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Abstract
We generalize the concepts of normalized duality mapping, J-orthogonality and
Birkhoff orthogonality from normed spaces to smooth countably normed spaces. We
give some basic properties of J-orthogonality in smooth countably normed spaces
and show a relation between J-orthogonality and metric projection on smooth
uniformly convex complete countably normed spaces. Moreover, we define the
J-dual cone and J-orthogonal complement on a nonempty subset S of a smooth
countably normed space and prove some basic results about the J-dual cone and the
J-orthogonal complement of S.
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1 Introduction
The concept of duality mapping was introduced by Beurling and Livingston [1] in a geo-
metric form. A slightly extended version of the concept was proposed by Asplund [2], who
showed how the duality mappings can be characterized via the subdifferentials of convex
functions. It is well known that the geometric properties of a Banach space E correspond
to the analytic properties of the duality mapping, and it is recognized that if E is smooth,
then the duality mapping is single-valued. Park and Rhee [3] defined J-orthogonality in
a smooth Banach space using the normalized duality mapping. In this paper, we define
the normalized duality mapping on smooth countably normed spaces, generalize the con-
cepts of J-orthogonality and Birkhoff orthogonality in smooth countably normed spaces,
and give some basic properties of J-orthogonality in these spaces. Faried and El-Sharkawy
[4] defined real uniformly convex complete countably normed spaces and proved that the
metric projection on a nonempty convex and closed proper subset of these spaces is well
defined. In this paper, we give a relation between metric projection and J-orthogonality
and show fundamental links between metric projection and normalized duality mapping
in smooth uniformly convex complete countably normed spaces.
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2 Preliminaries
Definition 2.1 ([5, 6]) A normed linear space E is said to be:

(1) Strictly convex if ‖ x+y
2 ‖ < 1 for all x, y ∈ E with ‖x‖ = ‖y‖ = 1 and x �= y;

(2) Uniformly convex if for any ε ∈ (0, 2], there exists δ = δ(ε) > 0 such that if x, y ∈ E
with ‖x‖ = 1, ‖y‖ = 1, and ‖x – y‖ ≥ ε, then ‖ x+y

2 ‖ ≤ 1 – δ;
(3) Smooth if limt→0

‖x+ty‖–‖x‖
t exists for all x, y ∈ S(E), where S(E) is the unit sphere of E;

(4) Uniformly smooth if for every ε > 0, there exists δ > 0 such that for all x, y ∈ E with
‖x‖ = 1 and ‖y‖ ≤ δ, we have ‖x + y‖ + ‖x – y‖ < 2 + ε‖y‖.

Definition 2.2 (Metric projection [6]) Let E be a real uniformly convex Banach space,
and let K be a nonempty proper subset of E. The operator PK : E → K is called a metric
projection operator if it assigns to each x ∈ E its nearest point x̄ ∈ K , that is, the solution
of the minimization problem

PK x = x̄ : ‖x – x̄‖ = inf
y∈K

‖x – y‖.

Definition 2.3 (The normalized duality mapping [7, 8]) Let E be a real Banach space with
norm ‖ · ‖, and let E∗ be the dual space of E, and let 〈·, ·〉 be the duality pairing. The nor-
malized duality mapping J from E to 2E∗ is defined by

Jx =
{

x∗ ∈ E∗ :
〈
x, x∗〉 = ‖x‖2 =

∥∥x∗∥∥2}.

The Hahn–Banach theorem guarantees that Jx �= ∅ for every x ∈ E. It is well known
that if E is a smooth Banach space, then the normalized duality mapping is single-
valued. In [8], we got the following example of the normalized duality mapping J in
the uniformly convex and uniformly smooth Banach space �p with p ∈ (1,∞): Jx :=
‖x‖2–p

�p {x1|x1|p–2, x2|x2|p–2, . . .} ∈ �q = �p∗ for x = {x1, x2, . . .} ∈ �p, where 1
p + 1

q = 1.

