖ ∀y ∈ C.

PC is called the metric projection from H onto C, and it is characterized by the following
properties (see, e.g. [13]):

(i) For each x ∈ H and z ∈ C,

z = PCx ⇒ 〈x – z, z – y〉 ≥ 0, ∀y ∈ C. (2.1)

(ii) For any x, y ∈ H ,

〈PCx – PCy, x – y〉 ≥ ‖PCx – PCy‖2.

(iii) For any x ∈ H and y ∈ C,

‖PCx – y‖2 ≤ ‖x – y‖2 – ‖x – PCx‖2. (2.2)

Definition 2.1 A mapping A : H → H is called
(i) η-strongly monotone if there exists a constant η > 0 such that

〈Ax – Ay, x – y〉 ≥ η‖x – y‖2 ∀x, y ∈ H ,
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(ii) α-inverse strongly monotone if there exists a constant α > 0 such that

〈Ax – Ay, x – y〉 ≥ α‖Ax – Ay‖2 ∀x, y ∈ H ,

(iii) monotone if

〈Ax – Ay, x – y〉 ≥ 0 ∀x, y ∈ H ,

(iv) pseudomonotone if, for all x, y ∈ H ,

〈Ax, y – x〉 ≥ 0 ⇒ 〈Ay, y – x〉 ≥ 0,

(v) L- Lipschitz continuous if there exists a constant L > 0 such that

‖Ax – Ay‖ ≤ L‖x – y‖ ∀x, y ∈ H .

If A is η-strongly monotone and L-Lipschitz continuous, then A is η

L2 -inverse strongly
monotone. Also, we note that every monotone operator is pseudomonotone but the con-
verse is not true; see, for instance [25, 26].

Let T : H → H be a nonlinear mapping. A point x ∈ H is called a fixed point of T if
Tx = x. The set of fixed points of T is denoted by F(T). The mapping T : H → H is said to
be

(i) a contraction, if there exists α ∈ [0, 1) such that

‖Tx – Ty‖ ≤ α‖x – y‖ ∀x, y ∈ H .

If α = 1, then T is called a nonexpansive mapping,
(ii) a κ-strictly pseudocontraction, if there exists κ ∈ [0, 1) such that

‖Tx – Ty‖2 ≤ ‖x – y‖2 + κ
∥∥(I – T)x – (I – T)y

∥∥2 ∀x, y ∈ H .

Remark 2.2 ([2]) If T is κ-strictly pseudocontractive, then T has the following important
properties:

(a) T satisfies Lipschitz condition with Lipschitz constant L = 1+κ
1–κ

.
(b) F(T) is closed and convex.
(c) I – T is demiclosed at 0, that is, if {xn} is a sequence in H such that xn ⇀ x̄ and

(I – T)xn → 0, then x̄ ∈ F(T).

Lemma 2.3 ([47]) Let H be a real Hilbert space and T : H → H be a κ-strictly pseudocon-
tractive mapping with κ ∈ [0, 1). Let Tα = αI + (1 – α)T where α ∈ [κ , 1), then

(i) F(Tα) = F(T),
(ii) Tα is nonexpansive.

Lemma 2.4 ([34, 46]) For all x, y, z ∈ H , it is well known that
(i) ‖x + y‖2 = ‖x‖2 + 2〈x, y〉 + ‖y‖2,

(ii) ‖x + y‖2 ≤ ‖x‖2 + 2〈y, x + y〉,
(iii) ‖tx + (1 – t)y‖2 = t‖x‖2 + (1 – t)‖y‖2 – t(1 – t)‖x – y‖2, ∀t ∈ [0, 1].
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Lemma 2.5 (see [35]) Consider the Minty variational inequality problem (MVIP) which
is defined as finding a point x† ∈ C such that

〈
Ay, y – x†

〉 ≥ 0, ∀y ∈ C. (2.3)

We denote by M(C, A) the set of solution of (2.3). If a mapping h : [0, 1] → H defined as
h(t) = A(tx+(1–t)y) is continuous for all x, y ∈ C (i.e., h is hemicontinuous), then M(C, A) ⊂
VI(C, A). Moreover, if A is pseudomonotone, then VI(C, A) is closed, convex and VI(C, A) =
M(C, A).

Lemma 2.6 ([30]) Let {αn} and {δn} be sequences of nonnegative real numbers such that

αn+1 ≤ (1 – δn)αn + βn + γn, n ≥ 1,

where {δn} is a sequence in (0, 1) and {βn} is a real sequence. Assume that
∑∞

n=0 γn < ∞.
Then the following results hold:

(i) If βn ≤ δnM for some M ≥ 0, then {αn} is a bounded sequence.
(ii) If

∑∞
n=0 δn = ∞ and lim supn→∞

βn
δn

≤ 0, then limn→∞ αn = 0.

Lemma 2.7 ([32]) Let {an} be a sequence of real numbers such that there exists a subse-
quence {ani} of {an} with ani < ani+1 for all i ∈N. Consider the integer {mk} defined by

mk = max{j ≤ k : aj < aj+1}.

Then {mk} is a non-decreasing sequence verifying limn→∞ mn = ∞, and for all k ∈ N, the
following estimates hold:

amk ≤ amk +1, and ak ≤ amk +1.

3 Main results
In this section, we introduce a new inertial projection and contraction method with a
self-adaptive technique for solving the VIP (1.1). The following conditions are assumed
throughout the paper.

