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Abstract
The aim of this article is to prove some new dynamic inequalities of Hardy type on
time scales with several functions. Our results contain some results proved in the
literature, which are deduced as limited cases, and also improve some obtained
results by using weak conditions. In order to do so, we utilize Hölder’s inequality, the
chain rule, and the formula of integration by parts on time scales.
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1 Introduction
Let z > 0,α > 0 be real numbers. If a function f is nonnegative, integrable over finite inter-
val (0, z), and the integral of f α over (0,∞) converges, then Hardy’s inequality [1] is given
as follows:

∫ ∞

0

1
zα

(∫ z

0
f (s) ds

)α

dz ≤
(

α

α – 1

)α ∫ ∞

0
f α(z) dz, (1)

and the equality holds iff f = 0 almost everywhere. On the other hand, the constant ( α
α–1 )α

is optimal. Hardy proved this inequality in 1925 [1] and the discrete version in 1920 [2].
The discrete version of (1) is given by

∞∑
k=1

(
1
k

k∑
j=1

αj

)α

≤
(

α

α – 1

)α ∞∑
k=1

αα
k , (αk > 0,α > 1). (2)

These two inequalities are known in the literature as Hardy–Hilbert type inequalities.
Since the invention of these inequalities, plenty of papers containing new proofs, various
extensions, and generalizations have appeared. Inequality (1) was extended in [3], where
it was proved that, if α > 1 and f > 0 are integrable on (0,∞), then

∫ ∞

0

1
zm

(∫ z

0
f (s) ds

)α

dz ≤
(

α

m – 1

)α ∫ ∞

0

f α(z)
zm–α

dz, m > 1, (3)
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and
∫ ∞

0

1
zm

(∫ ∞

z
f (s) ds

)α

dz ≤
(

α

1 – m

)α ∫ ∞

0

f α(z)
zm–α

dz, m < 1. (4)

The study of Hardy’s inequalities (discrete and continuous) focused on the investigations
of new inequalities with weighted functions. These results are of interest and importance
in analysis because the size of weight classes cannot be improved and the weight condi-
tions themselves are interesting. These inequalities have applications in diverse fields of
mathematics (spectral theory, PDEs theory, ODEs theory, etc.). These inequalities lead to a
large number of impressive connections between different branches of mathematics. This
explored area of mathematical analysis generates the publications of various monographs
and research papers. We refer the reader to [4–13] and the references therein.

Over the last decades a lot of considerable effort has been devoted to improve and gen-
eralize Hardy’s inequalities (1) and (2). In what follows, we introduce some of these im-
provements that motivated the content of this paper. Levinson in [14] expanded inequality
(1) using Jensen’s inequality. Under the following conditions:

• λ, f are positive functions;
• there exists a constant K > 0 having the following property:

α – 1 +
�(z)λ′(z)

λ2(z)
≥ α

K
for all z > 0,

where �(z) =
∫ z

0 λ(s) ds and α > 1;
• � is a real-valued convex function such that �(v) > 0 for v > 0,
Levinson proved that

∫ ∞

0
�

(
1

�(z)

∫ z

0
f (s)λ(s) ds

)
dz ≤ Kα

∫ ∞

0
�

(
f (z)

)
dz. (5)

In [15] Copson showed that if 1 < γ , 1 ≤ α, then

∫ ∞

0

λ(z)
�γ (z)

�α(z) dz ≤
(

α

γ – 1

)α ∫ ∞

0

λ(z)f α(z)
�γ –α(z)

dz, (6)

where �(z) =
∫ z

0 λ(ξ ) dξ and �(z) =
∫ z

0 f (ξ )λ(ξ ) dξ . Hwang and Yang, in [16], extended
inequality (5) and derived that if λ, q, f are nonnegative functions, α > 1, and K is a positive
constant having the following propriety:

α – 1 +
�(z)q′(z)
q2(z)λ(z)

≥ α

K
, ∀z > 0, (7)

then
∫ ∞

0

(
�(z)
�(z)

)α

λ(z) dz ≤ Kα

∫ ∞

0
f α(z)λ(z) dz, (8)

where

�(z) =
∫ z

0
f (ξ )λ(ξ ) dξ ,�(z) =

∫ z

0
f (ξ )q(ξ )λ(ξ ) dξ .
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The authors in [17] proved that, for i = 1, . . . , n, if αi > βi > 0, mi > βi are real numbers with∑n
i=1 βi = 1 and m =

∑n
i=1 mi, and if

1 +
(

αi

mi – βi

)
xf ′

i (x)
fi(x)

≥ 1
κi

> 0 for some constants κi > 0,

then

∫ ∞

0

n∏
i=1

[
φ

αi
i (x)

]
x–m dx ≤

( n∏
j=1

C–αj
j

) n∑
i=1

βiC
αi
βi

i

[
αiκi

mi – βi

] αi
βi

∫ ∞

0
g

αi
βi

i (x)x– mi
βi dx (9)

for any constant Ci > 0, where

φi(x) =
1

fi(x)

∫ x

0

fi(s)gi(s)
s

ds, x ∈ (0,∞).