Proposition 2.4 ([9]) Let E be a smooth Banach space, let E∗ be the dual space of E, and
let J be the normalized duality mapping from E to 2E∗ . Then J is a continuous operator in
E, and J(βx) = βJ(x) for all β ∈R.

Definition 2.5 (Lyapunov functional [7, 8]) Let E be a smooth Banach space, and let E∗

be the dual space of E. The Lyapunov functional ϕ : E × E →R is defined by

ϕ(y, x) = ‖y‖2 – 2〈y, Jx〉 + ‖x‖2

for all x, y ∈ E, where J is the normalized duality mapping from E to 2E∗ .

Definition 2.6 (Compatible norms [10, 11]) Two norms in a linear space E are said to be
compatible if every Cauchy sequence {xn} in E with respect to both norms that converges
to a limit x ∈ E with respect to one of them also converges to the same limit x with respect
to the other norm.

Definition 2.7 (Countably normed space [10, 11]) A linear space E equipped with a
countable family of pairwise compatible norms {‖ · ‖n, n ∈ N} is said to be a count-
ably normed space. An example of a countably normed space is the space �p+0 :=

⋂
n �pn

(1 < p < ∞) for any choice of a decreasing sequence pn converging to p.
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Remark 2.8 ([11]) For a countably normed space (E, {‖ · ‖n, n ∈N}), let En be the comple-
tion of E with respect to the norm ‖ · ‖n. We may assume that ‖ · ‖1 ≤ ‖ · ‖2 ≤ ‖ · ‖3 ≤ · · ·
in any countably normed space; we also have E ⊂ · · · ⊂ En+1 ⊂ En ⊂ · · · ⊂ E1.

Proposition 2.9 ([10]) Let (E, {‖ · ‖n, n ∈N}) be a countably normed space. Then E is com-
plete if and only if E =

⋂
n∈N En. Each Banach space En has a dual E∗

n, which is a Banach
space, and the dual of the countably normed space E is given by E∗ =

⋃
n∈N E∗

n. We have the
following inclusions:

E∗
1 ⊂ · · · ⊂ E∗

n ⊂ E∗
n+1 ⊂ · · · ⊂ E∗.

Moreover, for f ∈ E∗
n , we have ‖f ‖n ≥ ‖f ‖n+1 for all n ∈N.

Definition 2.10 (Uniformly convex countably normed space [4]) A countably normed
space (E, {‖ · ‖n, n ∈N}) is said to be uniformly convex if (En,‖ · ‖n) is uniformly convex for
all n ∈N.

Theorem 2.11 ([4]) Let (E, {‖ · ‖n, n ∈ N}) be a real uniformly convex complete countably
normed space, and let K be a nonempty convex proper subset of E such that K is closed in
each En. Then there exists a unique x̄ ∈ K such that ‖x – x̄‖n = infy∈K ‖x – y‖n for all n ∈N,
and the metric projection P : E → K is defined by P(x) = x̄.

Definition 2.12 (J-orthogonality [3]) Let E be a smooth Banach space. Two elements
x, y ∈ E are said to be J-orthogonal, written “x is J-orthogonal to y” or x ⊥J y, if 〈y, Jx〉 = 0.

Definition 2.13 (Gauge function [8]) A gauge function is a continuous strictly increasing
function ϑ : R+ →R

+ such that ϑ(0) = 0 and limt→∞ ϑ(t) = ∞.

