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Abstract
In this paper, we discuss a priori error estimates for the finite volume element
approximation of optimal control problem governed by Stokes equations. Under
some reasonable assumptions, we obtain optimal L2-norm error estimates. The
approximate orders for the state, costate, and control variables are O(h2) in the sense
of L2-norm. Furthermore, we derive H1-norm error estimates for the state and costate
variables. Finally, we give some conclusions and future works.
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1 Introduction
Flow control problems have been widely used in science and engineering. Finite element
[2, 5], finite difference [28], and spectral [7] methods have been employed to numerically
solve them. Finite volume method is an effective discretization technique for partial differ-
ential equations. Due to its local conservative property and other attractive properties, the
finite volume method is widely used in the numerical approximation fluid dynamics. Since
the method was proposed, there have been a lot of studies of mathematical theory for the
finite volume method in the literature [1, 3, 4, 6, 10, 11, 14, 15]. Bank and Rose obtained
some results for elliptic boundary value problems that the finite volume element approxi-
mation was comparable with the finite element approximation in H1-norm which can be
found in [1]. In [15], the authors presented the optimal L2-error estimate for second-order
elliptic boundary value problems under the assumption that f ∈ H1, they also obtained
the H1-norm and maximum-norm error estimates for those problems. In [6], Chatzipan-
telidis proposed a nonconforming finite volume method and obtained the L2-norm and
H1-norm error estimates for elliptic boundary value problems in two dimensions. The au-
thors discussed a priori estimates for a linear elliptic optimal control problem in [26], they
derived the optimal order error estimates in L2 and L∞-norm for the state, costate, and
control variables, and the optimal H1 and W 1,∞-norm error estimates for the state and
costate variables. At the same time, there are some other literature works to study optimal
control problems [8, 9, 16, 19–25].
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In fact, finite volume methods lie somewhere between finite difference and finite ele-
ment methods, they have a flexibility similar to that of finite element methods for handling
complicated solution domain geometries and boundary conditions, and they have a sim-
plicity for implementation comparable to finite difference methods with triangulations of
a simple structure. The finite volume methods and finite element methods are commonly
employed in computational fluid mechanics and computational solid dynamics, where the
finite volume method is traditionally associated with computational fluid mechanics and
the finite element method is associated with computational solid dynamics. In general,
two different functional spaces (one for the trial space and one for the test space) are used
in the finite volume method. Owing to the two different spaces, the numerical analysis of
the finite volume method is more difficult than that of the finite element method and fi-
nite difference method. In [18], the authors developed a family of stabilized discontinuous
finite volume element methods for the Stokes equations. A priori error estimates are de-
rived for the velocity and pressure in the energy norm, and convergence rates are predicted
for velocity in the L2-norm under the assumption that the source term was locally in H1.
In [13], the authors established a general framework for analyzing the class of finite vol-
ume methods for the Stokes equations. Under the framework, optimal L2 error estimates
for velocity were obtained for the first time for several different finite volume methods.
In recent years, the authors studied the Legendre–Galerkin in spectral approximation of
distributed optimal control problems governed by Stokes equations. They derived a pri-
ori error estimates in both H1 and L2 norms for the Legendre–Galerkin approximation of
the unconstrained control problems in [7]. However, a priori error estimates for the finite
volume element approximation of optimal control problem governed by Stokes equations
have few papers to study.

In this paper, we mainly establish finite volume schemes for Stokes optimal control
problem and obtain some optimal order error estimates. Firstly, we use the finite volume
method to discretize the state and adjoint equation of the optimal control problem. Then,
applying the variational discretization concept [17], the control variable is not discretized
directly, but discretized by a projection of the discrete costate variable. At last, we obtain
some optimal order error estimates under some reasonable assumptions.