Assumption 3.1
A. The feasible set C is a nonempty, closed and convex subset of a real Hilbert space H ,
B. the associated operator A : H → H is L-Lipschitz continuous, pseudomonotone and

weakly sequentially continuous on bounded subset of H , i.e., if for each sequence
{xn}, we have xn ⇀ x implies that Axn ⇀ Ax,

C. T : H → H is κ-strictly pseudocontractive mapping,
D. the solution set Sol := VI(C, A) ∩ F(T) is nonempty,
E. the function f : H → H is a contraction with contractive coefficient ρ ∈ (0, 1),
F. the control sequences {θn}, {αn}, {βn} and {δn} satisfy

– {αn} ⊂ (0, 1), limn→∞ αn = 0 and
∑∞

n=0 αn = ∞,
– {βn} ⊂ (a, 1 – αn) for some a > 0,
– {θn} ⊂ [0, θ ) for some θ > 0 such that limn→∞ θn

αn
‖xn – xn–1‖ = 0,

– {δn} ⊂ (0, 1) and lim infn→∞(δn – κ) > 0.
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Remark 3.2 The inertial parameter θn and αn can be chosen as follows:

αn =
1

(n + 1)p and θn =
1

(n + 1)1–p , p ∈
(

0,
1
2

)
, n ∈N.

We now present our Algorithm as follows.

Algorithm 3.3 Inertial projection and contraction method
Initialization: Choose γ ∈ (0, 2), σ > 0, l,μ ∈ (0, 1), and given the initial points x0, x1 ∈ H
arbitrarily. Set n = 1.
Step 1: Compute

wn = xn + θn(xn – xn–1),

yn = PC(wn – λnAwn),

where λn = σ lmn and mn is the smallest nonnegative integer m such that

λn‖Awn – Ayn‖ ≤ μ‖wn – yn‖. (3.1)

If yn = wn stop; yn is a solution of the VIP. Else, do Step 2.
Step 2: Compute

zn = wn – γ ξnd(wn, yn),

xn+1 = αnf (xn) + βnxn + (1 – βn – αn)Tδn zn, (3.2)

where Tδn = δnI + (1 – δn)T , d(wn, yn) = wn – yn – λn(Awn – Ayn) and

ξn =

⎧
⎨

⎩

〈wn–yn ,d(wn ,yn)〉
‖d(wn ,yn)‖2 , if ‖d(wn, yn)‖ �= 0,

0 otherwise.
(3.3)

Set n := n + 1 and go to Step 1.

Before proving the convergence of Algorithm 3.3, we provide some key lemmas which
will be used in the sequel.

Lemma 3.4 The stepsize rule defined by (3.1) is well defined and

min

{
σ ,

μl
L

}
≤ λn ≤ σ .

Proof Since A is L-Lipschitz continuous, we have

∥∥Awn – A
(
PC

(
wn – σ lmn Awn

))∥∥ ≤ L
∥∥wn – PC

(
wn – γ lmn Awn

)∥∥.

This is equivalent to

μ

L
∥∥Awn – A

(
PC

(
wn – σ lmn Awn

))∥∥ ≤ μ
∥∥wn – PC

(
wn – γ lmn Awn

)∥∥.
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Hence, (3.1) holds for all λn ≤ σ . If λn = σ , then the result follows. On the other hand, if
λn < σ , then, by the search rule (3.1), λn

l must violate the inequality (3.1), i.e.,

∥∥∥∥Awn – A
(

PC

(
wn –

λn

l
Awn

))∥∥∥∥ > L
∥∥∥∥wn – PC

(
wn –

λn

l
Awn

)∥∥∥∥.

Combining this with the fact that A is Lipschitz continuous, we have λn > μl
L . Hence

min{σ , μl
L } ≤ λn ≤ σ . This completes the proof. �

Lemma 3.5 The sequence {xn} generated by Algorithm 3.3 is bounded. In addition

ξn ≥ 1 – μ

(1 + μ)2 . (3.4)

Proof Let x∗ ∈ VI(C, A). Then

∥∥zn – x∗∥∥2 =
∥∥wn – x∗ – γ ξnd(wn, yn)

∥∥2

=
∥∥wn – x∗∥∥2 – 2γ ξn

〈
wn – x∗, d(wn, yn)

〉
+ γ 2ξ 2

n
∥∥d(wn, yn)

∥∥2

=
∥∥wn – x∗∥∥2 – 2γ ξn

〈
wn – yn, d(wn, yn)

〉
+

〈
yn – x∗, d(wn, yn)

〉

+ γ 2ξ 2
n
∥∥d(wn, yn)

∥∥2. (3.5)

By the definition of yn and using the variational characterization of the PC , i.e., (2.1), we
have

〈
wn – λnAwn – yn, yn – x∗〉 ≥ 0. (3.6)

Also since x∗ ∈ VI(C, A) and A is pseudomonotone,

〈
Ayn, yn – x∗〉 ≥ 0. (3.7)

Combining (3.6) and (3.7), we have

〈
d(wn, yn), yn – x∗〉 ≥ 0.

