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Abstract
In this paper, we are concerned with the convergence rate of Euler–Maruyama (EM)
scheme for stochastic differential delay equations (SDDEs) of neutral type, where the
neutral, drift, and diffusion terms are allowed to be of polynomial growth. More
precisely, for SDDEs of neutral type driven by Brownian motions, we reveal that the
convergence rate of the corresponding EM scheme is one-half; Whereas for SDDEs of
neutral type driven by pure jump processes, we show that the best convergence rate
of the associated EM scheme is slower than one-half. As a result, the convergence rate
of general SDDEs of neutral type, which is dominated by pure jump process, is slower
than one-half.
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1 Introduction
There is numerous literature concerned with convergence rate of numerical schemes for
stochastic differential equations (SDEs). It is well-known that the convergence rate of EM
scheme for SDEs under global Lipschitz and linear growth condition is one-half (see, e.g.,
[12]). Under different conditions, the convergence rate of EM scheme for SDEs varies. For
example, under the Khasminskii-type condition, Mao [11] revealed that the convergence
rate of the truncated EM method is close to one-half; under the Hölder condition, the
convergence rate of EM scheme for SDEs has been studied by many scholars (see, e.g.,
[7, 16, 17]); Sabanis [19] recovered the classical rate of convergence (i.e., one-half ) for
the tamed EM schemes, where, for the SDE involved, the drift coefficient satisfies a one-
sided Lipschitz condition and a polynomial Lipschitz condition, and the diffusion term is
Lipschitzian. In [2], Bao et al. investigated the convergence rate of EM scheme for SDEs
with Hölder–Dini continuous drifts.

There is also some literature on the convergence rate of numerical schemes for stochas-
tic functional differential equations (SFDEs). For example, under a log-Lipschitz condi-
tion, Bao et al. [5] studied the convergence rate of EM approximation for a range of SFDEs
driven by jump processes; Bao and Yuan [4] investigated the convergence rate of EM ap-
proach for a class of SDDEs, where the drift and diffusion coefficients are allowed to be of
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polynomial growth with respect to the delay variables; Gyöngy and Sabanis [8] discussed
the rate of almost sure convergence of Euler approximations for SDDEs under monotonic-
ity conditions. In [31], Zhang et al. established the convergence of a class of highly nonlin-
ear stochastic differential delay equations without the linear growth condition replacing
by Khasminskii-type condition.

Increasingly real-world systems are modeled by SFDEs of neutral type, as they represent
systems which evolve in a random environment and whose evolution depends on the past
states and derivatives of states of the systems through either memory or time delay. In
the last decade, for SFDEs of neutral type, there are a large number of papers on, e.g.,
stochastic stability (see, e.g., [12, 13, 26]), on large fluctuations (see, e.g., [1]), on large
deviation principle (see, e.g., [6]), on transportation inequality (see, e.g., [3]), to name a
few.

Since most SFDEs of neutral types cannot be solved explicitly, the topic on numerical
approximations for SFDEs of neutral type has also been investigated considerably. For
instance, under a global Lipschitz condition, Wu and Mao [21] revealed that the con-
vergence rate of the EM scheme constructed is close to one-half; under a log-Lipschitz
condition, Jiang et al. [9] generalized [24] by Yuan and Mao to the neutral case; under the
Khasminskill-type condition, following the line of Yuan and Glover [25], Milosevic [15]
and Zhou [27] studied the convergence in probability of the associated EM scheme; while
in [22], Yan et al. proved the strong convergence of the split-step theta method for SFDEs
of neutral type with convergence rate of one-half. In [28], Zhou and Jin investigated the
strong convergence of the implicit numerical approximations for SFDEs of neutral type
with superlinearly growing coefficients. For preserving stochastic stability (of the exact
solutions) of variable numerical schemes, we refer to, e.g., [10, 23, 29, 30] and the refer-
ences therein.

We remark that most of the existing literature on the convergence rate of explicit EM
scheme for SFDEs of neutral type has dealt with the Lipschitz-type condition, where, in
particular, the neutral term is contractive. For example, Obradović et al. [18] discussed
the convergence in probability of the explicit EM method for neutral stochastic systems
with unbounded delay and Markovian switching under local Lipschitz conditions. To the
best of our knowledge, the convergence rate of explicit EM scheme for SFDEs of neutral
type with non-Lipschitz conditions (hence nonlinear) has seen few results. Consider the
following SDDE of neutral type:

d
{

X(t) – X2(t – τ )
}

=
{

aX(t) + bX3(t – τ )
}

dt + cX2(t – τ ) dB(t), t ≥ 0, (1.1)

in which a, b, c ∈ R, τ > 0 are some constants, and B(t) is a scalar Brownian motion. Ob-
serve that all the neutral, drift, and diffusion coefficients in (1.1) are highly nonlinear with
respect to the delay variable so that the existing results on the convergence rate of EM
schemes associated with SFDEs of neutral type cannot be applied to the example above.
In this paper we intend to establish the theory on the convergence rate of EM scheme for
a class of SDDEs of neutral type, where, in particular, the neutral term is of polynomial
growth, so that it would cover more interesting models.

Throughout the paper, the shorthand notation a � b is used to express that there ex-
ists a positive constant c such that a ≤ cb, where c is a generic constant whose value may
change from line to line. Let (�,F ,P) be a complete probability space with a filtration
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(Ft)t≥0 satisfying the usual conditions (i.e., it is right continuous and F0 contains all P-
null sets). For each integer n ≥ 1, let (Rn, 〈·, ·〉, | · |) be an n-dimensional Euclidean space.
For A ∈R

n ⊗R
m, the collection of all n × m matrices, ‖A‖ stands for the Hilbert–Schmidt

norm, i.e., ‖A‖ = (
∑m

i=1 |Aei|2)1/2, where (ei)i≥1 is an orthogonal basis of Rm. For τ > 0,
which is referred to as delay or memory, C := C([–τ , 0];Rn) means the space of all con-
tinuous functions φ : [–τ , 0] 	→ R

n with the uniform norm ‖φ‖∞ := sup–τ≤θ≤0 |φ(θ )|. Let
(B(t))t≥0 be a standard m-dimensional Brownian motion defined on the probability space
(�,F , (Ft)t≥0,P).

The result of this paper will be organized as follows: The convergence rate of two special
cases of SDDEs of neutral type, one driven by Brownian motions and the other driven by
Pure jump processes, will be discussed in Sects. 2 and 3, respectively. The convergence
result of a general SDDEs of neutral type will be demonstrated in Sect. 4. Some numerical
examples will be illustrated in Sect. 5. A conclusion will be presented in Sect. 6.