A time scale is a closed subset of real numbers denoted by T. The main objective is to
demonstrate some results in dynamic inequalities where the involved functions are de-
fined on an arbitrary time scale T domain. These results involve the classical discrete and
continuous inequalities ( T = N, T = R) and can be expanded to different inequalities on
different time scales like T = qN for q > 1, T = hN, h > 0, etc.

For wholeness, the main results of dynamic inequalities inspiring the subject of this arti-
cle are mentioned. Using Elliott’s technique [18], Řehak in [19] found the time scale version
of Hardy’s inequality. Particularly, Řehak derived, for α > 1 and f a positive function such
that

∫ ∞
a (f (s))α �s < ∞, that

∫ ∞

a

1
(σ̌ (η) – a)α

(∫ σ̌ (η)

a
f (s)�s

)α

�η ≤
(

α

α – 1

)α ∫ ∞

a
f α(s)�s. (10)

Additionally, if ν(s)/s → 0 as s → ∞, then ( α
α–1 )α is the optimal constant. Nevertheless, to

determine whether the constant in inequality (10) is optimal also on all time scales or just
those fulfilling the condition lims→∞(ν(s)/s) = 0 is still an open problem.

Özkan and Yildirim [20] found a novel inequality with weight functions that can be
thought of as a time scale Hardy–Knopp type inequality proved by Kaijser et al. in [21]
of the form

∫ ∞

0
�

(
1
z

∫ z

0
f (s) ds

)
dz
z

≤
∫ ∞

0

�(f (z))
z

dz, (11)

where � is a convex function on (0,∞).
Authors of [22] derived the time scale analogue of (3), that is,

∫ ∞

0

1
ηγ

(∫ σ̌ (η)

0
f (s) ds

)α

�η ≤
(

αKγ

γ – 1

)α ∫ ∞

0

f α(η)
ηγ –α

�η, (12)

where γ > 1, α > 1 with the existence of a positive constant K having the following propri-
ety: 1/K ≤ s

σ̌ (s) for s ∈ T.
The authors in [23] generalized inequality (10) and showed that if γ ,α > 1, then

∫ ∞

c

1
(σ̌ (ξ ) – c)γ

(∫ σ̌ (ξ )

c
f (s)�s

)α

�ξ
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≤
(

α

γ – 1

)α ∫ ∞

c
f α(ξ )

(σ̌ (ξ ) – c)(α–1)γ

(ξ – c)α(γ –1) �ξ . (13)

Saker et al. [24] proved Copson inequalities (6) on time scales. In particular, it has been
proved that if γ ,α > 1, then

∫ ∞

c

(
�σ̌ (ξ )

)α λ(ξ )
(�σ̌ (ξ ))γ

�ξ ≤
(

α

γ – 1

)α ∫ ∞

c
f α(ξ )λ(ξ )

(�σ̌ (ξ ))γ (α–1)

(�(ξ ))α(γ –1) �ξ , (14)

where

�(ξ ) =
∫ ξ

c
λ(η)�η,�(ξ ) =

∫ η

c
f (η)λ(η)�η.

In addition, some generalizations of the inequalities of Bennett and Leindler type on time
scales have been proved. The authors demonstrated that if 1 > γ > 0, 1 ≤ α, then

∫ ∞

a

(
�σ̌ (ξ )

)α λ(ξ )
(�(ξ ))γ

�ξ ≤
(

α

1 – γ

)α ∫ ∞

a
f α(ξ )

λ(ξ )
(�(ξ ))γ –α

�ξ (15)

with

�(ξ ) =
∫ ∞

ξ

λ(η)�η.

The aim of this article is to prove some new Hardy-type inequalities on time scales in-
volving many functions which generalize and improve some of the above results and also
improve some other already proved results in [25]. The manuscript is arranged as follows:
In the preliminaries section, we recall a few elementary results and definitions concerning
the delta calculus on time scale. In the main results section, we prove our results that cover
a wide spectrum of previously proved inequalities.