Therefore, it follows from (3.5) that

∥∥zn – x∗∥∥ ≤ ∥∥wn – x∗∥∥2 – 2γ ξn
〈
wn – yn, d(wn, yn)

〉
+ γ 2ξ 2

n
∥∥d(wn, yn)

∥∥2

=
∥∥wn – x∗∥∥2 – 2γ ξn

〈
wn – yn, d(wn, yn)

〉
+ γ 2ξn

〈
wn – yn, d(wn, yn)

〉

=
∥∥wn – x∗∥∥2 – γ (2 – γ )ξn

〈
wn – yn, d(wn, yn)

〉
. (3.8)

However, from the definition of zn and ξn, we have

ξn
〈
wn – yn, d(wn, yn)

〉
=

∥∥ξnd(wn, yn)
∥∥2

=
1
γ 2 ‖zn – wn‖2. (3.9)
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Combining (3.8) and (3.9), we get

∥∥zn – x∗∥∥2 ≤ ∥∥wn – x∗∥∥2 –
2 – γ

γ
‖zn – wn‖2. (3.10)

Since γ ∈ (0, 2), we have

∥∥zn – x∗∥∥2 ≤ ∥∥wn – x∗∥∥2.

Moreover,

∥∥wn – x∗∥∥ =
∥∥xn + θn(xn – xn–1) – x∗∥∥

≤ ∥∥xn – x∗∥∥ + αn
θn

αn
‖xn – xn–1‖.

Since θn
αn

‖xn – xn–1‖ → 0, there exists a constant M > 0 such that

θn

αn
‖xn – xn–1‖ ≤ M ∀n ≥ 1,

thus

∥∥wn – x∗∥∥ ≤ ∥∥xn – x∗∥∥ + αnM.

Therefore, it follows from (ii) of Lemma 2.3 that

∥∥xn+1 – x∗∥∥ =
∥∥αnf (xn) + βnxn + (1 – βn – αn)Tδn zn – x∗∥∥

≤ αn
∥∥f (xn) – x∗∥∥ + βn

∥∥xn – x∗∥∥ + (1 – βn – αn)
∥∥Tδn zn – x∗∥∥

≤ αn
∥∥f (xn) – f

(
x∗) + f

(
x∗) – x∗∥∥ + βn

∥∥xn – x∗∥∥ + (1 – βn – αn)
∥∥zn – x∗∥∥

≤ αnρ
∥∥xn – x∗∥∥ + αn

∥∥f
(
x∗) – x∗∥∥ + βn

∥∥x∗ – x∗∥∥

+ (1 – βn – αn)
∥∥wn – x∗∥∥

≤ αnρ
∥∥xn – x∗∥∥ + αn

∥∥f
(
x∗) – x∗∥∥ + βn

∥∥x∗ – x∗∥∥

+ (1 – βn – αn)
[∥∥xn – x∗∥∥ + αnM

]

≤ (
1 – αn(1 – ρ)

)∥∥xn – x∗∥∥ + αn
∥∥f

(
x∗) – x∗∥∥ + αnM

=
(
1 – αn(1 – ρ)

)∥∥xn – x∗∥∥ + αn(1 – ρ)
[‖f (x∗) – x∗‖ + M

1 – ρ

]
.

By induction, we see that {‖xn – x∗‖} is bounded. Consequently, {xn} is bounded. Further-
more,

∥∥d(wn, yn)
∥∥ =

∥∥wn – yn – λn(Awn – Ayn)
∥∥

≤ ‖wn – yn‖ + λn‖Awn – Ayn‖
≤ (1 – μ)‖wn – yn‖. (3.11)
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Also from (3.1), we have

〈
wn – yn, d(wn, yn)

〉
=

〈
wn – yn, wn – yn – λn(Awn – Ayn)

〉

= ‖wn – yn‖2 – λn〈wn – yn, Awn – Ayn〉
≥ ‖wn – yn‖2 – λn‖wn – yn‖‖Awn – Ayn‖
≥ ‖wn – yn‖2 – μ‖wn – yn‖2

= (1 – μ)‖wn – yn‖2. (3.12)

It therefore follows from (3.11) and (3.12) that

ξn =
〈wn – yn, d(wn, yn)〉

‖d(wn, yn)‖2

≥ 1 – μ

(1 + μ)2 .

This completes the proof. �

Lemma 3.6 Let x∗ ∈ Sol. Then the sequence {xn} generated by Algorithm 3.3 satisfies the
following inequality:

sn+1 ≤ (1 – an)sn + anbn + cn, ∀n ≥ 1,

where sn = ‖xn – x∗‖2, an = 2αn(1–ρ)
1–αnρ

, bn = 〈f (x∗)–x∗ ,xn+1–x∗〉
1–ρ

, cn = α2
n

1–αnρ
‖xn – x∗‖2 + θn

1–αnρ
‖xn –

xn–1‖M2 for some M2 > 0.

Proof From Lemma 2.4(i), we have

∥∥wn – x∗∥∥2 =
∥∥xn + θn(xn – xn–1) – x∗∥∥

=
∥∥xn – x∗∥∥2 + 2θn

〈
xn – x∗, xn – xn–1

〉
+ θ2

n‖xn – xn–1‖2

≤ ∥∥xn – x∗∥∥2 + 2θn
∥∥xn – x∗∥∥‖xn – xn–1‖ + θ2

n‖xn – xn–1‖2

=
∥∥xn – x∗∥∥2 + θn‖xn – xn–1‖

[
2
∥∥xn – x∗∥∥ + θn‖xn – xn–1‖

]

≤ ∥∥xn – x∗∥∥2 + θn‖xn – xn–1‖M2, (3.13)

where M2 = supn≥1{2‖xn – x∗‖ + θn‖xn – xn–1‖}.
Moreover, from Lemma 2.4(iii), we get

∥∥Tδn zn – x∗∥∥2 =
∥∥δnzn + (1 – δn)Tzn – x∗∥∥2

= δn
∥∥zn – x∗∥∥2 + (1 – δn)