2 The Brownian motion case
To begin, we focus on an SDDE of neutral type on (Rn, 〈·, ·〉, | · |) in the form

d
{

X(t) – G
(
X(t – τ )

)}
= b

(
X(t), X(t – τ )

)
dt + σ

(
X(t), X(t – τ )

)
dB(t), t > 0, (2.1)

with the initial value X(θ ) = ξ (θ ) for θ ∈ [–τ , 0], where G : Rn 	→ R
n, b : Rn × R

n 	→ R
n,

σ : Rn ×R
n 	→R

n×m.
We assume that there exist constants L > 0 and q ≥ 1 such that, for any x, y, x, y ∈R

n,
(A1) |G(y) – G(y)| ≤ L(1 + |y|q + |y|q)|y – y|;
(A2) |b(x, y) – b(x, y)| + ‖σ (x, y) – σ (x, y)‖ ≤ L|x – x| + L(1 + |y|q + |y|q)|y – y|, where ‖ · ‖

stands for the Hilbert–Schmidt norm;
(A3) |ξ (t) – ξ (s)| ≤ L|t – s| for any s, t ∈ [–τ , 0].

Remark 2.1 There are some examples such that (A1) and (A2) hold. For instance, if G(y) =
y2, b(x, y) = σ (x, y) = ax + y3 for any x, y ∈R and some a ∈R, then both (A1) and (A2) hold.

By following a similar argument to [12, Theorem 3.1, p. 210], (2.1) has a unique solu-
tion {X(t)} under (A1) and (A2). In the sequel, we introduce the EM scheme associated
with (2.1). Without loss of generality, we assume that h = T/M = τ /m ∈ (0, 1) for some
integers M, m > 1. For every integer k = –m, . . . , 0, set Y (k)

h := ξ (kh), and for each integer
k = 1, . . . , M – 1, we define

Y (k+1)
h – G

(
Y (k+1–m)

h
)

= Y (k)
h – G

(
Y (k–m)

h
)

+ b
(
Y (k)

h , Y (k–m)
h

)
h + σ

(
Y (k)

h , Y (k–m)
h

)
�B(k)

h , (2.2)

where �B(k)
h := B((k + 1)h) – B(kh). For any t ∈ [kh, (k + 1)h), set Y (t) := Y (k)

h . To avoid the
complex calculation, we define the continuous-time EM approximation solution Y (t) as
follows: for any θ ∈ [–τ , 0], Y (θ ) = ξ (θ ), and

Y (t) = G
(
Y (t – τ )

)
+ ξ (0) – G

(
ξ (–τ )

)
+

∫ t

0
b
(
Y (s), Y (s – τ )

)
ds

+
∫ t

0
σ
(
Y (s), Y (s – τ )

)
dB(s), t ∈ [0, T].

(2.3)
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A straightforward calculation shows that the continuous-time EM approximate solution
Y (t) coincides with the discrete-time approximation solution Y (t) at the grid points t = nh.

2.1 Pth moment bound
The lemma below provides estimates of the pth moment of the solution to (2.1) and the
corresponding EM scheme, alongside with the pth moment of the displacement.

Lemma 2.1 Under (A1) and (A2), for any p ≥ 2 there exists a constant CT > 0 such that

E

(
sup

0≤t≤T

∣∣X(t)
∣∣p

)
∨E

(
sup

0≤t≤T

∣∣Y (t)
∣∣p

)
≤ CT (2.4)

and

E

(
sup

0≤t≤T

∣∣	(t)
∣∣p

)
� hp/2, (2.5)

where 	(t) := Y (t) – Y (t).

Proof We focus only on the following estimate:

E

(
sup

0≤t≤T

∣∣Y (t)
∣∣p

)
≤ CT (2.6)

for some constant CT > 0 since the uniform pth moment of X(t) in a finite time interval
can be done similarly. From (A1) and (A2), one has

∣∣G(y)
∣∣ � 1 + |y|1+q (2.7)

and

∣∣b(x, y)
∣∣ +

∥∥σ (x, y)
∥∥� 1 + |x| + |y|1+q (2.8)

for any x, y ∈R
n. By the Hölder inequality, the Burkholder–Davis–Gundy (BDG) inequal-

ity (see, e.g., [12, Theorem 7.3, p. 40]), we derive from (2.7) and (2.8) that

E

(
sup

–τ≤s≤t

∣∣Y (s)
∣∣p

)
� 1 + ‖ξ‖p(1+q)

∞ + E

(
sup

–τ≤s≤t–τ

∣∣Y (s)
∣∣p(1+q)

)

+
∫ t

0

{
E

∣∣Y (s)
∣∣p + E

∣∣Y (s – τ )
∣∣p(1+q)}ds

� 1 + ‖ξ‖p(1+q)
∞ + E

(
sup

–τ≤s≤t–τ

∣∣Y (s)
∣∣p(1+q)

)

+
∫ T

0
E

(
sup

–τ≤r≤s

∣∣Y (r)
∣∣p

)
ds,

where we have used Y (kh) = Y (kh) in the last display. This, together with Gronwall’s in-
equality, yields that

E

(
sup

0≤s≤t

∣∣Y (s)
∣∣p

)
� 1 + ‖ξ‖p(1+q)

∞ + E

(
sup

0≤s≤(t–τ )∨0

∣∣X(s)
∣∣p(1+q)

)
,
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which further implies that

E

(
sup

0≤t≤τ

∣∣X(t)
∣∣p

)
� 1 + ‖ξ‖p(1+q)

∞

and

E

(
sup

0≤t≤2τ

∣∣X(t)
∣∣p

)
� 1 + E‖ξ‖p(1+q)

∞ +
(

sup
0≤t≤τ

∣∣X(t)
∣∣p(1+q)

)
� 1 + ‖ξ‖p(1+q)2

∞ ,

where we use the fact that p1 = p(1 + q) > 2 and

E

(
sup

0≤t≤2τ

∣∣X(t)
∣∣p1

)
� 1 + E‖ξ‖p1(1+q)

∞ � 1 + E‖ξ‖p(1+q)2
∞ .