In this paper, we adopt the standard notation W m,p(�) for Sobolev spaces on �

with a norm ‖v‖p
m,p given by ‖v‖p

m,p =
∑

|α|≤m ‖Dαv‖p
Lp(�) and the semi-norm | v |pm,p=

∑
|α|=m ‖Dαv‖p

Lp(�). We set W m,p
0 (�) = {v ∈ W m,p(�) : v |∂�= 0}. For p = 2, we denote

Hm(�) = W m,2(�), Hm
0 (�) = W m,2

0 (�), ‖ · ‖m = ‖ · ‖m,2, and ‖ · ‖ = ‖ · ‖0,2. Let ‖ · ‖∞ denote
the maximum norm, ‖f ‖∞ = ess supx∈� |f (x)|. L2

0(�) = {q ∈ L2(�);
∫
�

q = 0}. As usual, we
use (·, ·) to denote the L2(�)-inner product.

In this paper, we consider the following Stokes optimal control problem:

min
u∈Uad

1
2
‖y – yd‖2

L2(�) +
1
2
‖u‖2

L2(�), (1.1)

– υ�y + ∇r = f + u, in �, (1.2)

∇ · y = 0, in �, (1.3)

y = 0, on ∂�, (1.4)
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where � ⊂ R
2 is a bounded convex polygon domain with boundary ∂�, f ∈ L2(�)2 or

H1
0 (�)2, υ > 0 is a given constant, and y, u are unknown functions, Uad is denoted by

Uad =
{

u ∈ L2(�)2 : u(x) ≥ 0, a.e. in �
}

.

Let

a(y, w) = υ

∫

�

∇y · ∇w, ∀w ∈ H1
0 (�)2,

b(w, r) =
∫

�

r∇ · w, ∀(w, r) ∈ H1
0 (�)2 × L2

0(�),

(u, w) =
∫

�

u · w, ∀(u, w) ∈ L2
0(�)2 × H1

0 (�)2.

The bilinear form b(·, ·) relating the functional spaces for velocity and pressure satisfies
the following Babuška–Brezzi condition (see [27] for example): there exists a constant
ς > 0 such that

inf
q∈L2

0(�)
sup

v∈H1
0 (�)2

b(v, q)
‖v‖1

≥ ς‖q‖. (1.5)

The weak formulation associated with the state equations (1.1)–(1.4) is given as follows:
find (y, r) ∈ H1

0 (�)2 × L2
0(�) such that

min
u∈Uad

1
2
‖y – yd‖2

L2(�) +
1
2
‖u‖2

L2(�) (1.6)

a(y, w) – b(w, r) = (f + u, w), ∀w ∈ H1
0 (�)2, (1.7)

b(y,φ) = 0, ∀φ ∈ L2
0(�). (1.8)

The paper is organized as follows. In Sect. 2, we present some notations and describe
the finite volume method briefly. In Sect. 3, we analyze the error estimates between the
exact solution and the finite volume element approximation. Finally, we give a conclusion
and some possible future work in Sect. 4.

2 Finite volume element approximation
As is shown in [15], the partition Th is quasi-uniform, i.e., there exists a positive constant
C such that

C–1h2 ≤ meas(Vi) ≤ Ch2, ∀Vi ∈ Th.

For the convex polygon �, we consider a quasi-uniform triangulation Th consisting of
closed triangle elements K such that �̄ =

⋃
K∈Th

K . We use Nh to denote the set of all
nodes or vertices of Th, Nt denote the number of triangles in the primal partition. To define
the dual partition T ∗

h of Th, we divide each K ∈ Th into three quadrilaterals by connecting
the barycenter CK of K with line segments to the midpoints of edges of K as is shown in
Fig. 1.
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Figure 1 The dual partition of a triangular K

Figure 2 The control volume Vi sharing the same vertex zi

The control volume Vi consists of the quadrilaterals sharing the same vertex zi as is
shown in Fig. 2.

The dual partition T ∗
h consists of the union of the control volume Vi. Let h = max{hK },

where hK is the diameter of the triangle K . The dual partition T ∗
h is also quasi-uniform.