∥∥Tzn – x∗∥∥2 – δn(1 – δn)‖zn – Tzn‖2

≤ δn
∥∥zn – x∗∥∥2 + (1 – δn)

[∥∥zn – x∗∥∥2 + κ‖zn – Tzn‖2]

– δn(1 – δn)‖zn – Tzn‖2

=
∥∥zn – x∗∥∥2 + (1 – δn)(κ – δn)‖zn – Tzn‖2

≤ ∥∥zn – x∗∥∥2. (3.14)
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Also, using Lemma 2.4(ii) and (3.14), we have

∥∥xn+1 – x∗∥∥2 =
∥∥αn

(
f (xn) – x∗) + βn

(
xn – x∗) + (1 – βn – αn)

(
Tδn zn – x∗)∥∥2

≤ ∥∥βn
(
xn – x∗) + (1 – βn – αn)

(
Tδn zn – x∗)∥∥2 + 2αn

〈
f (xn) – x∗, xn+1 – x∗〉

≤ β2
n
∥∥xn – x∗∥∥2 + (1 – βn – αn)2∥∥Tδn zn – x∗∥∥2

+ 2βn(1 – βn – αn)
∥∥xn – x∗∥∥∥∥Tδn zn – x∗∥∥

+ 2αn
〈
f (xn) – f

(
x∗), xn+1 – x∗〉 + 2αn

〈
f
(
x∗) – x∗, xn+1 – x∗〉

≤ β2
n
∥∥xn – x∗∥∥2 + (1 – βn – αn)2∥∥Tδn zn – x∗∥∥2

+ βn(1 – βn – αn)
[∥∥xn – x∗∥∥2 +

∥∥Tδn zn – x∗∥∥2]

+ 2αnρ
∥∥xn – x∗∥∥∥∥xn+1 – x∗∥∥ + 2αn

〈
f
(
x∗) – x∗, xn+1 – x∗〉

≤ βn(1 – αn)
∥∥xn – x∗∥∥2 + (1 – βn – αn)(1 – αn)

∥∥Tδn zn – x∗∥∥2

+ αnρ
(∥∥xn – x∗∥∥2 +

∥∥xn+1 – x∗∥∥2) + 2αn
〈
f
(
x∗) – x∗, xn+1 – x∗〉

≤ βn(1 – αn)
∥∥xn – x∗∥∥2 + (1 – βn – αn)(1 – αn)

∥∥zn – x∗∥∥2

+ αnρ
(∥∥xn – x∗∥∥2 +

∥∥xn+1 – x∗∥∥2) + 2αn
〈
f
(
x∗) – x∗, xn+1 – x∗〉

≤ βn(1 – αn)
∥∥xn – x∗∥∥2

+ (1 – βn – αn)(1 – αn)
[∥∥wn – x∗∥∥2 –

2 – γ

γ
‖zn – wn‖2

]

+ αnρ
(∥∥xn – x∗∥∥2 +

∥∥xn+1 – x∗∥∥2) + 2αn
〈
f
(
x∗) – x∗, xn+1 – x∗〉 (3.15)

≤ βn(1 – αn)
∥∥xn – x∗∥∥2

+ (1 – βn – αn)(1 – αn)
[∥∥xn – x∗∥∥2 + θn‖xn – xn–1‖M2

]

+ αnρ
(∥∥xn – x∗∥∥2 +

∥∥xn+1 – x∗∥∥2) + 2αn
〈
f
(
x∗) – x∗, xn+1 – x∗〉

≤ [
(1 – 2αn + αnρ) + α2

n
]∥∥xn – x∗∥∥2

+ θn‖xn – xn–1‖M2 + αnρ
∥∥xn+1 – x∗∥∥2

+ 2αn
〈
f
(
x∗) – x∗, xn+1 – x∗〉.

Hence

∥∥xn+1 – x∗∥∥2 ≤ 1 – 2αn + αnρ

1 – αnρ

∥∥xn – x∗∥∥2 +
α2

n
1 – αnρ

∥∥xn – x∗∥∥2

+
θn

1 – αnρ
‖xn – xn–1‖M2

+
2αn

1 – αnρ

〈
f
(
x∗) – x∗, xn+1 – x∗〉

=
[

1 –
2αn(1 – ρ)

1 – αnρ

]∥∥xn – x∗∥∥2 +
2αn(1 – ρ)

1 – αnρ
× 〈f (x∗) – x∗, xn+1 – x∗〉

1 – ρ

+
α2

n
1 – αnρ

∥∥xn – x∗∥∥2 +
αn

1 – αnρ
× θn

αn
‖xn – xn–1‖M2.

This completes the proof. �
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Now we present our strong convergence theorem.

Theorem 3.7 Let {xn} be the sequence generated by Algorithm 3.3 and suppose Assump-
tion 3.1 is satisfied. Then {xn} converges strongly to a point x̄ ∈ Sol, where x̄ = PSolf (x̄).

Proof Let x∗ ∈ Sol and denote ‖xn – x∗‖2 by �n for all n ≥ 1. We consider the following
two possible cases.

CASE A: Suppose there exists n0 ∈N such that {�n} is non-increasing for N ≥ n0. Since
{�n} is bounded, �n converges and thus �n – �n+1 → 0 as n → ∞.

First we show that

lim
n→∞‖zn – wn‖ = lim

n→∞‖wn – yn‖ = lim
n→∞‖wn – xn‖ = lim

n→∞‖xn+1 – xn‖ = 0.