Thus (2.6) follows from an inductive argument.
Employing Hölder’s and BDG inequalities, we deduce from (2.3) and (2.8) that

E

(
sup

0≤t≤T

∣∣	(t)
∣∣p

)
� sup

0≤k≤M–1

{
E

(
sup

kh≤t≤(k+1)h

∣∣∣∣

∫ t

kh
b
(
Y (s), Y (s – τ )

)
ds

∣∣∣∣

p)

+ E

(
sup

nh≤t≤(k+1)h

∣∣∣∣

∫ t

kh
σ
(
Y (s), Y (s – τ )

)
dB(s)

∣∣∣∣

p)}

� sup
0≤k≤M–1

{
hp–1

E

∫ (k+1)h

kh

∣∣b
(
Y (s), Y (s – τ )

)∣∣p ds

+ h
p
2 –1

E

∫ (k+1)h

kh

∥∥σ
(
Y (s), Y (s – τ )

)∥∥p ds
}

� h
p
2 –1 sup

0≤k≤M–1

{∫ (k+1)h

kh

(
1 + E

∣∣Y (s)
∣∣p + E

∣∣Y (s – τ )
∣∣p(q+1))ds

}

� h
p
2 ,

where in the last step we have used (2.6). The desired assertion is therefore proved. �

2.2 Convergence result
The first main result in this paper is stated as follows.

Theorem 2.2 Under Assumptions (A1)–(A3),

E

(
sup

0≤t≤T

∣∣X(t) – Y (t)
∣∣p

)
� hp/2, p ≥ 2. (2.9)

So the convergence rate of the EM scheme (i.e., (2.3)) associated with (2.1) is one-half.

With Lemma 2.1 in hand, we are now in the position to finish the proof of Theorem 2.2.

Proof of Theorem 2.2 We follow the Yamada–Watanabe approach (see, e.g., [4]) to com-
plete the proof of Theorem 2.2. For a fixed κ > 1 and arbitrary ε ∈ (0, 1), there exists a
continuous nonnegative function ϕκε(·) with the support [ε/κ , ε] such that

∫ ε

ε/κ
ϕκε(x) dx = 1 and ϕκε(x) ≤ 2

x lnκ
, x > 0.
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Set

φκε(x) :=
∫ x

0

∫ y

0
ϕκε(z) dz dy, x > 0.

We can see that φκε(·) is such that

x – ε ≤ φκε(x) ≤ x, x > 0. (2.10)

Let

Vκε(x) = φκε

(|x|), x ∈R
n. (2.11)

By a straightforward calculation, it holds

(∇Vκε)(x) = φ′
κε

(|x|)|x|–1x, x ∈ R
n

and

(∇2Vκε

)
(x) = φ′

κε

(|x|)(|x|2I – x ⊗ x
)|x|–3 + |x|–2φ′′

κε

(|x|)x ⊗ x, x ∈R
n,

where ∇ and ∇2 stand for the gradient and Hessian operators, respectively, I denotes the
identity matrix, and x ⊗ x = xx∗ with x∗ being the transpose of x ∈R

n. Moreover, we have

∣∣(∇Vκε)(x)
∣∣ ≤ 1 and

∥∥(∇2Vκε

)
(x)

∥∥ ≤ 2n
(

1 +
1

lnκ

)
1
|x|1[ε/κ ,ε]

(|x|), (2.12)

where 1A(·) is the indicator function of the subset A ⊂R+.
For notation simplicity, set

Z(t) := X(t) – Y (t) and (t) := Z(t) – G
(
X(t – τ )

)
+ G

(
Y (t – τ )

)
. (2.13)

In the sequel, let t ∈ [0, T] be arbitrary and fix p ≥ 2. Due to (0) = 0 ∈ R
n and Vκε(0) = 0,

an application of Itô’s formula gives

Vκε

(
(t)

)
=

∫ t

0

〈
(∇Vκε)

(
(s)

)
,	1(s)

〉
ds

+
1
2

∫ t

0
trace

{(
	2(s)

)∗(∇2Vκε

)(
(s)

)
	2(s)

}
ds

+
∫ t

0

〈∇(Vκε)
(
(s)

)
,	2(s) dB(s)

〉

=: I1(t) + I2(t) + I3(t),

where

	1(t) := b
(
X(t), X(t – τ )

)
– b

(
Y (t), Y (t – τ )

)
(2.14)
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and

	2(t) := σ
(
X(t), X(t – τ )

)
– σ

(
Y (t), Y (t – τ )

)
.

Set

V (x, y) := 1 + |x|q + |y|q, x, y ∈R
n. (2.15)

According to (2.4), for any q ≥ 2 there exists a constant CT > 0 such that

E

(
sup

0≤t≤T
V

(
X(t – τ ), Y (t – τ )

)q
)

≤ CT . (2.16)

Noting that

X(t) – Y (t) = (t) + 	(t) + G
(
X(t – τ )

)
– G

(
Y (t – τ )

)
, (2.17)

and using Hölder’s and BDG inequalities, we get from (2.12) and (A1)–(A2) that

�(t) : = E

(
sup

0≤s≤t

∣∣I1(s)
∣∣p

)
+ E

(
sup

0≤s≤t

∣∣I3(s)
∣∣p

)

�
∫ t

0

{
E

∣∣	1(s)
∣∣p + E

∥∥	2(s)
∥∥p}ds

�
∫ t

0
E

∣∣X(s) – Y (s)
∣∣p ds +

∫ t–τ

–τ

E
(
V

(
X(s), Y (s)

)p∣∣X(s) – Y (s)
∣∣p)ds

�
∫ t

0
E

{∣∣(s)
∣∣p +

∣∣	(s)
∣∣p}ds +

∫ t–τ

–τ

E
(
V

(
X(s), Y (s)

)p∣∣X(s) – Y (s)
∣∣p)ds.

(2.18)

Also, by Hölder’s inequality, it follows from (2.5), (A3), and (2.16) that

�(t) �
∫ t

0

{
E

∣∣(s)
∣∣p + E

∣∣	(s)
∣∣p +

(
EV

(
X(s – τ ), Y (s – τ )

)2p)1/2

× (
(
E

∣∣Z(s – τ )
∣∣2p)1/2 +

(
E

∣∣	(s – τ )
∣∣2p)1/2}ds

�
∫ t

0

{
E

∣∣(s)
∣∣p + E

∣∣	(s)
∣∣p +

(
E

∣∣Z(s – τ )
∣∣2p)1/2 +

(
E

∣∣	(s – τ )
∣∣2p)1/2}ds

�
∫ t

0

{
E

∣∣(s)
∣∣p +

(
E

∣∣Z(s – τ )
∣∣2p)1/2 + hp/2}ds.