We define the finite dimensional space Vh associated with Th for the trial functions by

Vh =
{

v : v ∈ L2(�)2, v|K ∈ P1(K)2,∀K ∈ Th, v|∂� = 0
}

,

and define the finite dimensional space Qh associated with the dual partition T ∗
h for the

test functions by

Qh =
{

q ∈ L2(�)2 : q|V ∈ P0(V )2,∀V ∈ T ∗
h ; q|Vz = 0, z ∈ ∂�

}
,

where Vz is a dual element and Pl(K) or Pl(V ) consists of all the polynomials with degree
less than or equal to l defined on K or V .

Let Rh be the following finite dimensional space for pressure:

Rh =
{

r ∈ L2
0(�) : r|K ∈ P0(K),∀k ∈ Th

}
.
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To connect the trial space and the test space, we define a transfer operator Ih : Vh → Qh

as follows:

Ihvh =
∑

zi∈Nh

vh(zi)χi, Ihvh|Vi = vh(zi), ∀Vi ∈ T ∗
h ,

where χi is the characteristic function of Vi.
It is well known (see [12] for example) that there exists a positive constant C such that,

for all v ∈ Vh,

‖v – Ihv‖ ≤ Ch‖v‖1, (2.1)

a(vh, Ihvh) ≥ C‖vh‖2
1. (2.2)

The finite volume scheme of (1.6)–(1.8) is defined as the solution of the problem: find
(yh, rh) ∈ Vh × Rh such that

a(yh, Ihwh) – b(Ihwh, rh) = (f + uh, Ihwh), ∀wh ∈ H1
0 (�)2, (2.3)

b(Ihyh,φh) = 0, ∀φ ∈ Rh, (2.4)

where the bilinear forms a(yh, Ihwh) and b(Ihwh, rh) are defined by

a(yh, Ihwh) = –A
∑

zi∈Nh

wh(zi)
∫

∂Vi

∇yh · n ds, yh, wh ∈ H1
0 (�)2 ∩ Vh

and

b(Ihwh, rh) =
∑

zi∈Nh

wh(zi)
∫

∂Vi

rhn ds, rh, wh ∈ Rh ∩ Vh,

where n is the unit outward normal vector to ∂Vi.
The bilinear form a(·, ·) is not symmetric though the problem is self-adjoint. Then, for

all wh, vh ∈ Vh, there exist positive constants C and h0 ≥ 0 such that [11], for all 0 < h < h0,

∣
∣a(wh, Ihvh) – a(vh, Ihwh)

∣
∣ ≤ Ch‖wh‖1‖vh‖1. (2.5)

It is well known (see, e.g., [20]) that the optimal control problem (1.1)–(1.4) has a unique
solution (y, r, u), and that if a triplet (y, r, u) is the solution of (1.1)–(1.4), then there is
a co-state (p, s) ∈ H1

0 (�)2 × L2
0(�) such that (y, r, p, s, u) satisfies the following optimality

conditions:

a(y, w) – b(w, r) = (f + u, w), ∀w ∈ H1
0 (�)2, (2.6)

b(y,φ) = 0, ∀φ ∈ L2
0(�), (2.7)

a(q, p) + b(q, s) = (y – yd, q), ∀q ∈ H1
0 (�)2, (2.8)

b(p,ψ) = 0, ∀ψ ∈ L2
0(�), (2.9)

(u + p, v – u) ≥ 0, ∀v ∈ Uad. (2.10)
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We use the finite volume method to discretize the state and costate equation. Then the op-
timal control problem (2.6)–(2.10) can be approximated as follows: find (yh, rh, ph, sh, uh) ∈
Vh × Rh × Vh × Rh × Uad such that

a(yh, Ihwh) – b(Ihwh, rh) = (f + uh, Ihwh), ∀wh ∈ Vh, (2.11)

b(Ihyh,φh) = 0, ∀φ ∈ Rh, (2.12)

a(ph, Ihqh) + b(Ihqh, sh) = (yh – yd, Ihqh), ∀qh ∈ Vh, (2.13)

b(Ihph,ψh) = 0, ∀ψ ∈ Rh, (2.14)