2 Preliminaries
This section is devoted to presenting some basic definitions as well as some basic re-
sults on delta calculus on time scales that will be used in the sequel; for more details,
see [26]. The backward jump operator and the forward jump operator are defined by
�(s) := sup{η ∈ T : s > η} and σ̌ (s) := inf{η ∈ T : η > s}, respectively, where sup∅ = infT.
The forward graininess function ν : T → [0,∞) is given by ν(s) := σ̌ (s) – s. A point s ∈ T is
called:

• right-dense if σ̌ (s) = s,
• left-dense if infT < s and �(s) = s,
• right-scattered if s < σ̌ (s),
• left-scattered if s > �(s).
u : T→ R is a right-dense continuous (noted rd-continuous) function if u is continuous

at right-dense points and its left-hand limits are finite at left-dense points in T. We denote
by Crd(T) the set of rd-continuous functions.

Without loss of generality, we assume that supT is equal to ∞. We note [a, b]T := [a, b]∩
T the time scale interval. Throughout this paper, T is provided with the topology induced
by the standard topology on R (see, for instance, [26]).
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If u is defined on T, then as an abbreviation u(σ̌ (t)) = uσ̌ (t). The derivative of UV and
U/V of two delta-differentiable functions u and v is given by

(UV )� = U σ̌ V � + U�V = U�V σ̌ + UV �,
(

U
V

)�

=
VU� – UV �

V σ̌ V
. (16)

On the other hand, the �-integral on T is characterized by the following: If ��(s) = γ (s),
then

∫ s
a γ (t)�t = �(s) – �(a) is the Cauchy �-integral of γ . The discrete time scale inte-

gration formula is given by

∫ b

a
γ (ξ )�ξ =

∑
ξ∈[a,b)

ν(ξ )γ (ξ ),

while the infinite integral is defined as
∫ ∞

a γ (ξ )�ξ = limb→∞
∫ b

a γ (ξ )�ξ . The chain rule
for functions U : R → R, which is continuously differentiable, and V : T → R, which is
delta-differentiable, is given by

(U ◦ V )�(η) = U ′(V (c)
)
v�(η) for c ∈ [

η, σ̌ (η)
]
,

and this rule leads to the useful form

(
V α

)�(η) = αV �(η)V α–1(ξ ) for c ∈ [
η, σ̌ (η)

]
. (17)

Another formula to the chain rule is given by

(U ◦ V )�(η) =
∫ 1

0
U ′(V (η) + ξν(η)V �(η)

)
dξV �(η),

which provides us with the following useful form:

(
V α

)�(η) = α

∫ 1

0

(
ξV σ̌ (η) + (1 – ξ )V (η)

)α–1 dξV �(η).

For U , V ∈ Crd(T) and t1, t2 ∈ T, the following expression

∫ t2

t1

U σ̌ (s)V �(s)�s = UV (t2) – UVg(t1) –
∫ t2

t1

U�(s)V (s)�s (18)

is known as the integration by parts formula.
Hölder’s inequality on time scales is written as follows:

∫ t2

t1

∣∣U(s)V (s)
∣∣�s ≤

(∫ t2

t1

∣∣U(s)
∣∣q

�s
) 1

q
(∫ t2

t1

∣∣V (s)
∣∣p

�s
) 1

p
,

where α > 1 and 1
α

+ 1
β

= 1.
Throughout this paper, we make the following assumptions:
• the integrals exist (finite),
• T denotes the time scale set and a ∈ [a,∞)T := [a,∞) ∩T,
• all functions appearing in the assumptions of theorems are positive and rd-continuous

on [a,∞)T.
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3 Main results
First, we prove some new Hardy-type inequalities with several functions which cover a
wide spectrum of previously proved inequalities. Then, we improve some inequalities
showed in [25] by removing the imposed conditions on the functions. It will be conve-
nient to use the convention 0.∞ = 0 and 0/0 = 0. To attain the first objective in this paper,
we define the operators � and φ by

�(ξ ) =
∫ ξ

a
λ(η)�η and φ(ξ ) = h(ξ )

∫ ξ

a
g(η)f (η)�η, ∀ξ ∈ [a,∞)T.

Theorem 1 Let h be nondecreasing on [a,∞)T and r > 1, α > β > 0 be real numbers. If
there exists a positive constant κ having the following propriety:

λ(ξ ) –
(

α

β(r – 1)

)
h��(ξ )

h(ξ )
≥ 1

κ
> 0, (19)

then

∫ ∞

a
�–r(ξ )

[
φσ̌ (ξ )

] α
β �ξ ≤

[
pκ

β(r – 1)

] α
β

∫ ∞

a
�

α
β

–r(ξ )
[
hσ̌ gf

] α
β (ξ )�ξ . (20)

Proof We define v for any ξ ∈ [a,∞)T by

v(ξ ) =
∫ ∞

ξ

�–r(η)λ(η)�η.