(2.19)

Using (2.12), we derive

E

(
sup

0≤s≤t

∣
∣I2(s)

∣∣p
)
� E

∫ t

0

∥
∥(∇2Vκε

)(
(s)

)∥∥p∥∥	2(s)
∥∥2p ds

� E

∫ t

0

1
|(s)|p

{∣∣X(s) – Y (s)
∣∣2p + V

(
X(s – τ ), Y (s – τ )

)2p

× (∣∣X(s – τ ) – Y (s – τ )
∣∣2p)}I[ε/κ ,ε]

(∣∣(s)
∣∣)ds.
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In the light of (A1) and (2.13)–(2.17), then we have

E

(
sup

0≤s≤t

∣∣I2(s)
∣∣p

)

� E

∫ t

0

1
|(s)|p

{∣∣(s)
∣∣2p +

∣∣	(s)
∣∣2p +

∣∣G
(
X(s – τ )

)
– G

(
Y (s – τ )

)∣∣2p

+ V
(
X(s – τ ), Y (s – τ )

)2p(∣∣X(s – τ ) – Y (s – τ )
∣∣2p)}I[ε/κ ,ε]

(∣∣(s)
∣∣)ds

� E

∫ t

0

1
|(s)|p

{∣∣(s)
∣∣2p +

∣∣	(s)
∣∣2p

+ V
(
X(s – τ ), Y (s – τ )

)2p(∣∣X(s – τ ) – Y (s – τ )
∣∣2p)}I[ε/κ ,ε]

(∣∣(s)
∣∣)ds

� E

∫ t

0

{∣∣(s)
∣∣p + ε–p∣∣	(s)

∣∣2p

+ ε–pV 2p(X(s – τ ), Y (s – τ )
)(∣∣X(s – τ ) – Y (s – τ )

∣∣2p)}ds

�
∫ t

0

{
ε–php + E

∣∣(s)
∣∣p + ε–p(

E
(∣∣Z(s – τ )

∣∣4p))1/2}ds,

(2.20)

where in the last step we have used Hölder’s inequality. Now, according to (2.10), (2.19),
and (2.20), one has

E

(
sup

0≤s≤t

∣∣(s)
∣∣p

)
� εp + E

(
sup

0≤s≤t
Vκε

(
(s)

))

� εp + �(t) + E

(
sup

0≤s≤t

∣∣I3(s)
∣∣p

)

� εp +
∫ t

0

{
hp/2 + ε–php + E

(
sup

0≤r≤s

∣∣(r)
∣∣p

)

+
(
E

(∣∣Z(s – τ )
∣∣2p))1/2 + ε–p(

E
(∣∣Z(s – τ )

∣∣4p))1/2
}

ds.

Thus, Gronwall’s inequality gives

E

(
sup

0≤s≤t

∣∣(s)
∣∣p

)
� εp + hp/2 + ε–php

+
∫ (t–τ )∨0

0

{(
E

(∣∣Z(s)
∣∣2p))1/2 + ε–p(

E
(∣∣Z(s)

∣∣4p))1/2}ds

� hp/2 +
∫ (t–τ )∨0

0

{(
E

(∣∣Z(s)
∣∣2p))1/2 + ε–p(

E
(∣∣Z(s)

∣∣4p))1/2}ds,

(2.21)

by choosing ε = h1/2 and taking |Z(t)| ≡ 0 for t ∈ [–τ , 0] into account. Next, by (A1) and
(2.16), it follows from Hölder’s inequality that

E

(
sup

0≤t≤T

∣∣Z(t)
∣∣p

)

� E

(
sup

0≤t≤T

∣∣(t)
∣∣p

)
+ E

(
sup

–τ≤t≤T–τ

∣∣G
(
X(t)

)
– G

(
Y (t)

)∣∣p
)

� E

(
sup

0≤t≤T

∣∣(t)
∣∣p

)
+ E

(
sup

–τ≤t≤T–τ

(
V

(
X(t), Y (t)

)p∣∣X(t) – Y (t)
∣∣p))

(2.22)
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� E

(
sup

0≤t≤T

∣∣(t)
∣∣p

)
+ hp/2 +

(
E

(
sup

0≤t≤(T–τ )∨0

∣∣Z(t)
∣∣2p

))1/2
.

Substituting (2.21) into (2.22) yields

E

(
sup

0≤t≤T

∣∣Z(t)
∣∣p

)
� hp/2 +

(
E

(
sup

0≤t≤(T–τ )∨0

∣∣Z(t)
∣∣2p

))1/2

+
∫ (T–τ )∨0

0

{(
E

(∣∣Z(t)
∣∣2p))1/2 + ε–p(

E
(∣∣Z(t)

∣∣4p))1/2}dt.

(2.23)

Hence, we have

E

(
sup

0≤t≤τ

∣∣Z(t)
∣∣p

)
� hp/2

and

E

(
sup

0≤t≤2τ

∣∣Z(t)
∣∣p

)
� hp/2 +

(
E

(
sup

0≤t≤τ

∣∣Z(t)
∣∣2p

))1/2

+
∫ τ

0

{(
E

(∣∣Z(t)
∣∣2p))1/2 + ε–p(

E
(∣∣Z(t)

∣∣4p))1/2}dt

� hp/2

by taking ε = h1/2. Thus, the desired assertion (2.9) follows from an inductive argument. �

3 The NSDDE driven by pure jump processes
Next, we move to consider the convergence rate of EM scheme corresponding to a class
of SDDEs of neutral type driven by pure jump processes. More precisely, we consider an
SDDEs of neutral type

d
{

X(t)–G
(
X(t –τ )

)}
= b

(
X(t), X(t –τ )

)
dt +

∫

U
g
(
X(t–), X

(
(t –τ )–

)
, u

)
Ñ(du, dt) (3.1)

with the initial data X(θ ) = ξ (θ ), θ ∈ [–τ , 0]. Herein, G and b are given as in (2.1), g :
R

n × R
n × U 	→ R

m, where U ∈ B(R); Ñ(dt, du) := N(dt, du) – dtλ(du) is the compen-
sated Poisson measure associated with the Poisson counting measure N(dt, du) generated
by a stationary Ft-Poisson point process {p(t)}t≥0 on R with characteristic measure λ(·),
i.e., N(t, U) =

∑
s∈D(P),s≤t IU (p(s)) for U ∈ B(R); X(t–) := lims↑t X(s).

We assume that b and G are such that (A1) and (A2) hold with σ ≡ 0n×m therein. We
further suppose that there exist L0, r > 0 such that for any x, y, x, y ∈R

n and u ∈ U ,
(A4) |g(x, y, u) – g(x, y, u)| ≤ L0(|x – x| + (1 + |y|q + |y|q)|y – y|)|u|r and |g(0, 0, u)| ≤ |u|r ,

where q ≥ 1 is the same as that in (A1).
(A5)

∫
U |u|pλ(du) < ∞ for any p ≥ 2.