(uh + ph, vh – uh) ≥ 0, ∀vh ∈ Uad. (2.15)

3 L2 error estimates
In this section, we consider the error analysis of the finite volume element approximation.
Let (yh(u), rh(u), ph(y), sh(y)) be the solution of

a
(
yh(u), Ihwh

)
– b

(
rh(u), Ihwh

)
= (f + u, Ihwh), ∀wh ∈ Vh, (3.1)

b
(
Ihyh(u),φh

)
= 0, ∀φh ∈ Rh, (3.2)

a
(
ph(y), Ihqh

)
+ b

(
sh(y), Ihqh

)
=

(
yh(u) – yd, Ihqh

)
, ∀qh ∈ Vh. (3.3)

b
(
Ihph(y),ψh

)
= 0, ∀ψh ∈ Rh. (3.4)

For yh(u) and ph(u), note that yh = yh(uh) and ph = ph(uh).
Firstly, we give some intermediate error estimates.

Lemma 3.1 Let (y, r, p, s, u) and (yh, rh, ph, sh, uh) ∈ Vh ×Rh ×Vh ×Rh ×Uad be the solutions
of (2.6)–(2.10) and (2.11)–(2.15), respectively. Assume that (yh(u), rh(u), ph(y), sh(y)) are the
solutions of (3.1)–(3.4), respectively. Then we have

∥
∥yh(u) – yh

∥
∥

1 +
∥
∥rh(u) – rh

∥
∥ ≤ C‖u – uh‖, (3.5)

∥
∥ph(y) – ph

∥
∥

1 +
∥
∥sh(y) – sh

∥
∥ ≤ C‖y – yh‖. (3.6)

Proof Subtracting (2.11)–(2.12) from (3.1)–(3.2), we have

a
(
yh(u) – yh, Ihwh

)
– b

(
rh(u) – rh, Ihwh

)
= (u – uh, Ihwh), ∀wh ∈ Vh,

b
(
Ih

(
yh(u) – yh

)
,φh

)
= 0, ∀φh ∈ Rh.

Let wh = yh(u) – yh and φh = rh(u) – rh. Note that

b
(
rh(u) – rh, Ih

(
yh(u) – yh

))
= 0.

Then we can obtain

a
(
yh(u) – yh, Ih

(
yh(u) – yh

))
=

(
u – uh, Ih

(
yh(u) – yh

))
. (3.7)
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By using (2.2), we have

C
∥
∥yh(u) – yh

∥
∥2

1 ≤ (
u – uh, Ih

(
yh(u) – yh

))

≤ C‖uh – u‖ · ∥∥yh(u) – yh
∥
∥

1. (3.8)

It is clear that we obtain

∥
∥yh(u) – yh

∥
∥

1 ≤ C‖u – uh‖. (3.9)

Then, we deal with this term ‖rh(u) – rh‖ by using (1.5)

∥
∥rh(u) – rh

∥
∥ ≤ 1

ς
sup

wh∈Vh

b(Ihvh, rh(u) – rh)
‖wh‖1

=
1
ς

sup
wh∈Vh

a(yh(u) – yh, Ihwh) + (uh – u, Ihwh)
‖wh‖1

≤ ‖u – uh‖. (3.10)

Similarly, we can obtain

∥
∥ph(u) – ph

∥
∥

1 +
∥
∥sh(u) – sh

∥
∥ ≤ C‖y – yh‖. (3.11)

This completes the proof. �

Lemma 3.2 Let (y, r, p, s, u) and (yh, rh, ph, sh, uh) ∈ Vh ×Rh ×Vh ×Rh ×Uad be the solutions
of (2.6)–(2.10) and (2.11)–(2.15), respectively. Assume A ∈ W 2,∞(�) and f , yd ∈ H1(�)2.
Then we have