Using the formula of integration by parts (18), φ(a) = 0, and v(∞) = 0, we get

∫ ∞

a
λ(ξ )�–r(ξ )

[
φσ̌ (ξ )

] α
β �η =

∫ ∞

a

(
φ

α
β (ξ )

)�v(ξ )�η.

By utilizing the chain rule (17), we observe that

(
φ

α
β (ξ )

)� =
α

β
φ�(ξ )φ

α
β

–1(c) for c ∈ [
ξ , σ̌ (ξ )

]
(21)

and

(
�1–r(ξ )

)� = (1 – r)�–r(c)��(ξ ) = (1 – r)�–r(c)λ(ξ ), c ∈ [
ξ , σ̌ (ξ )

]
.

Apply the derivative of the product formula (16) on φ(ξ ) to obtain that

φ�(ξ ) = hσ̌ (ξ )f (ξ )g(ξ ) +
(φh�)(ξ )

h(ξ )
. (22)

Employing the assumption h is nondecreasing, we conclude that φ�(ξ ) ≥ 0, and thus

(
φ

α
β (ξ )

)� ≤ α

β

[
φσ̌ (ξ )

] vp
β

–1
φ�(ξ ). (23)
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In addition, as ��(ξ ) = λ(ξ ) is positive, we get

(
�1–r(ξ )

)� ≤ (1 – r)λ(ξ )�–r(ξ ),

integrating both sides gives that

∫ ∞

ξ

(
�1–r(s)

)�
�s ≤ (1 – r)

∫ ∞

ξ

�–r(s)λ(s)�s. (24)

Hence, we have

v(ξ ) ≤ 1
1 – r

∫ ∞

ξ

(
�1–r(s)

)�
�s =

1
1 – r

(
�1–r(∞) – �1–r(ξ )

)

=
–1

1 – r
(
�1–r(ξ ) – �1–r(∞)

) ≤ �1–r(ξ )
r – 1

. (25)

By combining (22), (23), and (25), we find that

∫ ∞

a
�–r(ξ )

[
φσ̌ (ξ )

] α
β

(
λ(ξ ) –

α

β(r – 1)
�(ξ )h�(ξ )

h(ξ )

)
�η

≤ α

β(r – 1)

∫ ∞

a
�1–r(ξ )

[
φσ̌ (ξ )

] α
β

–1hσ̌ (ξ )g(ξ )f (ξ )�η.

Utilizing assumption (19) leads to

∫ ∞

a
�–r(ξ )

[
φσ̌ (ξ )

] α
β

1
κ

�η

≤ α

β(r – 1)

∫ ∞

a

[
�– r(α–β)

α (ξ )
[
φσ̌ (ξ )

] α–β
β

][
�1– rβ

α (ξ )g(ξ )f (ξ )hσ̌ (ξ )
]
�η.

Applying Hölder′s inequality with exponents α
β

and α
(α–β) produces

∫ ∞

a
�–r(ξ )

[
φσ̌ (ξ )

] α
β �ξ

≤ ακ

β(r – 1)

[∫ ∞

a
�–r(ξ )

[
φσ̌ (ξ )

] α
β �ξ

] α–β
α

×
[∫ ∞

a
�

α
β

–r(ξ )
(
hσ̌ (ξ )g(ξ )f (ξ )

) α
β �ξ

] β
α

. (26)

Inequality (26) directly yields

∫ ∞

a
�–r(ξ )

[
φσ̌ (ξ )

] α
β �ξ ≤

[
ακ

β(r – 1)

] α
β

∫ ∞

a
�

α
β

–r(ξ )
(
hσ̌ (ξ )g(ξ )f (ξ )

) α
β �ξ . �

Remark 1 Let T = R. In Theorem 1, setting h(ξ ) = λ(ξ ) = g(ξ ) = 1,β = 1,κ = 1, a = 0 leads
to inequality (1).



Hamiaz et al. Journal of Inequalities and Applications          (2021) 2021:3 Page 8 of 15

Remark 2 In Theorem 1, by putting h(ξ ) = λ(ξ ) = g(ξ ) = 1,β = 1, and r = α in (20), we
obtain

∫ ∞

a
(ξ – a)–α

[∫ σ̌ (ξ )

a
f (η)�η

]p

�ξ ≤
[

ακ

α – 1

]α ∫ ∞

a
f α(ξ )�ξ .

Since ξ ≤ σ̌ (ξ ), then (ξ –a)–α ≥ (σ̌ (ξ )–a)–α , which implies along with the above inequality
that

∫ ∞

a

[
1

σ̌ (s) – a

∫ σ̌ (s)

a
f (ξ )�ξ

]α

�s ≤
[

ακ

α – 1

]α ∫ ∞

a
f α(ξ )�ξ .

Letting κ = 1, we obtain inequality (10).