Remark 3.1 The jump coefficient may also be highly nonlinear with respect to the delay
argument, for example, x, y ∈R, u ∈ U and q ≥ 1, g(x, y, u) = (x + yq)u satisfies (A5).

By carrying out a similar argument to that of [12, Theorem 3.1, p. 210], (3.1) admits a
unique strong solution {X(t)} according to [20, Theorem 117, p. 79].
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By following the procedures of (2.2) and (2.3), the discrete-time EM scheme and the
continuous-time EM approximation associated with (3.1) are defined respectively as fol-
lows:

Y (n+1)
h – G

(
Y (n+1–m)

h
)

= Y (n)
h – G

(
Y (n–m)

h
)

+ b
(
Y (n)

h , Y (n–m)
h

)
h + g

(
Y (n)

h , Y (n–m)
h , u

)
�Ñnh,

(3.2)

where �Ñnh := Ñ((n + 1)h, U) – Ñ(nh, U), and

Y (t) = G
(
Y (t – τ )

)
+ ξ (0) – G

(
ξ (–τ )

)
+

∫ t

0
b
(
Y (s), Y (s – τ )

)
ds

+
∫ t

0

∫

U
g
(
Y (s–), Y

(
(s – τ )–

)
, u

)
Ñ(du, ds),

(3.3)

where Y is defined similarly as in (2.3).

3.1 Pth moment bound
Hereinafter, (X(t)) is the strong solution to (3.1) and (Y (t)) is the continuous-time EM
scheme (i.e., (3.3)) associated with (3.1).

The lemma below plays a crucial role in revealing convergence rate of the EM scheme.

Lemma 3.1 Under (A1)–(A5) with σ ≡ 0n×m, for any p ≥ 2, there exists a constant CT

such that

E

(
sup

0≤t≤T

∣∣X(t)
∣∣p

)
∨E

(
sup

0≤t≤T

∣∣Y (t)
∣∣p

)
≤ CT (3.4)

and

E

(
sup

0≤t≤T

∣∣	(t)
∣∣p

)
� h, (3.5)

where 	(t) := Y (t) – Y (t).

Proof On the other hand, the proof of (3.1) is similar to that of (2.4) except for some
technical details. To make this paper self-contained, the key steps will be sketched below.

Again, we only focus on the pth moment estimation of Y (t),

E

(
sup

0≤t≤T

∣∣Y (t)
∣∣p

)
≤ CT , (3.6)

since the uniform pth moment of Y (t) in a finite time interval can be replicated similarly.
According to (A1), (A2), (A4), and (A5), one has

∣∣G(y)
∣∣ � 1 + |y|1+q, (3.7)

∣∣b(x, y)
∣∣ +

∥∥σ (x, y)
∥∥� 1 + |x| + |y|1+q, (3.8)

and
∣∣g(x, y, u)

∣∣ �
(
1 + |x| + |y|1+q)|u|r , (3.9)

where x, y ∈R
n, u ∈ U .
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Then, by applying the BDG and H older’s inequalities, one can derive from (3.7)–(3.9)
that

E

(
sup

–τ≤s≤t

∣∣Y (s)
∣∣p

)

� 1 + ‖ξ‖p(1+q)
∞ + E

(
sup

–τ≤s≤t–τ

∣∣Y (s)
∣∣p(1+q)

)

+
∫ t

0

{
E

∣∣Y (s)
∣∣p + E

∣∣Y (s – τ )
∣∣p(1+q)}ds

+
∫ t

0

∫

U

{[
1 + E

∣∣Y (s)
∣∣p + E

∣∣Y (s – τ )
∣∣p(1+q)]|u|rp}du ds,

� 1 + ‖ξ‖p(1+q)
∞ + E

(
sup

–τ≤s≤t–τ

∣∣Y (s)
∣∣p(1+q)

)
+

∫ T

0
E

(
sup

–τ≤r≤s

∣∣Y (r)
∣∣p

)
ds,

where we have used Y (kh) = Y (kh) in the last display. This, together with Gronwall’s in-
equality, yields

E

(
sup

0≤s≤t

∣∣Y (s)
∣∣p

)
� 1 + ‖ξ‖p(1+q)

∞ + E

(
sup

0≤s≤(t–τ )∨0

∣∣Y (s)
∣∣p(1+q)

)
.

The rest of the proof leading to (3.6) can be done in an identical way as for its Brownian
motion counterpart, so we omit the details here.

In the sequel, we aim to show (3.5). From (A4), by applying BDG (see, e.g., [14, Theo-
rem 1]) and Hölder’s inequalities, we derive that

E

(
sup

0≤t≤T

∣∣	(t)
∣∣p

)

� sup
0≤k≤M–1

{
E

(
sup

kh≤t≤(k+1)h

∣∣∣∣

∫ t

kh
b
(
Y (s), Y (s – τ )

)
ds

∣∣∣∣

p)

+ E

(
sup

kh≤t≤(k+1)h

∣∣∣
∣

∫ t

kh

∫

U
g
(
Y (s–), Y

(
(s – τ )–

)
, u

)
Ñ(ds, du)

∣∣∣∣

p)}

� sup
0≤k≤M–1

{∫ (k+1)h

kh

(
hp–1

E
∣∣b

(
Y (s), Y (s – τ )

)∣∣p

+
∫

U
E

∣∣g
(
Y (s), Y (s – τ ), u

)∣∣p
λ(du)

)
ds

}

� sup
0≤k≤M–1

{∫ (k+1)h

kh

(
1 + E

(
sup

–τ≤r≤s

∣∣Y (r)
∣∣p(1+q)

))

×
(

hp–1 +
∫

U
|u|prλ(du)

)
ds

}

� hp + h

� h,

where we have used (A2) with σ ≡ 0n×m and (3.9) in the third step, and (3.4) and (A5) in
the last two step, respectively. So (3.5) follows as required. �
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3.2 Convergence results
Our second main result in this paper is presented as follows.

Theorem 3.2 Under (A1)–(A5) with σ ≡ 0n×m therein, for any p ≥ 2 and θ ∈ (0, 1),

E

(
sup

0≤t≤T

∣∣X(t) – Y (t)
∣∣p

)
� h

1
(1+θ )[T/τ ] . (3.10)

So the best convergence rate of EM scheme (i.e., (3.3)) associated with (3.1) is close to one-
half.