∥
∥ph(u) – p

∥
∥ +

∥
∥yh(u) – y

∥
∥ ≤ Ch2, (3.12)

∥
∥rh(u) – r

∥
∥ +

∥
∥sh(u) – s

∥
∥ ≤ Ch. (3.13)

Proof Similar to the proof of Theorem 4.1 in [29], directly apply Lemma 3.1 to readily
derive the following estimates:

∥
∥yh(u) – y

∥
∥

1 +
∥
∥rh(u) – r

∥
∥ ≤ Ch, (3.14)

∥
∥ph(u) – p

∥
∥

1 +
∥
∥sh(u) – s

∥
∥ ≤ Ch. (3.15)

Then we will estimate the derivation of L2-estimates for y – yh(u) and p – ph(y). Let us
consider the dual problem: find (η,ρ) such that

– v�η + ∇ρ = y – yh(u), in �, (3.16)

∇ · η = 0, in �, (3.17)

η = 0, on ∂�, (3.18)
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which is uniquely solvable; moreover, the following H2(�) × H1(�)-regularity is satisfied:

‖η‖2 + ‖ρ‖1 ≤ c
∥
∥y – yh(u)

∥
∥. (3.19)

Let ηI ∈ Vh be the usual continuous piecewise linear interplant; it is not hard to see that
there exists a constant c independent of h such that

‖η – ηI‖2 ≤ ch‖η‖2. (3.20)

‖η – ηI‖ ≤ ch2‖η‖2. (3.21)

Let � denote the L2-projection from L2
0(�) to Qh, we can get

‖ρ – �ρ‖ ≤ ch‖ρ‖1. (3.22)

Since ηI ∈ Vh is a continuous interpolant of η,

a
(
y – yh(u),ηI

)
+ b

(
ηI , r – rh(u)

)
= 0, (3.23)

b
(
y – yh(u),�λ

)
= 0. (3.24)

Multiplying (3.16) by y – yh(u), integrating by parts, we can get

∥
∥y – yh(u)

∥
∥2 = a

(
y – yh(u),η

)
– b

(
y – yh(u),ρ

)
. (3.25)

Note that

b
(
ηI , r – rh(u)

)
= – divηI , r – rh(u)) – (∇r,ηI – IhηI) (3.26)

and

a
(
y – yh(u),ηI

)
=

(∇(
y – yh(u)

)
,∇ηI

)
– (�y,ηI – IhηI). (3.27)

Subtracting (3.23) from (3.25), we have

∥
∥y – yh(u)

∥
∥2

= a
(
y – yh(u),η

)
– a

(
y – yh(u),ηI

)
– b

(
y – yh(u),ρ

)
– b

(
ηI , r – rh(u)

)

= a
(
y – yh(u),η

)
– a

(
y – yh(u),ηI

)
+

(
divηI , r – rh(u)

)
– (�y,ηI – IhηI)

+ (∇r,ηI – IhηI) – b
(
y – yh(u),ρ

)
+ b

(
y – yh(u),�ρ

)

= a
(
y – yh(u),η – ηI

)
+

(
divηI , r – rh(u)

)

+ (–�y + ∇r,ηI – IhηI) – b
(
y – yh(u),ρ – �ρ

)

≡ E1 + E2 + E3 + E4. (3.28)

For the first term of (3.28), we can obtain

E1 = a
(
y – yh(u),η – ηI

)
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≤ Ch2‖y‖2‖η‖2

≤ Ch2‖y‖2
∥
∥y – yh(u)

∥
∥. (3.29)

Then we estimate E2 as follows:

E2 =
(
divηI , r – rh(u)

)

≤ ∣
∣
(
div(η – ηI), r – rh(u)

)∣
∣

≤ Ch2‖r‖1
∥
∥y – yh(u)

∥
∥. (3.30)

By using (1.2), we can obtain

E3 = (–�y + ∇r,ηI – IhηI)