3 Main results
Now we introduce the concept of the normalized duality mapping in smooth countably
normed (SCN) spaces.

Definition 3.1 (The normalized duality mapping in SCN spaces) Let (E, {‖ · ‖n, n ∈N}) be
a smooth countably normed space such that En is the completion of E in ‖·‖n and (En,‖·‖n)
is a smooth Banach space for all n ∈ N, so that there exists a single-valued normalized
duality mapping Jn : En → E∗

n with respect to ‖ · ‖n for all n ∈ N. Without being confused,
we understand that ‖Jnx‖n is the E∗

n-norm and ‖x‖n is the En-norm, for all n ∈N.
We define the following multivalued mapping J : E → 2E∗ to be the normalized duality

mapping of a smooth countably normed space: J(x) = {Jnx}∞n=1 ⊆ E∗ =
⋃

n∈N E∗
n, ‖Jnx‖n =

‖x‖n, 〈Jnx, x〉 = ‖x‖2
n for n ∈N.

Remark 3.2 Let (E, {‖ · ‖n, n ∈N}) be a smooth countably normed space. The sequence of
norms is increasing in E, and from the definition of normalized duality mappings Jn for
each En with respect to ‖ · ‖n we have

(‖x‖1 = ‖J1x‖1
) ≤ (‖x‖2 = ‖J2x‖2

) ≤ · · · ≤ (‖x‖n = ‖Jnx‖n
) ≤ · · · ,
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and thus 〈J1x, x〉 ≤ 〈J2x, x〉 ≤ · · · ≤ 〈Jnx, x〉 ≤ . . . , and using the properties of countably
normed spaces, we have ‖Jix‖n ≥ ‖Jix‖n+1 for all i and n.

Remark 3.3 The multivalued normalized duality mapping of a smooth countably normed
space cannot be a single-valued mapping, unlike the case of a smooth Banach space. In-
deed, if it were a single-valued mapping, then it would be the same single-valued nor-
malized duality mapping for each En with respect to ‖ · ‖n, which would imply that
〈Jx, x〉 = ‖x‖2

n for all n. Then we would get ‖x‖1 = ‖x‖2 = · · · = ‖x‖n = · · · , which would
mean that we are back to a normed vector space, and this ruins the construction of the
countably normed space.

Proposition 3.4 If (E, {‖ · ‖n, n ∈N}) is a smooth countably normed space, then Jm|En is the
single-valued normalized duality mapping of En with respect to ‖ ·‖n for all m = 1, 2, . . . , n –
1 and n ≥ 2.

Proof Let Jn–1 be the normalized duality mapping of En–1 with respect to ‖ · ‖n–1. We
have Jn–1 : En–1 → E∗

n , E∗
n–1 ⊆ E∗

n, En ⊆ En–1, so Jn–1|En : En → E∗
n and ‖Jn–1|En x‖n = ‖x‖n–1,

〈Jn–1|En x, x〉 = ‖x‖2
n–1 for all x ∈ En ⊆ En–1. So Jn–1|En is the single-valued normalized duality

mapping of En with respect to ‖ · ‖n–1. The same holds for all m = 1, 2, . . . , n – 1, and hence
Jm|En is the single-valued normalized duality mapping of En with respect to ‖ · ‖n for all
n ≥ 2. �

Corollary 3.5 If (E, {‖·‖n, n ∈N}) is a smooth countably normed space, then En is a smooth
Banach space with respect to ‖ · ‖m, m = 1, 2, . . . , n – 1, n ≥ 2.

Proof Since Jm|En is the single-valued normalized duality mapping of En with respect to
‖ · ‖n for all m = 1, 2, . . . , n – 1, then En is a smooth Banach space with respect to ‖ · ‖m for
all n ≥ 2. �

Proposition 3.6 Let E be a smooth countably normed space, let E∗ be its dual space, and
let Jn be the normalized duality mapping of En with respect to ‖ · ‖n relative to the gauge
function ϑn, where ϑn(‖x‖n) = ‖x‖n = ‖Jnx‖n. Define ψn(r) =

∫ r
0 ϑn(σ ) dσ . Then ψn(‖y‖n) –

ψn(‖x‖n) ≥ 〈Jnx, y – x〉 for all y ∈ E and n ∈N.