In order to prove our next result, which is a new generalization of a Copson-type in-
equality, we define

�(ξ ) :=
∫ ξ

a
g(η)λ(η)�η for all ξ ∈ [a, b]T,

where T is a time scale, and assume that there exists m ≥ 1 such that

�σ̌ (s) ≤ m�(s), ∀s ∈ [a, b]T. (27)

Theorem 2 Let a, b ∈ T, α ≥ β ≥ 1, and α > m. If g is an increasing function, then

∫ b

a
λ(ξ )

(
�σ̌ (ξ )

) β
α –1(

�
σ̌ (ξ )

)β
�ξ ≤

(
mα

α – m

)β ∫ b

a

(
�σ̌ (ξ )

) p–q
α(β–1) λ(ξ )gβ(ξ )�ξ , (28)

where �(ξ ) := �(ξ )
�(ξ ) and � is defined as in Theorem 1.

Proof For any ξ ∈ [a, b]T, we define u, v by

u(ξ ) =
∫ ξ

a

(
�σ̌ (η)

) β
α –1

λ(η)�η and υ(ξ ) = �
β (ξ ).

Integrate the L.H.S of (28) by parts to obtain

∫ b

a
λ(ξ )

(
�σ̌ (ξ )

) β
α –1(

�
σ̌ (ξ )

)q
�ξ = u(b)�β (b) +

∫ b

a

(
�

β (ξ )
)�(

–u(ξ )
)
�ξ . (29)

By the chain rule, we have (note that (β/α) – 1 < 0 and ��(ξ ) = λ(ξ ) > 0)

(
�β/α(ξ )

)� =
β

α

∫ 1

0

[
ξ�σ̌ (ξ ) + (1 – ξ )�(ξ )

] β
α –1 dξ��(ξ )

≥ β

α

(
�σ̌ (ξ )

)( β
α –1)

λ(ξ ).

Therefore

–u(ξ ) = –
∫ ξ

a

(
�σ̌ (τ )

) β
α –1

λ(τ )�τ ≥ –
α

β
�

β
α (ξ ) ≥ –

α

β

(
�σ̌ (ξ )

) β
α . (30)
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Combining (29) and (30) gives

∫ b

a
λ(ξ )

(
�σ̌ (ξ )

) β
α –1(

�
σ̌ (ξ )

)β
�ξ ≥ α

β

∫ b

a

(
�σ̌ (ξ )

) β
α
(
–�β (ξ )

)�
�ξ + u(b)�β (b). (31)

From the quotient rule, we get (noting that g increasing and so �(ξ ) < �(ξ )g(ξ )) that

�
�(ξ ) =

(
�(ξ )
�(ξ )

)�

=
(�λg – �λ)(ξ )

(��σ̌ )(ξ )
=

λ(ξ )(�g – �)(ξ )
(��σ̌ )(ξ )

> 0.

By the chain rule (17), inequality (27), and �σ̌ ≥ �, we have: for d ∈ [ξ , σ̌ (ξ )],

–
(
�

β (ξ )
)� = –β�β–1(d)��(ξ ) ≥ –β

(
�

σ̌ (ξ )
)β–1

�
�(ξ ) (32)

= q
(
�

σ̌ (ξ )
)β–1 λ(ξ )�(ξ )

�(ξ )�σ̌ (ξ )
–

λ(ξ )g(ξ )
�σ̌ (ξ )

β
(
�

σ̌ (ξ )
)β–1 (33)

≥ β

m
λ(ξ )

�σ̌ (ξ )
(
�

σ̌ (ξ )
)β –

λ(ξ )g(ξ )
�σ̌ (ξ )

β
(
�

σ̌ (ξ )
)β–1. (34)

Inequalities (34) and (31) give after some simplifications

(
α

m
– 1

)∫ b

a
λ(ξ )

(
�σ̌ (ξ )

)( β
α –1)(

�
σ̌ (ξ )

)β
�ξ

≤ α

∫ b

a

(
�σ̌ (ξ )

)( β
α –1)

λ(ξ )g(ξ )
(
�

σ̌ (ξ )
)β–1

�ξ .

Apply Hölder’s inequality with exponents β and β/(β – 1) to obtain

(
p
m

– 1
)∫ b

a
λ(ξ )

(
�σ̌ (ξ )

)( β
α –1)(

�
σ̌ (ξ )

)β
�ξ

≤ α

{∫ b

a

(
�σ̌ (ξ )

) α–β
α(β–1) λ(ξ )gβ (ξ )�ξ

} 1
β ×

{∫ b

a

(
�σ̌ (ξ )

)( β
α –1)

λ(ξ )
(
�

σ̌ (ξ )
)q

�ξ

} β–1
β

.