= (f + u,ηI – IhηI)

≤ Ch2(‖f ‖1 + ‖u‖1 + ‖y‖2
)∥
∥y – yh(u)

∥
∥. (3.31)

According to the quality of �, we have

E4 = b
(
y – yh(u),ρ – �ρ

)

≤ Ch2‖y‖2
∥
∥y – yh(u)

∥
∥. (3.32)

Putting (3.29)–(3.32) into (3.28), we can prove

∥
∥y – yh(u)

∥
∥ ≤ Ch2. (3.33)

In the same way, we can obtain

∥
∥p – ph(u)

∥
∥ ≤ Ch2. (3.34)

�

Now, we estimate the error of the approximate control in L2-norm.

Theorem 3.1 Let (y, r, p, s, u) and (yh, rh, ph, sh, uh) ∈ Vh × Rh × Vh × Rh × Uad be the
solutions of (2.6)–(2.10) and (2.11)–(2.15), respectively. We assume A ∈ W 2,∞(�) and
f , yd ∈ H1(�)2. Then we have the following error estimate:

‖u – uh‖ ≤ Ch2. (3.35)

Proof Let v = uh in (2.10) and v = u in (2.15), then we have

(u – p, uh – u) ≥ 0, (3.36)

(uh – ph, u – uh) ≥ 0. (3.37)

By using (3.36) and (3.37), we obtain

c‖u – uh‖2 ≤ (p – ph, uh – u)
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=
(
p – ph(y), uh – u

)
+

(
ph(y) – ph, uh – u

)

=
(
p – ph(y), uh – u

)
+

(
Ih

(
ph(y) – ph

)
, uh – u

)

+
((

ph(y) – ph
)

– Ih
(
ph(y) – ph

)
, uh – u

)

≡ E1 + E2 + E3. (3.38)

Now, we estimate all terms on the right-hand side of (3.38). From Lemma 3.2 and δ-Cauchy
inequality, we have

E1 =
(
p – ph(y), uh – u

)

≤ C
∥
∥p – ph(y)

∥
∥ · ‖u – uh‖

≤ Ch2‖u – uh‖. (3.39)

Note that b(rh – rh(u), Ih(ph(y) – ph)) = 0 and b(sh(y) – sh, Ih(yh – yh(u))) = 0, we have

E2 =
(
Ih

(
ph(y) – ph

)
, uh – u

)

= a
(
yh – yh(u), Ih

(
ph(y) – ph

))
– b

(
rh – rh(u), Ih

(
ph(y) – ph

))

= a
(
yh – yh(u), Ih

(
ph(y) – ph

))
– a

(
ph(y) – ph, Ih

(
yh – yh(u)

))

+ a
(
ph(y) – ph, Ih

(
yh – yh(u)

))
– b

(
rh – rh(u), Ih

(
ph(u) – ph

))

= a
(
yh – yh(u), Ih

(
ph(y) – ph

))
– a

(
ph(y) – ph, Ih

(
yh – yh(u)

))

+
(
yh(u) – yh, Ih

(
yh – yh(u)

))
– b

(
sh(y) – sh, Ih

(
yh – yh(u)

))
. (3.40)

By applying (yh(u) – yh, Ih(yh – yh(u))) ≤ 0 and Lemma 3.2, it is clear that

E2 = a
(
yh – yh(u), Ih

(
ph(y) – ph

))
– a

(
ph(y) – ph, Ih

(
yh – yh(u)

))

≤ Ch
∥
∥yh – yh(u)

∥
∥

1 · ∥∥ph(y) – ph
∥
∥

1

≤ Ch‖u – uh‖ · ‖y – yh‖
≤ Ch‖u – uh‖ · (Ch2 + ‖u – uh‖

)
. (3.41)

According to (2.1) and Lemma 3.2, we obtain

E3 =
((

ph(y) – ph
)

– Ih
(
ph(y) – ph

)
, uh – u

)