Proof We have

ψn
(‖y‖n

)
– ψn

(‖x‖n
)

=
∫ ‖y‖n

‖x‖n

ϑn(t) dt ≥ ϑn
(‖x‖n

)(‖y‖n – ‖x‖n
)
, ∀n,

that is, ψn(‖y‖n) –ψn(‖x‖n) = ϑn(‖x‖n)‖y‖n – 〈Jnx, x〉 ≥ 〈Jnx, y– x〉 for all y ∈ E and n ∈ N. �

Proposition 3.7 Let (E, {‖ · ‖n, n ∈N}) be a real smooth uniformly convex complete count-
ably normed space, and let K be a nonempty proper convex subset of E such that K is closed
in each En. Then x̄ = PK (x) is the metric projection of an arbitrary element x ∈ E if and only
if 〈J(x – x̄), x̄ – y〉 ≥ 0 for all y ∈ K , where J is the normalized duality mapping on E.

Proof “⇒” By the definition of the metric projection and the convexity of K we have

‖x – x̄‖n ≤ ∥∥x –
(
μy + (1 – μ)x̄

)∥∥
n, ∀y ∈ K ,μ ∈ [0, 1],∀n. (*)
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Consider ψn(r) =
∫ r

0 ϑn(σ ) dσ . If Jn is the normalized duality mapping relative to the gauge
function ϑn with respect to ‖ · ‖n, then (*) is equivalent to

ψn
(‖x – x̄‖n

) ≤ ψn
(∥∥x –

[
μy + (1 – μ)x̄

]∥∥
n

)
. (**)

By Proposition 3.6 and (**) we get

0 ≥ ψn
(‖x – x̄‖n

)
– ψn

(∥∥x –
(
μy + (1 – μ)x̄

)∥∥
n

)
) ≥ 〈

Jn
(
x – x̄ – μ(y – x̄)

)
,μ(y – x̄)

〉
.

As μ tends to 0, we get 〈Jn(x – x̄), y – x̄〉 ≤ 0 for all y ∈ K and n, that is, 〈Jn(x – x̄), x̄ – y〉 ≥ 0
for all y ∈ K and n.

“⇐” If 〈Jn(x – x̄), x̄ – y〉 ≥ 0 for all y ∈ K and n, then using Proposition 3.6, we get

ψn
(‖x – y‖n

)
– ψn

(‖x – x̄‖n
) ≥ 〈

Jn(x – x̄), x̄ – y
〉 ≥ 0.

Thus ‖x – x̄‖n ≤ ‖x – y‖n for all y ∈ K and n, and so x̄ = PK (x). �

Theorem 3.8 Let (E, {‖ · ‖n, n ∈ N}) be a real smooth uniformly convex complete countably
normed space, and let K be a nonempty proper convex subset of E such that K is closed in
each En.

Then x̄ = PK (x) is the metric projection of an arbitrary element x ∈ E if and only if 〈Jn(x –
x̄), x – y〉 ≥ ‖x – x̄‖2

n for all y ∈ K and n.

Proof “⇒” By Proposition 3.6 we have 〈Jn(x – x̄), x̄ – y〉 ≥ 0 for all y ∈ K and n. Besides,

〈
Jn(x – x̄), x̄ – y

〉
= Jn(x – x̄)(x̄ – y)

= Jn(x – x̄)(x̄ – x) + Jn(x – x̄)(x – y)

= –‖x – x̄‖2
n + Jn(x – x̄)(x – y),

and therefore 〈Jn(x – x̄), x – y〉 ≥ ‖x – x̄‖2
n for all y ∈ K and n.