Remark 3.2 By a close inspection of the proof for Theorem 3.2, the conditions (A4) and
(A5) can be replaced by the following: For any p > 2 there exists Kp, K0 > 0 and q > 1 such
that

∫

U

∣∣g(x, y, u)
∣∣p

λ(du) ≤ Kp
(
1 + |x|p + |y|q),

∫

U

∣∣g(x, y, u) – g(x, y, u)
∣∣p

λ(du) ≤ Kp
[|x – x|p +

(
1 + |y|q + |y|q)|y – y|p],

∫

U

∣∣g(x, y, u)
∣∣2

λ(du) ≤ K0
(
1 + |x|2 + |y|q),

∫

U

∣∣g(x, y, u) – g(x, y, u)
∣∣2

λ(du) ≤ K0
[|x – x|2 +

(
1 + |y|q + |y|q)|y – y|2]

for any x, y, x, y ∈R
n.

Next, we go back to finish the proof of Theorem 3.2.

Proof of Theorem 3.2 We follow the idea of the proof for Theorem 2.2 to complete the
proof. Set

	3(t, u) := g
(
X(t), X(t – τ ), u

)
– g

(
Y (t), Y (t – τ ), u

)
.

Applying Itô’s formula, as well as the Lagrange mean value theorem to Vκε(·), defined by
(2.11), gives

Vκε

(
(t)

)
=

∫ t

0

〈
(∇Vκε)

(
(s)

)
,	1(s)

〉
ds

+
∫ t

0

∫

U

{
Vκε

(
(s) + 	3(s)

)
– Vκε

(
(s)

)
–

〈
(∇Vκε)

(
(s)

)
,	3(s)

〉}
λ( du) ds

+
∫ t

0

∫

U

{
Vκε

(
(s–) + 	3(s–)

)
– Vκε

(
(s–)

)}
Ñ(du, ds)

= Vκε

(
(0)

)
+

∫ t

0

〈
(∇Vκε)

(
(s)

)
,	1(s)

〉
ds

+
∫ t

0

∫

U

{∫ 1

0

〈∇Vκε

(
(s) + r	3(s)

)
– ∇Vκε

(
(s)

)
,	3(s)

〉
dr

}
λ(du) ds

+
∫ t

0

∫

U

{∫ 1

0

〈∇Vκε

(
(s–) + r	3(s–)

)
,	3(s–)

〉
dr

}
Ñ(du, ds)
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=: J1(t) + J2(t) + J3(t),

in which 	1 is defined as in (2.14). By BDG inequality (see, e.g., [14, Theorem 1]), we obtain
from (2.12), (2.18) with σ ≡ 0n×m therein, (A4) and (A5) that

ϒ(t) :=
3∑

i=1

E

(
sup

0≤s≤t

∣∣Ji(s)
∣∣p

)

�
∫ t

0
E

{∣∣(s)
∣∣p +

∣∣	(s)
∣∣p}ds +

∫ t–τ

–τ

E
(
V

(
X(s), Y (s)

)p∣∣X(s) – Y (s)
∣∣p)ds,

where V (·, ·) is introduced in (2.15). Observe from Hölder’s inequality that

EV
(
X(s), Y (s)

)p∣∣Y (s) – Y (s)
∣∣p

�
(
EV

(
X(s), Y (s)

) p(1+θ )
θ

) θ
1+θ

(
E

∣∣X(s) – Y (s)
∣∣p(1+θ )) 1

1+θ

�
(
EV

(
X(s), Y (s)

) p(1+θ )
θ

) θ
1+θ

(
E

∣∣Z(s)
∣∣p(1+θ ) + E

∣∣	(s)
∣∣p(1+θ )) 1

1+θ

� (E
(
1 +

∣∣X(s)
∣∣

pq(1+θ )
θ +

∣∣Y (s)
∣∣

pq(1+θ )
θ

) θ
1+θ

(
E

∣∣Z(s)
∣∣p(1+θ ) + E

∣∣	(s)
∣∣p(1+θ )) 1

1+θ

�
(
E

∣∣Z(s)
∣∣p(1+θ )) 1

1+θ +
(
E

∣∣	(s)
∣∣p(1+θ )) 1

1+θ

� h
1

1+θ +
(
E

∣∣Z(s)
∣∣p(1+θ )) 1

1+θ , θ > 0,

(3.11)

in which we have used (3.4) in the penultimate display and (3.5) in the last display, respec-
tively. So we arrive at

ϒ(t) � h
1

1+θ +
∫ t

0
E

{∣∣(s)
∣∣p +

∣∣	(s)
∣∣p}ds +

∫ t–τ

–τ

(
E

∣∣Z(s)
∣∣p(1+θ )) 1

1+θ ds.

This, together with (2.10) and (3.5), implies

E

(
sup

0≤s≤t

∣∣(t)
∣∣p

)
� εp + E

(
sup

0≤s≤t
Vκε

(
(s)

))

� εp + h
1

1+θ +
∫ t

0
E

{∣∣(s)
∣∣p +

∣∣	(s)
∣∣p}ds +

∫ t–τ

–τ

(
E

∣∣Z(s)
∣∣p(1+θ )) 1

1+θ ds

� h
1

1+θ +
∫ t

0
E

∣∣(s)
∣∣p ds +

∫ t–τ

–τ

(
E

∣∣Z(s)
∣∣p(1+θ )) 1

1+θ ds

by taking ε = h
1

p(1+θ ) in the last display. Using Gronwall’s inequality, due to Z(θ ) = 0 for
θ ∈ [–τ , 0], one has

E

(
sup

0≤t≤T

∣∣(t)
∣∣p

)
� h

1
1+θ +

∫ (T–τ )∨0

0

(
E

∣∣Z(t)
∣∣p(1+θ )) 1

1+θ dt. (3.12)
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Next, observe from (A1) and Hölder’s inequality that

E

(
sup

0≤t≤T

∣∣Z(t)
∣∣p

)

� E

(
sup

0≤t≤T

∣∣(t)
∣∣p

)
+ E

(
sup

–τ≤t≤T–τ

∣∣G
(
X(t)

)
– G

(
Y (t)

)∣∣p
)

� E

(
sup

0≤t≤T

∣∣(t)
∣∣p

)
+ E

(
sup

–τ≤t≤T–τ

(
V

(
X(t), Y (t)

)p∣∣X(t) – Y (t)
∣∣p))

� E

(
sup

0≤t≤T

∣∣(t)
∣∣p

)

+
{

(1 + E

(
sup

–τ≤t≤T

∣∣X(t)
∣∣

pq(1+θ )
θ

)
+

(
sup

–τ≤t≤T

∣∣Y (t)
∣∣

pq(1+θ )
θ

)} θ
1+θ

×
{
E

(
sup

–τ≤t≤T–τ

∣∣Z(t)
∣∣p(1+θ )

)
+ E

(
sup

–τ≤t≤T

∣∣	(t)
∣∣p(1+θ )

)} 1
1+θ

� h
1

1+θ +
(
E

(
sup

0≤t≤(T–τ )∨0

∣∣Z(t)
∣∣p(1+θ )

)) 1
1+θ ,

(3.13)

where in the last step we have utilized (3.4) and (3.5). So we find that

E

(
sup

0≤t≤τ

∣∣Z(t)
∣∣p

)
� h

1
1+θ ,

which, in addition to (3.13), further yields that

E

(
sup

0≤t≤2τ

∣∣Z(t)
∣∣p

)
� h

1
1+θ +

(
E

(
sup

0≤t≤τ

∣∣Z(t)
∣∣p(1+θ )

)) 1
1+θ

� h
1

(1+θ )2 + h
1

1+θ

� h
1

(1+θ )2 .