From (3.13) and (3.15), we have

∥∥xn+1 – x∗∥∥2 ≤ βn(1 – αn)
∥∥xn – x∗∥∥2

+ (1 – βn – αn)(1 – αn)
[∥∥wn – x∗∥∥2 –

2 – γ

γ
‖zn – wn‖2

]

+ αnρ
(∥∥xn – x∗∥∥2

+
∥∥xn+1 – x∗∥∥2) + 2αn

〈
f
(
x∗) – x∗, xn+1 – x∗〉

≤ βn(1 – αn)
∥∥xn – x∗∥∥2

+ (1 – βn – αn)(1 – αn)
[∥∥xn – x∗∥∥2 + θn‖xn – xn–1‖M2

–
2 – γ

γ
‖zn – wn‖2

]
+ αnρ

(∥∥xn – x∗∥∥2 +
∥∥xn+1 – x∗∥∥2)

+ 2αn
〈
f
(
x∗) – x∗, xn+1 – x∗〉.

Since {βn} ⊂ (1 – αn) and {αn} ⊂ (0, 1), we have

2 – γ

γ
‖zn – wn‖2 ≤ (

1 – 2αn + α2
n
)∥∥xn – x∗∥∥2 –

∥∥xn+1 – x∗∥∥2 + αn × θn

αn
‖xn – xn–1‖M2

+ αnρ
(∥∥xn – x∗∥∥2 +

∥∥xn+1 – x∗∥∥2) + 2αn
〈
f
(
x∗) – x∗, xn+1 – x∗〉

= �n – �n+1 – 2αn�n + α2
n�n + αnρ(�n + �n+1)

+ αn × θn

αn
‖xn – xn–1‖M2

+ 2αn
〈
f
(
x∗) – x∗, xn+1 – x∗〉.

Using the fact that αn → 0 and θn
αn

‖xn – xn–1‖ → 0 as n → ∞, we obtain

lim
n→∞

2 – γ

γ
‖zn – wn‖2 = 0,

hence

lim
n→∞‖zn – wn‖ = 0. (3.16)
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Also from (3.4), (3.9) and the definition of zn, we obtain

‖wn – yn‖2 ≤ (1 + μ)2

(1 – μ)2γ 2 ‖zn – wn‖2,

Therefore from (3.16), we get

lim
n→∞‖wn – yn‖ = 0. (3.17)

Again from (3.14) and (3.15), we have

∥∥xn+1 – x∗∥∥2 ≤ βn(1 – αn)
∥∥xn – x∗∥∥2

+ (1 – βn – αn)(1 – αn)
[∥∥zn – x∗∥∥2 + (1 – δn)(κ – δn)‖zn – Tzn‖2]

+ αnρ
(∥∥xn – x∗∥∥2 +

∥∥xn+1 – x∗∥∥2) + 2αn
〈
f
(
x∗) – x∗, xn+1 – x∗〉

≤ βn(1 – αn)
∥∥xn – x∗∥∥2 + (1 – βn – αn)(1 – αn)

[∥∥xn – x∗∥∥2

+ θn‖xn – xn–1‖M2

+ (1 – δn)(κ – δn)‖zn – Tzn‖2] + αnρ
(∥∥xn – x∗∥∥2 +

∥∥xn+1 – x∗∥∥2)

+ 2αn
〈
f
(
x∗) – x∗, xn+1 – x∗〉.

Then

(1 – δn)(δn – κ)‖zn – Tzn‖2 ≤ (
1 – 2αn + α2

n
)∥∥xn – x∗∥∥2 –

∥∥xn+1 – x∗∥∥2

+ αn × θn

αn
‖xn – xn–1‖M2

+ αnρ
(∥∥xn – x∗∥∥2 +

∥∥xn+1 – x∗∥∥2)

+ 2αn
〈
f
(
x∗) – x∗, xn+1 – x∗〉

= �n – �n+1 – 2αn�n + α2
n�n + αnρ(�n + �n+1)

+ αn × θn

αn
‖xn – xn–1‖M2

+ 2αn
〈
f
(
x∗) – x∗, xn+1 – x∗〉.

Taking the limit of the above inequality and using the fact that lim infn→∞(δn – κ) > 0, we
have

lim
n→∞‖zn – Tzn‖ = 0. (3.18)

Clearly

lim
n→∞‖wn – xn‖ = lim

n→∞αn · θn

αn
‖xn – xn–1‖ = 0. (3.19)

This implies that

lim
n→∞‖zn – xn‖ = lim

n→∞‖yn – xn‖ = 0.
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Also

lim
n→∞‖Tδn zn – zn‖ = lim

n→∞(1 – δn)‖Tzn – zn‖ = 0.

On the other hand, it is obvious that

‖xn+1 – zn‖ = ‖αnf (xn)

= βnxn + (1 – βn – αn)Tδn zn – zn‖
≤ αn

∥∥f (xn) – zn
∥∥ + βn‖xn – zn‖ + (1 – βn – αn)‖Tδn zn – zn‖

→ 0 n → ∞,

hence

‖xn+1 – xn‖ ≤ ‖xn+1 – zn‖ + ‖zn – xn‖ → 0 n → ∞.

Next, we show that ωw({xn}) ⊂ Sol, where ωw({xn}) is the set of weak accumulation points
of {xn}. Let {xnk } be a subsequence of xn such that xnk ⇀ p as k → ∞. We need to show
that p ∈ Sol. Since ‖wnk –xnk ‖ → 0 and ‖znk –xnk ‖ → 0, wnk ⇀ p and znk ⇀ p, respectively.
From the variational characterization of PC (i.e., (2.1)), we obtain

〈wnk – λnk Awnk – ynk , y – ynk 〉 ≤ 0 ∀y ∈ C.