“⇐” If ‖x – x̄‖n = 0, then we are done. So, let us assume that ‖x – x̄‖n �= 0. Then

‖x – x̄‖n ≤ 1
‖x – x̄‖n

〈
Jn(x – x̄), x – y

〉

≤ 1
‖x – x̄‖n

∥∥Jn(x – x̄)
∥∥

n‖x – y‖n

= ‖x – y‖n, ∀y ∈ K ,∀n,

that is, x̄ = PK (x). �

Definition 3.9 (J-orthogonality in smooth countably normed spaces) Let (E, {‖ · ‖n, n ∈
N}) be a smooth countably normed space. We say that an element x ∈ E is J-orthogonal to
an element y ∈ E and write x ⊥J y if 〈y, Jnx〉 = 0 for all n, that is, 〈y, Jx〉 = 0, where J is the
normalized duality mapping of E.
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Definition 3.10 Let (E, {‖ · ‖n, n ∈ N}) be a smooth countably normed space, and let
x1, x2, . . . , xn ∈ E \ {0}. Then the set {x1, x2, . . . , xn} is called a J-orthogonal set if xi ⊥ xj for
all i, j ∈ {1, 2, . . . , n} with i �= j.

Definition 3.11 Let (E, {‖ · ‖n, n ∈N}) be a smooth countably normed space. We say that
an element x ∈ E is orthogonal to an element y ∈ E in the Birkhoff sense if ‖x + αy‖2

i ≥ ‖x‖2
i

for all i = 1, 2, . . . , n, . . . and α ∈R.

Proposition 3.12 Let (E, {‖ · ‖n, n ∈ N}) be a smooth countably normed space, and let
x1, x2, . . . , xn ∈ E \ {0}. Then:

(1) If {x1, x2, . . . , xn} is a J-orthogonal set, then x1, x2, . . . , xn are linearly independent;
(2) Let x, y ∈ E. Then x ⊥J y if and only if x ⊥ y in the Birkhoff sense.

Proof (1) Let α1x1 + α2x2 + · · · + αnxn = 0 for some scalars α1,α2, . . . ,αn ∈R.
For all m ∈ {1, . . . , n} and i, we have:

〈α1x1 + · · · + αnxn, Jixm〉 = α1〈x1, Jixm〉 + · · · + αn〈xn, Jixm〉
= αm‖xm‖2

i

= 0,

and so αm = 0 for all m. Thus x1, x2, . . . , xn are linearly independent.
(2) If x ⊥J y, then 〈y, Jix〉 = 0 for all i. Besides, using the Lyapunov functional, we have

ϕi(x + αy, x) = ‖x + αy‖2
i – 2〈x + αy, Jix〉 + ‖x‖2

i , ∀i

= ‖x + αy‖2
i – ‖x‖2

i – 2α〈y, Jix〉
≥ 0, ∀i,∀α ∈R.

Thus ‖x + αy‖2
i ≥ ‖x‖2

i for all i and α ∈R. Hence x ⊥ y in the Birkhoff sense.
On the other hand, let x ⊥ y in the Birkhoff sense, that is, ‖x + αy‖2

i ≥ ‖x‖2
i for all i and

α ∈ R. If 〈y, Jix〉 �= 0 for some i, then by taking α0 = ‖x+αy‖2
i –‖x‖2

i
〈y,Jix〉 we get that the Lyapunov

functional ϕi(x + α0y, x) < 0. This contradicts that ϕi(x, y) > 0 for all i. �

Proposition 3.13 Let {x1, x2, . . . , xn} be a J-orthogonal set in a smooth countably normed
space E with dual space E∗. The set {Jix1, . . . , Jixn} is linearly independent in the dual space
E∗ for all i.

Proof If α1Jix1 + · · · + αnJixn = 0 for some scalars α1, . . . ,αn ∈ R, then for each m ∈
{1, 2, . . . , n}, we get 〈xm,α1Jix1 + · · · + αnJixn〉 = αm‖x‖2

i = 0 for all i. Hence αm = 0 for all m.
Thus, for all i, the set {Jix1, . . . , Jixn} is linearly independent in the dual space E∗. �

The following theorem gives a relation between metric projection and orthogonality in
real uniformly convex complete countably normed spaces.