≤ Ch
∥
∥ph(y) – ph

∥
∥

1 · ‖u – uh‖
≤ Ch‖y – yh‖ · ‖u – uh‖
≤ Ch‖u – uh‖ · (Ch2 + ‖u – uh‖

)
. (3.42)

Finally, we can derive the result (3.35) from (3.38)–(3.42). �

Theorem 3.2 Let (y, r, p, s, u) and (yh, rh, ph, sh, uh) ∈ Vh × Rh × Vh × Rh × Uad be the
solutions of (2.6)–(2.10) and (2.11)–(2.15), respectively. We assume A ∈ W 2,∞(�) and
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f , yd ∈ H1(�)2. Then there exists h0 > 0 such that, for all 0 < h ≤ h0,

‖u – uh‖ + ‖y – yh‖ + ‖p – ph‖ ≤ Ch2, (3.43)

‖r – rh‖ + ‖s – sh‖ ≤ Ch. (3.44)

Proof Using the triangle inequality, we have

‖y – yh‖ ≤ ∥
∥y – yh(u)

∥
∥ +

∥
∥yh(u) – yh

∥
∥,

‖p – ph‖ ≤ ∥
∥p – ph(u)

∥
∥ +

∥
∥ph(u) – ph

∥
∥.

Lemma 3.1 implies that

‖y – yh‖ ≤ ∥
∥y – yh(u)

∥
∥ + C‖u – uh‖, (3.45)

‖p – ph‖ ≤ ∥
∥p – ph(u)

∥
∥ + C‖y – yh‖. (3.46)

By using Lemma 3.2, we can easily obtain

‖y – yh‖ ≤ Ch2. (3.47)

By using (3.47) and Lemma 3.2, we derive

‖p – ph‖ ≤ Ch2. (3.48)

From (3.47)–(3.48), we can immediately obtain (3.43). In the same way, we can obtain
(3.44). �

Next, we will discuss the error estimates of the numerical solutions of the state and
costate in H1-norm.

Theorem 3.3 Assume that A ∈ W 2,∞(�) and f , yd ∈ L2(�)2. Let (y, r, p, s, u) and (yh, rh,
ph, sh, uh) ∈ Vh × Rh × Vh × Rh × Uad be the solutions of (2.6)–(2.10) and (2.11)–(2.15),
respectively. Then there exists h0 > 0 such that, for all 0 < h ≤ h0,

‖y – yh‖1 + ‖p – ph‖1 ≤ Ch. (3.49)

Proof Using the triangle inequality, we have

‖y – yh‖1 ≤ ∥
∥y – yh(u)

∥
∥

1 +
∥
∥yh(u) – yh

∥
∥

1,

‖p – ph‖1 ≤ ∥
∥p – ph(u)

∥
∥

1 +
∥
∥ph(u) – ph

∥
∥

1.

Lemma 3.1 implies that

‖y – yh‖1 ≤ ∥
∥y – yh(u)

∥
∥

1 + C‖u – uh‖, (3.50)

‖p – ph‖1 ≤ ∥
∥p – ph(u)

∥
∥

1 + C‖y – yh‖. (3.51)

From Theorem 3.2, (3.14)–(3.15), and (3.50)–(3.51), we can easily obtain (3.49). �
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4 Conclusion and future works
In this paper, we considered a priori error estimates for the finite volume element approx-
imation of Stokes optimal control problem. Then we used the finite volume method to
discretize the state and adjoint equation of the system. Under some reasonable assump-
tions, we obtained some optimal order error estimates. The approximate orders for the
state, costate, and control variables were O(h2), and the approximate orders for the state
and costate variables was O(h) in the sense of L2-norm and H1-norm. To our best knowl-
edge, in the context of optimal control problems, these a priori error estimates of the finite
volume method for Stokes optimal control problem are new.

In future, we shall consider a posteriori error estimates and superconvergence of the
finite volume element solutions for Stokes optimal control problem.
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