Thus, the desired assertion follows from an inductive argument. �

4 Main results
In this section, we investigate the generalized SDDEs of neutral type, by considering the
following SDDE of neutral type:

d
{

X(t) – G
(
X(t – τ )

)}
= b

(
X(t), X(t – τ )

)
dt + σ

(
X(t), X(t – τ )

)
dB(t)

+
∫

U
g
(
X(t–), X

(
(t – τ )–

)
, u

)
Ñ(du, dt)

(4.1)

with the initial data X(θ ) = ξ (θ ), θ ∈ [–τ , 0]. Herein, G, b and σ are given as in (2.1), while
g is given as in (3.1).

By generalizing the procedures of (2.2), (2.3), (3.2), and (3.3), the discrete-time EM
scheme and the continuous-time EM approximation associated with (4.1) are respectively
defined as follow: Without loss of generality, we assume that h = T/M = τ /m ∈ (0, 1) for
some integers M, m > 1. For every integer k = –m, . . . , 0, set Y (k)

h := ξ (kh), and for each
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integer k = 1, . . . , M – 1,

Y (k+1)
h – G

(
Y (k+1–m)

h
)

= Y (k)
h – G

(
Y (k–m)

h
)

+ b
(
Y (k)

h , Y (k–m)
h

)
h

+ σ
(
Y (k)

h , Y (k–m)
h

)
�B(k)

h + g
(
Y (k)

h , Y (k–m)
h , u

)
�Ñkh,

(4.2)

where �B(k)
h := B((k + 1)h) – B(kh) while �Ñkh := Ñ((k + 1)h, U) – Ñ(kh, U), and for any

t ∈ [kh, (k + 1)h), set Y (t) := Y (k)
h , and

Y (t) = G
(
Y (t – τ )

)
+ ξ (0) – G

(
ξ (–τ )

)
+

∫ t

0
b
(
Y (s), Y (s – τ )

)
ds

+
∫ t

0
σ
(
Y (s), Y (s – τ )

)
dB(s) +

∫ t

0

∫

U
g
(
Y (s–), Y

(
(s – τ )–

)
, u

)
Ñ(du, ds).

(4.3)

Note that, in the rest of this paper, we denote by X(t) the strong solution to (4.1), while
Y (t), defined in (4.3), is the continuous-time EM scheme associated with (4.1).

4.1 Pth moment bound
The following lemma is a generalization of Lemma (2.1) and (3.1).

Lemma 4.1 Under (A1)–(A5), for any p ≥ 2, there exists a constant CT such that

E

(
sup

0≤t≤T

∣∣X(t)
∣∣p

)
∨E

(
sup

0≤t≤T

∣∣Y (t)
∣∣p

)
≤ CT (4.4)

and

E

(
sup

0≤t≤T

∣∣	(t)
∣∣p

)
� h( p

2 –1)∧1, (4.5)

where 	(t) := Y (t) – Y (t).

Proof Here, only key steps are outlined, so that redundant calculation are omitted. To
estimate a bound of Y (t), the continuous-time EM scheme associated with (4.1), a simple
generalization of two special cases will be sufficient.

For (4.5), an application of BDG and Hölder’s inequalities yields

E

(
sup

0≤t≤T

∣∣	(t)
∣∣p

)

� sup
0≤k≤M–1

{
E

(
sup

kh≤t≤(k+1)h

∣∣∣∣

∫ t

kh
b
(
Y (s), Y (s – τ )

)
ds

∣∣∣∣

p)

+ E

(
sup

nh≤t≤(k+1)h

∣∣∣∣

∫ t

kh
σ
(
Y (s), Y (s – τ )

)
dB(s)

∣∣∣∣

p)}

+ E

(
sup

kh≤t≤(k+1)h

∣∣∣∣

∫ t

kh

∫

U
g
(
Y (s–), Y

(
(s – τ )–

)
, u

)
Ñ(ds, du)

∣∣∣∣

p)
}

� sup
0≤k≤M–1

{∫ (k+1)h

kh

(
hp–1

E
∣∣b

(
Y (s), Y (s – τ )

)∣∣p
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+ h
p
2 –1

E

∫ (k+1)h

kh

∥∥σ
(
Y (s), Y (s – τ )

)∥∥p ds

+
∫

U
E

∣∣g
(
Y (s), Y (s – τ ), u

)∣∣p
λ(du)

)
ds

}

� sup
0≤k≤M–1

{∫ (k+1)h

kh

(
1 + E

(
sup

–τ≤r≤s

∣∣Y (r)
∣∣p(1+q)

))

×
(

h
p
2 –1 +

∫

U
|u|prλ(du)

)
ds

}

� h
p
2 –1 + h

� h( p
2 –1)∧1. �

4.2 Convergence results
The convergence rate of the general SDDEs of neutral type is given as follows.

Theorem 4.2 Under (A1)–(A5), for any p ≥ 2 and θ ∈ (0, 1),

E

(
sup

0≤t≤T

∣∣X(t) – Y (t)
∣∣p

)
� h

1
(1+θ )[T/τ ] . (4.6)

So the best convergence rate of EM scheme (i.e., (4.3)) associated with (4.1) is smaller than
the classic convergence rate one-half.

Remark 4.1 The proof of (4.3) is not intuitive by combining two special cases, it requires
a more technical approach. Therefore, some key steps will be highlighted in the proof.

Proof of Theorem 4.2
Define

Z(t) := X(t) – Y (t) and (t) := Z(t) – G
(
X(t – τ )

)
+ G

(
Y (t – τ )

)
.