Theorem 3.14 Let (E, {‖ · ‖n, n ∈ N}) be a real smooth uniformly convex complete count-
ably normed space, and let M be a nonempty proper subspace of E such that M is closed in
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each Ei. Then

∀x ∈ E \ M,∃!x̄ ∈ M: ‖x – x̄‖i = inf
y∈M

‖x – y‖i

for all i if and only if x – x̄⊥J M.

Proof Assume that

∀x ∈ E \ M,∃!x̄ ∈ M: ‖x – x̄‖i = inf
y∈M

‖x – y‖i, ∀i.

If z ∈ M, then x̄ – αz ∈ M for all α ∈ R, and ‖x – x̄‖i ≤ ‖x – (x̄ – αz)‖i = ‖(x – x̄) + αz‖i for
all i. Therefore x – x̄ is orthogonal to M in the Birkhoff sense. Consequently, x – x̄ ⊥J M.

On the other hand, if x – x̄ ⊥J M, then x – x̄ is orthogonal to M in the Birkhoff sense,
that is, ‖x – x̄‖i ≤ ‖x – x̄ + αy‖i for all α ∈R, y ∈ M, and i.

Since x̄ – y ∈ M, for all y ∈ M and i, we get

‖x – x̄‖i ≤ ∥∥x – x̄ + α(x̄ – y)
∥∥

i

for all α ∈R.
Taking α = 1, we get ‖x – x̄‖i ≤ ‖x – y‖i for all y ∈ M and i. Thus ‖x – x̄‖i = infy∈M ‖x – y‖i

for all i. �

Example 3.15 �2+0 :=
⋂

n∈N �2+ 1
n

is a uniformly convex uniformly smooth complete count-
ably normed space with the norms

‖ · ‖3 ≤ ‖ · ‖2.5 ≤ · · · ≤ ‖ · ‖2+ 1
n

≤ · · ·

for each x = {xi} ∈ �2+0, and

Jn(x) = ‖x‖– 1
n

2+ 1
n

{
xi|xi| 1

n
} ∈ � 2n+1

n+1
, ∀n.

Consider the closed subspace M of �2+0 generated by {1, 0, 0, 0, . . .}. Using the previous
theorem, we get

PM(x) = x̄ = {x̄1, 0, 0, . . .}
⇔ 〈{t, 0, 0, . . .}, Jn(x – x̄)

〉
= {0, 0, . . .}, ∀t ∈R,∀n

⇔ 〈{t, 0, 0, . . .}, Jn{x1 – x̄1, x2, x3, . . . , xn, . . .}〉 = {0, 0, . . .}

⇔ 〈{t, 0, 0, . . .},‖x – x̄‖– 1
n

2+ 1
n

{|x1 – x̄1|– 1
n (x1 – x̄1), . . . , xi|xi| 1

n , . . .
}〉

= {0, 0, . . .}

⇔ ‖x – x̄‖– 1
n

2+ 1
n
|x1 – x̄1|– 1

n (x1 – x̄1)t = 0, ∀t ∈R,∀n

⇔ x̄1 = x1, PM(x) = x̄ = {x1, 0, 0, . . .}.
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Definition 3.16 The J-dual cone of a nonempty subset S of a smooth countably normed
space (E, {‖ · ‖n, n ∈N}) is the set

So
J =

{
x ∈ E : 〈y, Jix〉 ≤ 0,∀y ∈ S,∀i

}
.

In addition, the J-orthogonal complement of S is the set

S⊥
J = So

J ∩ (–S)o
J =

{
x ∈ E : 〈y, Jix〉 = 0,∀y ∈ S,∀i

}
.