This gives (noting that (α/m) – 1 > 0) that

{∫ b

a
λ(ξ )

(
�σ̌ (ξ )

) β
α –1(

�
σ̌ (ξ )

)q
�ξ

} 1
β

≤
(

mα

α – m

){∫ b

a

(
�σ̌ (ξ )

) β
α –1

λ(ξ )gα(ξ )�ξ

} 1
β

. �

With simple modifications on the proof of Theorem 1, the following result holds.

Lemma 1 Let h be a nondecreasing function on [a,∞)T. If there exist a positive constant
κ and real numbers r > 1, α > β > 0 such that

1 –
(

α

(r – 1)β

)
�(ξ )h�(ξ )
h(ξ )λ(ξ )

≥ 1
κ

> 0 for all ξ ∈ [a,∞)T,
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then

∫ ∞

a

λ(ξ )
�r(ξ )

[
φσ̌ (ξ )

] α
β �ξ ≤

[
ακ

β(r – 1)

] α
β

∫ ∞

a

λ
1– α

β (ξ )
�

r– α
β (ξ )

(
hσ̌ gf

) α
β (ξ )�ξ .

Remark 3 In Lemma 1, taking g(ξ ) = λ(ξ ), h(ξ ) = 1, and β = 1 = κ leads to �(ξ ) =∫ ξ

a λ(η)�η, φ(ξ ) =
∫ ξ

a f (η)λ(η)�η. Therefore,

∫ ∞

a

λ(ξ )
�r(ξ )

(∫ σ̌ (ξ )

a
f (s)λ(s)�s

)α

�ξ ≤
(

α

r – 1

)α ∫ ∞

a

λ(ξ )
�r–α(ξ )

f α(ξ )�ξ . (35)

In inequality (35) if T = R, we obtain inequality (6). On the other hand, since �(ξ ) ≤ �σ̌ (ξ )
(� is increasing), α > 1, and r > 1, then

�α–r(ξ ) ≤ (�σ̌ (ξ ))r(α–1)

(�(ξ ))α(r–1) ,

therefore, inequality (35) becomes

∫ ∞

a

λ(ξ )
(�σ̌ (ξ ))r

(∫ σ̌ (ξ )

a
f (s)λ(s)�s

)α

�ξ ≤
(

α

r – 1

)α ∫ ∞

a
f α(ξ )

(�σ̌ (ξ ))r(α–1)

(�(ξ ))α(r–1) λ(ξ )�ξ ,

and this is inequality (14).

Remark 4 In Lemma 1, choosing g(ξ ) = h(ξ ) = λ(ξ ) = 1, and β = 1 = κ leads to φ(ξ ) =∫ ξ

a f (η)�η and �(ξ ) = ξ – a. This implies that

∫ ∞

a

(
1

ξ – a

)r(∫ σ̌ (ξ )

a
f (η)�η

)α

�ξ ≤
(

α

r – 1

)α ∫ ∞

a
(ξ – a)α–rf α(ξ )�ξ .

Since ξ ≤ σ̌ (ξ ), then 1
σ̌ (ξ )–a ≤ 1

ξ–a , which along with the above inequality gives that

∫ ∞

a

1
(σ̌ (ξ ) – a)r

(∫ σ̌ (ξ )

a
f (η)�η

)α

�ξ ≤
(

α

r – 1

)α ∫ ∞

a
f α(ξ )

(σ̌ (ξ ) – a)r(α–1)

(ξ – a)α(r–1) �ξ ,

and this is inequality (13).

In the following theorem, we try to give an answer to the remark “It would be interesting
to prove some new results by excluding the condition that has been proposed on q(t)”
given in [25, Remark 2.16]. So, we derive some already obtained results (see [25]) that are
related to Hardy’s inequality. However, we soften the conditions imposed on the functions
in [25]. In other words, we prove the following result assuming that the function q(t) is
bounded, while the authors in [25] proposed it is an increasing function. We introduce
new operators: for ξ ∈ [a,∞)T,

φ(ξ ) =
∫ ∞

ξ

f (η)q(η)ϑ(η)�η and �(ξ ) =
∫ ξ

a
q(η)ϑ(η)�η

with
∫ ∞

a ϑ(s)(�σ̌ (s))–γ �s < ∞.
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Theorem 3 Let M > m > 0, α > 1, 0 ≤ γ < 1 be real numbers, and a bounded function q(ξ ),
i.e., m ≤ q(ξ ) ≤ M. Then

∫ ∞

a
ϑ(ξ )

(
�σ̌ (ξ )

)–γ
φα(ξ )�ξ ≤

(
Mp

m(1 – γ )

)α ∫ ∞

a
ϑ(ξ )

(
�σ̌ (ξ )

)α–γ f α(ξ )�ξ .