Then, an application of Yamada–Watanabe approach yields

Vκε

(
(t)

)

=
∫ t

0

〈
(∇Vκε)

(
(s)

)
,	1(s)

〉
ds +

1
2

∫ t

0
trace

{(
	2(s)

)∗(∇2Vκε

)(
(s)

)
	2(s)

}
ds

+
∫ t

0

〈∇(Vκε)
(
(s)

)
,	2(s) dB(s)

〉

+
∫ t

0

∫

U

{
Vκε

(
(s) + 	3(s)

)
– Vκε

(
(s)

)
–

〈
(∇Vκε)

(
(s)

)
,	3(s)

〉}
λ(du) ds

+
∫ t

0

∫

U

{
Vκε

(
(s–) + 	3(s–)

)
– Vκε

(
(s–)

)}
Ñ(du, ds)

= Vκε

(
(0)

)
+

∫ t

0

〈
(∇Vκε)

(
(s)

)
,	1(s)

〉
ds

+
1
2

∫ t

0
trace

{(
	2(s)

)∗(∇2Vκε

)(
(s)

)
	2(s)

}
ds
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+
∫ t

0

〈∇(Vκε)
(
(s)

)
,	2(s) dB(s)

〉

+
∫ t

0

∫

U

{∫ 1

0

〈∇Vκε

(
(s) + r	3(s)

)
– ∇Vκε

(
(s)

)
,	3(s)

〉
dr

}
λ(du) ds

+
∫ t

0

∫

U

{∫ 1

0

〈∇Vκε

(
(s–) + r	3(s–)

)
,	3(s–)

〉
dr

}
Ñ(du, ds)

where

	1(t) := b
(
X(t), X(t – τ )

)
– b

(
Y (t), Y (t – τ )

)
,

	2(t) := σ
(
X(t), X(t – τ )

)
– σ

(
Y (t), Y (t – τ )

)
,

and

	3(t, u) := g
(
X(t), X(t – τ ), u

)
– g

(
Y (t), Y (t – τ ), u

)
.

Recall (2.21) and (3.12) that

E

(
sup

0≤t≤T

∣∣(t)
∣∣p

)
� hp/2 +

∫ (T–τ )∨0

0

{(
E

(∣∣Z(t)
∣∣2p))1/2 + ε–p(

E
(∣∣Z(t)

∣∣4p))1/2}dt,

+ h
1

1+θ +
∫ (T–τ )∨0

0

(
E

∣∣Z(t)
∣∣p(1+θ )) 1

1+θ dt.

(4.7)

By replicating the procedure in (2.23) and (3.13), it yields that

E

(
sup

0≤t≤T

∣∣Z(t)
∣∣p

)
� hp/2 +

(
E

(
sup

0≤t≤(T–τ )∨0

∣∣Z(t)
∣∣2p

))1/2

+
∫ (T–τ )∨0

0

{(
E

(∣∣Z(t)
∣∣2p))1/2 + ε–p(

E
(∣∣Z(t)

∣∣4p))1/2}dt

+ h
1

1+θ +
(
E

(
sup

0≤t≤(T–τ )∨0

∣∣Z(t)
∣∣p(1+θ )

)) 1
1+θ ,

(4.8)

which implies that

E

(
sup

0≤t≤τ

∣∣Z(t)
∣∣p

)
� h

1
1+θ

and

E

(
sup

0≤t≤2τ

∣∣Z(t)
∣∣p

)
� hp/2 +

(
E

(
sup

0≤t≤τ

∣∣Z(t)
∣∣2p

))1/2

+
∫ τ

0

{(
E

(∣∣Z(t)
∣∣2p))1/2 + ε–p(

E
(∣∣Z(t)

∣∣4p))1/2}dt

+ h
1

1+θ +
(
E

(
sup

0≤t≤τ

∣∣Z(t)
∣∣p(1+θ )

)) 1
1+θ

� hp/2 + h
1

(1+θ )2 + h
1

1+θ

� h
1

(1+θ )2 ,
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Figure 1 Brownian motion case

where we take ε = h1/2 and use the fact that h
1

1+θ ≥ hp/2, for any p ≥ 2, θ > 0. Therefore, the
desired assertion follows from an inductive argument. �

5 Examples
In this section, three numerical examples will be discussed to demonstrate the conver-
gence results established in the previous sections, which shows the theoretical conver-
gence rates agree with the numerical simulation very well.

Example 5.1 Let B(t) be a scalar Brownian motion, consider a one-dimensional nonlinear
SDDE of neutral type driven by Brownian motion

d
{

X(t) – X2(t – 1)
}

=
{

X(t) + 0.5X3(t – 1)
}

dt + X2(t – 1) dB(t), t ≥ 0,

with the initial data X = 0, for t ∈ [–1, 0].
In Fig. 1, the EM scheme results for stepsizes h = 1/256, h = 1/512, and h = 1/1024 are

plotted, respectively. The figure shows that the convergence rate is consistent with the
result obtained in Sect. 2.

Example 5.2 Let Ñ(t) be a pure jump process with intensity λ = 1. Consider a one-
dimensional nonlinear SDDE of neutral type driven by pure jump process

d
{

X(t) – X2(t – 1)
}

=
{

X(t) + 0.5X3(t – 1)
}

dt + 0.8X2(t – 1) dÑ(t), t ≥ 0,

with the initial data X = 0, for t ∈ [–1, 0].
In Fig. 2, the EM scheme results for stepsizes h = 1/256, h = 1/512 and h = 1/1024 are

plotted, respectively. The figure shows that the convergence rate obtained from Sect. 3 is
much slower than its counterpart obtained in Sect. 2.



Ji Journal of Inequalities and Applications          (2021) 2021:5 Page 19 of 21

Figure 2 Pure jump case

Figure 3 Joint case

Example 5.3 Let B(t) be a scalar Brownian motion, consider a one-dimensional nonlinear
SDDE of neutral type driven by Brownian motion and pure jump process

d
{

X(t) – X2(t – 1)
}

=
{

X(t) + 0.5X3(t – 1)
}

dt + X2(t – 1) dB(t) + 0.8X2(t – 1) dÑ(t), t ≥ 0,

with the initial data X = 0, for t ∈ [–1, 0] and intensity λ = 1.
In Fig. 3, the EM scheme results for stepsizes h = 1/256, h = 1/512 and h = 1/1024 are

plotted, respectively. The figure shows that the convergence rate is dominated by the jump
process, which verified our theoretical result obtained in the Sect. 4.
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6 Conclusion
In this paper, the convergence rate of EM scheme for SDDEs of neutral type is studied un-
der a more general polynomial condition. In the Brownian motion case, the convergence
rate is consistent with the classic result of one-half. Meanwhile, in the pure jump case,
the convergence rate is much slower than one-half. As a result, in the general SDDEs of
neutral type, the convergence is dominated by the slower rate.
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