Theorem 3.17 Let S be a nonempty subset of a smooth countably normed space (E, {‖ · ‖n,
n ∈N}). Then:

(1) So
J and S⊥

J are closed cones;
(2) So

J = (S̄)o
J and S⊥

J = (S̄)⊥J ;
(3) So

J = [conv(S)]o
J = [conv(S)]

o
J and S⊥

J = [span(S)]⊥J = [span(S)]
⊥
J , where conv(S) is the

convex hull of S, and span(S) is the subspace generated by S;
(4) S̄ ⊂ (So

J )o and S̄ ⊂ (S⊥
J )⊥;

(5) If C is a cone, then (C – y)o
J = Co

J ∩ y⊥
J for all y ∈ C;

(6) If M is a subspace, then Mo
J = M⊥

J .

Proof (1) If xn ∈ So
J and xn → x, then for all y ∈ S, 〈y, Jix〉 = limn→∞〈y, Jixn〉 ≤ 0 ∀i implies

that x ∈ So
J , and thus So

J is closed. If x ∈ So
J and α ≥ 0, then for all y ∈ S and i, we get

〈
y, Ji(αx)

〉
= 〈y,αJix〉 = α〈y, Jix〉 ≤ 0.

Hence αx ∈ So
J , and thus So

J is a cone. Since S⊥
J = So

J ∩ (–S)o
J , S⊥

J is a closed cone.
(2) Since S ⊆ S̄, we have (S̄)o

J ⊆ So
J . If x ∈ So

J and y ∈ S̄, choose yn ∈ S such that yn → y.
Then 〈y, Jix〉 = limn→∞〈yn, Jix〉 ≤ 0 for all i implies x ∈ (S̄)o

J . Thus So
J = (S̄)o

J . Moreover, S⊥
J =

(S̄)⊥J .
(3) Since S ⊆ conv(S), [conv(S)]o

J ⊆ So
J . Let x ∈ So

J and y ∈ conv(S). By the definition of
conv(S), y =

∑n
m=1 ρmym for some yi ∈ S and ρi ≥ 0 with

∑n
m=1 ρm = 1, i = 1, 2, . . . , n.

Then 〈y, Jix〉 =
∑n

m=1 ρm〈ym, Jix〉 ≤ 0 for all i implies x ∈ [conv(S)]o
J , so So

J ⊆ [conv(S)]o
J .

Thus So
J = [conv(S)]o

J . Moreover, S⊥
J = [span(S)]⊥J = [span(S)]

⊥
J .

(4) If x ∈ S, then for all y ∈ So
J , 〈x, Jiy〉 ≤ 0 for all i. Hence x ∈ (So

J )o. Thus S ⊆ (So
J )o. Since

(So
J )o is closed, S̄ ⊆ (So

J )o.
(5) Now x ∈ (C – y)o

J if and only if 〈c – y, Jix〉 ≤ 0 for all i and c ∈ C. Let x ∈ (C – y)o
J .

Taking c = 0 and c = 2y, we have 〈y, Jix〉 = 0, and 〈c, Jix〉 ≤ 0 for all i and c ∈ C. Thus x ∈
Co

J ∩ y⊥
J . Moreover, if x ∈ Co

J ∩ y⊥
J , then 〈c, Jix〉 ≤ 0 and 〈y, Jix〉 = 0 for all i and c ∈ C. Thus

x ∈ (C – y)o
J . Therefore (C – y)o

J = Co
J ∩ y⊥

J for all y ∈ C.
(6) If M is a subspace of E, then –M = M implies M⊥

J = Mo
J ∩ (–M)o

J = Mo
J . �

4 Conclusion
In this paper, we defined J-orthogonality and Birkhoff orthogonality in smooth count-
ably normed spaces and showed that these two types of orthogonality coincide in these
spaces. Besides, we proved some basic properties of J-orthogonality in smooth count-
ably normed spaces and gave a relation between J-orthogonality and metric projection
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on smooth uniformly convex complete countably normed spaces. Moreover, we gave fun-
damental links between J-orthogonality and metric projection in smooth uniformly con-
vex complete countably normed spaces. In addition, we defined the J-dual cone and J-
orthogonal complement on a nonempty subset S of a smooth countably normed space
and proved some basic results about the J-dual cone and J-orthogonal complement of S.
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