Hence

〈wnk – ynk , y – ynk 〉 ≤ λnk 〈Awnk , y – ynk 〉
= λnk 〈Awnk , wnk – ynk 〉 + λnk 〈Awnk , y – wnk 〉.

This implies that

〈wnk – ynk , y – ynk 〉 + λnk 〈Awnk , ynk – wnk 〉 ≤ λnk 〈Awnk , y – wnk 〉 ∀y ∈ C. (3.20)

Fix y ∈ C and let k → ∞ in (3.20). Since ‖wnk – ynk ‖ → 0 and lim infk→∞ λnk > 0, we have

0 ≤ lim inf
k→∞

〈Awnk , y – wnk 〉 ∀y ∈ C. (3.21)

Now let {εk} be a sequence of decreasing nonnegative numbers such that εk → 0 as
k → ∞. For each εk , we denote by N the smallest positive integer such that

〈Awnk , y – wnk 〉 + εk ≥ 0 ∀k ≥ N , (3.22)

where the existence of N follows from (3.21). This means that

〈Awnk , y + εktnk – wnk 〉 ≥ 0 ∀j ≥ N ,
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for some tnk ∈ H satisfying 1 = 〈Awnk , tnk 〉 (since Awnk �= 0). Using the fact that A is pseu-
domonotone, then we have

〈
A(y + εktnk ), x + εktnk – xnk

〉 ≥ 0 ∀j ≥ N .

Hence

〈Ay, y – xnk 〉 ≥ 〈
Ay – A(y + εktnk ), y + εktnk – xnk

〉
– εk〈Ay, tnk 〉 ∀k ≥ N . (3.23)

Since εk → 0 and A is continuous, the right-hand side of (3.22) tends to zero and thus we
obtain

lim inf
k→∞

〈Ay, y – wnk 〉 ≥ 0 ∀y ∈ C.

Hence

〈Ay, y – p〉 = lim
k→∞

〈Ay, y – wnk 〉 ≥ 0 ∀y ∈ C.

Thus from Lemma 2.5, we obtain p ∈ VI(C, A). Moreover, since ‖znk –Tznk ‖ → 0, it follows
from Remark (2.2)(c) that p ∈ F(T). Therefore p ∈ Sol := VI(C, A) ∩ F(T).

Now we show that {xn} converges strongly to x̄ = PSolf (x̄). To do this, it suffices to show
that

lim sup
n→∞

〈
f (x̄) – x̄, xn+1 – x̄

〉 ≤ 0.

Choose a subsequence {xnk } of {xn} such that

lim sup
n→∞

〈
f (x̄) – x̄, xn+1 – x̄

〉
= lim

k→∞
〈
f (x̄) – x̄, xnk +1 – x̄

〉
.

Since ‖xnk +1 – xn‖ → 0 and xnk ⇀ p, we have from (2.1) that

lim sup
n→∞

〈
f (x̄) – x̄, xn+1 – x̄

〉
= lim

k→∞
〈
f (x̄) – x̄, xnk +1 – x̄

〉

=
〈
f (x̄) – x̄, p – x̄

〉 ≤ 0. (3.24)

Hence, putting x∗ = x̄ in Lemma 3.6 and using Lemma 2.6(ii) and (3.24), we deduce that
‖xn – x̄‖ → 0 as n → ∞. This implies that {xn} converges strongly to x̄ = PSolf (x̄).

CASE B: Suppose {�n} is not eventually decreasing. Hence, we can find a subsequence
{�nk } of {�n} such that �nk ≤ �nk +1, for all k ≥ 1. Then we can define a subsequence
{�τ (n)+1} as in Lemma 2.7 so that

max{�τ (n),�n} ≤ �τ (n)+1, ∀n ≥ n0.
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Moreover, {τ (n)} is a non-decreasing sequence such that τ (n) → ∞ as n → ∞ and �τ (n) ≤
�τ (n)+1 for all n ≥ n0. Let x∗ ∈ Sol, then from Lemma 3.6, we have

∥∥xτ (n)+1 – x∗∥∥2 ≤
[

1 –
2ατ (n)(1 – ρ)

1 – ατ (n)ρ

]∥∥xτ (n) – x∗∥∥2

+
2ατ (n)(1 – ρ)

1 – ατ (n)ρ
× 〈f (x∗) – x∗, xτ (n)+1 – x∗〉

1 – ρ

+
α2

τ (n)

1 – ατ (n)ρ

∥∥xτ (n) – x∗∥∥2

+
ατ (n)

1 – ατ (n)ρ
× θτ (n)

αn
‖xτ (n) – xτ (n)–1‖M, (3.25)

for some M > 0. Following a similar process to CASE A, we have

lim
n→∞‖zτ (n) – wτ (n)‖ = lim

n→∞‖yτ (n) – wτ (n)‖
= lim

n→∞‖wτ (n) – xτ (n)‖ = lim
n→∞‖xτ (n)+1 – xτ (n)‖ = 0.