Proof It follows from using integration by parts on time scales with

u(ξ ) = φα(ξ ), v�(ξ ) = ϑ(ξ )
(
�σ̌ (ξ )

)–γ and v(ξ ) =
∫ ξ

a
ϑ(s)

(
�σ̌ (s)

)–γ
�s,

and φ(∞) = v(a) = 0, that

∫ ∞

a
ϑ(ξ )

(
�σ̌ (ξ )

)–γ
φα(ξ )�ξ = v(ξ )φα(ξ )|∞a –

∫ ∞

a
vσ̌ (ξ )

(
φp(ξ )

)�
�ξ

=
∫ ∞

a
vσ̌ (ξ )

(
–φα(t)

)�
�ξ .

Applying the chain rule gives

(
�1–γ (ξ )

)� = (1 – γ )
∫ 1

0

[
ξ�σ̌ (ξ ) + (1 – ξ )�(t)

]–γ dξ��(ξ )

= (1 – γ )
∫ 1

0

1
[ξ�σ̌ (ξ ) + (1 – ξ )�(ξ )]γ

dξ��(ξ ).

Observing that ��(ξ ) = q(ξ )ϑ(ξ ) > 0 enables us to write

(
�1–γ (ξ )

)� ≥ (1 – γ )
∫ 1

0

1
[ξ�σ̌ (ξ ) + (1 – ξ )�σ̌ (ξ )]γ

dξλ(ξ )q(ξ )

= (1 – γ )
(
�σ̌ (ξ )

)–γ
ϑ(ξ )q(ξ ).

Using the assumption q(ξ ) ≥ m returns

(
�σ̌ (ξ )

)–γ
ϑ(ξ ) ≤ 1

m(1 – γ )
(
�1–γ (ξ )

)�,

so

vσ̌ (ξ ) =
∫ σ̌ (ξ )

a
ϑ(s)

(
�σ̌ (s)

)–γ
�s ≤ 1

m(1 – γ )

∫ σ̌ (ξ )

a

(
�1–γ (s)

)�
�s

=
1

m(1 – γ )
(
�σ̌ (ξ )

)1–γ . (36)

Furthermore, by using the chain rule, we get

(
–φα(ξ )

)� = –αφ�(ξ )φα–1(c); c in
[
ξ , σ̌ (ξ )

]
, (37)

and since φ�(ξ ) = –f (ξ )q(ξ )ϑ(ξ ) is negative, we get

(
–φα(ξ )

)� ≤ αϑ(ξ )q(ξ )f (ξ )φα–1(c). (38)
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From (36), (37), (38), and the assumption q(ξ ) ≤ M, we get

∫ ∞

a
ϑ(ξ )

(
�σ̌ (ξ )

)–γ
φp(ξ )�ξ

=
∫ ∞

a

(
–φα(ξ )

)�vσ̌ (ξ )�ξ

≤ Mα

m(1 – γ )

∫ ∞

a

(
�σ̌ (ξ )

)1–γ
ϑ(ξ )f (ξ )φα–1(ξ )�ξ

≤
(

Mα

m(1 – γ )

)∫ ∞

a

[(
�σ̌ (ξ )

)–γ α–1
α ϑ

α–1
α (ξ )φα–1(ξ )

]

× [(
�σ̌ (ξ )

)1–γ (
�σ̌ (ξ )

)γ α–1
α f (ξ )λ

1
α (ξ )

]
�ξ

≤
(

Mα

m(1 – γ )

)[∫ ∞

a
ϑ(ξ )

(
�σ̌ (ξ )

)–γ
φα(ξ )�ξ

] α–1
α

×
[∫ ∞

a
ϑ(ξ )

(
�σ̌ (ξ )

)α–γ f α(ξ )�ξ

] 1
α

.

The last inequality holds by applying Hölder’s inequality with exponents α and α
α–1 . By

simple simplification, we have

∫ ∞

a
ϑ(ξ )

(
�σ̌ (ξ )

)–γ
φα(ξ )�ξ ≤

(
Mα

m(1 – γ )

)α ∫ ∞

a
ϑ(ξ )

(
�σ̌ (ξ )

)α–γ f α(ξ )�ξ . �

Theorem 4 Suppose that αi > βi > 0, mi > βi for i = 1, . . . , n are real numbers such that∑n
i βi = 1. Furthermore, assume that hi(t), fi(t), gi(t) are nonnegative functions and hi(t) is

a nondecreasing function for i = 1, . . . , n and define

φi(t) = hi(t)
∫ t

a
fi(s)gi(s)�s, �i(t) =

∫ t

a
ϑi(s)�s for t ∈ [a,∞)T.