Since {xτ (n)} is bounded, there exists a subsequence of {xτ (n)} still denoted by {xτ (n)} which
converges weakly to x̄ ∈ C and

lim sup
n→∞

〈
f
(
x∗) – x∗, xτ (n)+1 – x∗〉 = lim

n→∞
〈
f
(
x∗) – x∗, xτ (n)+1 – x∗〉

≤ 〈
f
(
x∗) – x∗, x̄ – x∗〉 ≤ 0. (3.26)

Furthermore, since ‖xτ (n) – x∗‖2 ≤ ‖xτ (n)+1 – x∗‖2, from (3.25), we have

0 ≤
[

1 –
2ατ (n)(1 – ρ)

1 – ατ (n)ρ

]∥∥xτ (n) – x∗∥∥2 +
2ατ (n)(1 – ρ)

1 – ατ (n)ρ
× 〈f (x∗) – x∗, xτ (n)+1 – x∗〉

1 – ρ

+
α2

τ (n)

1 – ατ (n)ρ

∥∥xτ (n) – x∗∥∥2 +
ατ (n)

1 – ατ (n)ρ
× θτ (n)

αn
‖xτ (n) – xτ (n)–1‖M –

∥∥xτ (n) – x∗∥∥2.

Hence

2(1 – ρ)
1 – ατ (n)ρ

∥∥xτ (n) – x∗∥∥2 ≤ 2(1 – ρ)
1 – ατ (n)ρ

× 〈f (x∗) – x∗, xτ (n)+1 – x∗〉
1 – ρ

+
ατ (n)

1 – ατ (n)ρ

∥∥xτ (n) – x∗∥∥2

+
1

1 – ατ (n)ρ
× θτ (n)

αn
‖xτ (n) – xτ (n)–1‖M.

Therefore from (3.26), we have

lim
n→∞

∥∥xτ (n) – x∗∥∥ = 0.

As a consequence, we obtain, for all n ≥ n0,

0 ≤ ∥∥xn – x∗∥∥2 ≤ ∥∥xτ (n)+1 – x∗∥∥2,
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hence limn→∞ ‖xn – x∗‖ = 0. This implies that {xn} converges to x∗. This completes the
proof. �

Remark 3.8
(a) We emphasize here that the assumption that A is pseudomonotone is more general

than the monotone condition used by [11, 17, 41, 44] for PCM.
(b) Also, the convergence result is proved without any prior condition on the stepsize.

This improves the results of [10, 11, 44, 45] and many other results in this direction.
(c) The strong convergence result proved in this paper is more desirable in optimization

theory than the weak convergence counterparts; see [3].

4 Numerical experiments
In this section, we will test the numerical efficiency of the proposed Algorithm 3.3 by solv-
ing some variational inequality problems. We shall compare our method Algorithm 3.3
with other inertial projection contraction methods proposed in [10, 11, 44]. Our interest
is to investigate how the line search process improve the numerical efficiency of Algorithm
3.3. It should be noted that the methods proposed in [10, 11, 44] required prior estimate
of the Lipschitz constant of the cost operator. Moreover, the methods in [11, 44] converge
for monotone variational inequalities, thus may not be applied for pseudomonotone vari-
ational inequalities. All numerical computations are carried out using a Lenovo PC with
the following specification: Intel(R)core i7-600, CPU 2.48GHz, RAM 8.0GB, MATLAB
version 9.5 (R2019b).

Example 4.1 We consider the variational inequality problem given in [16] which is a HP-
hard model in finite dimensional space. The cost operator A : Rm → R

m is defined by
A(x) = Mx + q, with M = BBT + S + D where B, S, D ∈R

m×m are randomly generated matri-
ces such that S is skew symmetric, D is a positive definite diagonal matrix and q = 0. In this
case, the operator A is monotone and Lipschitz continuous with L = max(eig(BBT +S +D)).
The feasible set is described as linear constraints Qx ≤ b for some Q ∈ R

k×m and a ran-
dom vector b ∈R

k with nonnegative entries. We also define the mapping T : Rm →R
m by

Tx = ( –3x1
2 , –3x2

2 , . . . , –3xm
2 ), which is 1

5 -strictly pseudocontractive and F(T) = {0}. It is easy
to see that Sol = {0}. We compare the performance of Algorithm 3.3 with Algorithm 1.5
of [11], Algorithm 3.1 of Cholamjiak et al. [10] and Algorithm 1 of Thong et al. [44] which
are also versions of projection and contraction method. To validate the convergence of all
the algorithms, we use ‖xn+1 – xn‖ < 10–5 as stopping criterion. We choose the following
parameters for Algorithm 3.3: θn = 1

5n+2 , αn = 1√
5n+2

, βn = 1
2 – 1√

5n+2
, δn = 1

5 + 2n
5n+2 , γ = 0.85,

l = 0.5, σ = 2, μ = 0.1. The projection onto C is easily solved by using the FMINCON Op-
timization solver in MATLAB Optimization Toolbox. Since the other algorithms require
prior estimate of the Lipschitz constant, we choose the following parameters for the algo-
rithms:

– for Algorithm 1.5 of Dong et al. [11], we take αn = 1
5n+2 , λ = 1

2L , γ = 0.85, and τn = 1
2 ,

– for Algorithm 3.1 in Cholamjiak et al. [10], we take αn = 1
5n+2 , λ = 1

2L , γ = 0.85,
θn = 1

2 – 1
(5n+2)0.5 and βn = 1

(5n+2)0.5 ,
– for Algorithm 1 in Thong et al. [44], we take αn = 1

5n+2 , λ = 1
2L , γ = 0.85, βn = 1

(5n+2)0.5

and f (x) = x
2 .

The numerical results are presented in Table 1 and Fig. 1.
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Table 1 Computation result for Example 4.1

Algorithm 3.3 Dong et al. Cholamjiak et al. Thong et al.

Case I No of Iter. 18 51 26 28
CPU time (sec) 2.1442 3.4613 2.1548 2.2796

Case II No of Iter. 18 53 27 29
CPU time (sec) 2.1442 5.7077 2.4134 2.5259

Case III No of Iter. 19 56 28 30
CPU time (sec) 4.6622 10.0815 5.5014 6.4405

Case IV No of Iter. 20 58 29 32
CPU time (sec) 3.3056 7.4533 3.4276 3.8743

Figure 1 Example 4.1, Top Left: Case I; Top Right: Case II; Bottom Left: Case III; Bottom Right: Case IV

From the numerical results, it is clear that our Algorithm 3.3 solves the HP-hard problem
with a smaller number of iterations and CPU-time (second). This shows the advantage of
using a line search process for selecting the stepsize in Algorithm 3.3 rather than a fixed
stepsize which depends on the estimate of the Lipschitz constant as used in [10, 11, 44].

Example 4.2 In this example, we consider a variational inequality problem in an infinite
dimensional space where A is a pseudomonotone and Lipschitz continuous operator but
not monotone. We only compare our Algorithm 3.3 with Algorithm 3.1 of Cholamjiak
et al. [10] which is strongly convergent and also solves the pseudomonotone variational
inequality problem.

Let H = L2([0, 1]) endowed with inner product 〈x, y〉 =
∫ 1

0 x(t)y(t) dt for all x, y ∈ L2([0, 1])
and norm ‖x‖ = (

∫ 1
0 |x(t)|2 dt) 1

2 for all x ∈ L2([0, 1]). Let

C =
{

x ∈ L2
(
[0, 1]

)
: 〈y, x〉 ≤ a

}
,
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where y = 3t2 + 9 and a = 1. Then we can define the projection PC as

PC(x) =

⎧
⎨

⎩

a–〈y,x〉
‖y‖2 if 〈y, x〉 > a,

x, otherwise.

Define the operator B : C → R by B(u) = 1
1+‖u‖2 and F : L2([0, 1]) → L2([0, 1]) as the

Volterra integral operator defined by F(u)(t) =
∫ t

0 u(s) ds for all u ∈ L2([0, 1]) and t ∈
[0, 1]. F is bounded, linear and monotone with L = π

2 (cf. Exercise 20.12 in [4]). Let
A : L2([0, 1]) → L2([0, 1]) be defined by

A(u)(t) =
(
B(u)F(u)

)
(t).

Suppose 〈Au, v – u〉 ≥ 0 for all u, v ∈ C, then 〈Fu, v – u〉 ≥ 0. Hence

〈Av, v – u〉 = 〈BvFv, v – u〉
= Bv〈Fv, v – u〉
≥ Bv

(〈Fv, v – u〉 – 〈Fu, v – u〉)

= Bv〈Fv – Fu, v – u〉 ≥ 0. (4.1)

Thus, A is pseudomonotone. To see that A is not monotone, choose v = 1 and u = 2, then

〈Av – Au, v – u〉 = –
1

10
< 0.

Now consider the VIP in which the underlying operator A is as defined above. Let T :
L2([0, 1]) → L2([0, 1]) be defined by Tx(t) = x(t) which is 0-strictly pseudocontractive.
Clearly, Sol = {0}. We choose the following parameters for Algorithm 3.3: αn = 1

n+4 , θn = α2
n ,

βn = n+1
n+4 , δn = 2n

4n+1 , l = 0.28, μ = 0.57, σ = 2, γ = 1. We take βn = 1
n+4 , αn = α2

n , λ = 1
2π

, γ = 1
and f (x) = x in Algorithm 3.1 of Cholamjiak et al. [10]. Using ‖xn+1 – xn‖ < 10–5 as stopping
criterion, we plot the graphs of ‖xn+1 – xn‖ against number of iterations with the following
initial points:

Case I: x0 = exp(2t)
9 , x1 = exp(3t)

7 ,
Case II: x0 = sin(2t), x1 = cos(5t),

Case III: x0 = exp(2t), x1 = sin(7t),
Case IV: x0 = t2 + 3t – 1, x1 = (2t + 1)2.

The numerical results can be found in Table 2 and Fig. 2. The numerical results also
show that Algorithm 3.3 performs better in terms of number of iterations and CPU time
taken for computation than Algorithm 3.1 of [10]. This also signifies the advantage of
using dynamic stepsize rather than a fixed stepsize which depends on an estimate of the
Lipschitz constant.

5 Conclusion
In this paper, we introduced a new self-adaptive inertial projection and contraction
method for approximating solutions of variational inequalities which are also fixed points
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Table 2 Computation result for Example 4.2

Algorithm 3.3 Cholamjiak et al.

Case I No of Iter. 4 10
CPU time (sec) 0.8810 2.3446

Case II No of Iter. 4 8
CPU time (sec) 2.0265 4.3052

Case III No of Iter. 3 9
CPU time (sec) 0.7089 3.0754

Case IV No of Iter. 5 9
CPU time (sec) 0.8865 1.1464

Figure 2 Example 4.2, Top Left: Case I; Top Right: Case II; Bottom Left: Case III; Bottom Right: Case IV

of a strictly pseudocontarctive mapping in real Hilbert space. A strong convergence result
is proved without prior estimate of the Lipschitz constant of the cost operator for the vari-
ational inequality problem. This is very important in the case where the Lipschitz constant
cannot be estimated or very difficult to estimate. Furthermore, we provided some numer-
ical examples to show the accuracy and efficiency of the proposed method. This result
improves and extends the corresponding results of [11, 17, 26, 41, 42, 44, 45] and other
important results in the literature.
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