If there exist positive constants κi satisfying

ϑi(t) –
(

αi

βi(mi – 1)

)
�i(t)h�

i (t)
hi(t)

≥ 1
κi

> 0,

then

∫ ∞

a

n∏
i=1

[
�

–mi
i (t)φσ̌

i (t)αi
]
�t

≤
( n∏

j=1

C–αj
j

) n∑
i=1

Ki

∫ ∞

a
�

αi–mi
qi

i (t)
(
hσ̌

i (t)fi(t)gi(t)
) αi

βi �t,

where

Ki = βiC
αi
βi

i

(
αiκi

mi – βi

) αi
βi

> 0 and Ci > 0, ∀i = 1, . . . , n.
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Proof We define the function ψi by

ψi(t) = hi(t)
∫ t

a
fi(s)gi(s)�s for t ∈ [a,∞)T.

Then, by Theorem 1, we find

∫ ∞

a
�

– mi
βi

i (t)
[
ψσ̌

i (t)
] αi

βi �t ≤
[

αiκi

mi – βi

] αi
βi

∫ ∞

a
�

αi
βi

– mi
βi

i (t)
(
hσ̌

i (t)fi(t)gi(t)
) αi

βi �t.

For some constants Ci > 0, and by using the arithmetic-geometric inequality [27], we get

n∏
i=1

[
�

–mi
i (t)ψσ̌

i (t)αi
]

=
n∏

i=1

C–αi
i

[(
�

–mi
αi

i (t)Ciψ
σ̌
i (t)

) αi
βi

]βi

=

( n∏
j=1

C–αj
j

) n∏
i=1

[(
�

–mi
αi

i (t)Ciψ
σ̌
i (t)

) αi
βi

]βi

≤
( n∏

j=1

C–αj
j

) n∑
i=1

βi�

–mi
βi

i (t)C
αi
βi

i ψσ̌
i (t)

αi
βi .

Therefore,

∫ ∞

a

n∏
i=1

[
�

–mi
i (t)ψσ̌

i (t)pi
]
�t

≤
( n∏

j=1

C–αj
j

) n∑
i=1

βi

∫ ∞

a
�

–mi
βi

i (t)C
αi
βi

i ψσ̌
i (t)

αi
βi �t

≤
( n∏

j=1

C–αj
j

) n∑
i=1

Ki

∫ ∞

0
�

αi–mi
βi

i (t)
(
hσ̌

i (t)fi(t)gi(t)
) αi

βi �t,

where Ki = βi[ Ciαiκi
(mi–βi)

]
αi
βi . �

Remark 5 In Theorem 4, if n = 1,αi = α,βi = 1,λi = 1 with h(t) = g(t) = 1, then we get

∫ ∞

a
t–m

(∫ σ̌ (t)

a
f (s)�s

)α

�t ≤ C–αK
∫ ∞

a
tα–mf α(t)�t,

where

C–αK = C–αCα

(
ακ

m – 1

)α

=
(

ακ

m – 1

)α

.

Then we have

∫ ∞

a

1
tm

(∫ σ̌ (t)

a
f (s)�s

)α

�t ≤
(

ακ

m – 1

)α ∫ ∞

a

f α(t)
tm–α

�t,

as stated in relation (12).
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Theorem 5 Suppose that αi > βi > 0, mi > βi for i = 1, . . . , n are real numbers such that∑n
i βi = 1. Furthermore, assume that hi(t), fi(t), gi(t) are nonnegative functions and hi(t) is

nondecreasing for i = 1, . . . , n, and define

φi(t) = hi(t)
∫ t

0
fi(s)gi(s)�s, �i(t) =

∫ t

a
ϑi(s)�s for t ∈ [a,∞)T.

If there exist positive constants κi satisfying

1 –
(

αi

βi(mi – 1)

)
�i(t)h�

i (t)
ϑi(t)hi(t)

≥ 1
κi

> 0.

Then

∫ ∞

0

n∏
i=1

[
ϑi(t)�–mi

i (t)φσ̌
i (t)αi

]
�t

≤
( n∏

j=1

C–αj
j

) n∑
i=1

Ki

∫ ∞

0
ϑ

1– αi
βi

i (t)�
αi–mi

βi
i (t)

(
hσ̌

i (t)fi(t)gi(t)
) αi

βi �t,

where

Ki = βiC
αi
βi

i

(
piκi

mi – βi

) αi
βi

> 0 and Ci > 0, ∀i = 1, . . . , n.

There are many special cases that can be derived from Theorems 4 and 5. For instance,
we can deduce inequality (9) from Theorem 5 by taking the time scale equals R, ϑi(t) = 1
(this leads to �i(x) = x), hi(x) = 1/fi(x), and replacing gi(x) by gi(x)/x.
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