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Abstract
In this article, by using weight functions, the idea of introducing parameters, the
reverse extended Hardy–Hilbert integral inequality and the techniques of real
analysis, a reverse Hardy–Hilbert-type integral inequality involving one derivative
function and the beta function is obtained. The equivalent statements of the best
possible constant factor related to several parameters are considered. The equivalent
form, the cases of non-homogeneous kernel and some particular inequalities are also
presented.
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1 Introduction
Assuming that 0 <

∑∞
m=1 a2

m < ∞ and 0 <
∑∞

n=1 b2
n < ∞, we have the following Hilbert in-

equality with the best possible constant factor π (cf. [1], Theorem 315):

∞∑

m=1

∞∑

n=1

ambn

m + n
< π

( ∞∑

m=1

a2
m

∞∑

n=1

b2
n

)1/2

. (1)

If 0 <
∫ ∞

0 f 2(x) dx < ∞ and 0 <
∫ ∞

0 g2(y) dy < ∞, then we still have the integral analogue
of (1) as follows (cf. [1], Theorem 316):

∫ ∞

0

∫ ∞

0

f (x)g(y)
x + y

dx dy < π

(∫ ∞

0
f 2(x) dx

∫ ∞

0
g2(y) dy

)1/2

, (2)

where the constant factor π is the best possible. Inequalities (1) and (2) with their exten-
sions play an important role in analysis and its applications (cf. [2–13]).

The following half-discrete Hilbert-type inequality was presented in 1934 (cf. [1], The-
orem 351): If K(x) (x > 0) is a non-negative decreasing function, p > 1, 1

p + 1
q = 1, 0 < φ(s) =

∫ ∞
0 K(x)xs–1 dx < ∞, f (x) ≥ 0, 0 <

∫ ∞
0 f p(x) dx < ∞, then

∞∑

n=1

np–2
(∫ ∞

0
K(nx)f (x) dx

)p

< φp
(

1
q

)∫ ∞

0
f p(x) dx. (3)
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In recent years, some new extensions and reverses of (3) were presented by [14–19].
In 2006, by using Euler–Maclaurin summation formula, Krnic et al. [20] gave an ex-

tension of (1) with the kernel 1
(m+n)λ (0 < λ ≤ 14). In 2019–2020, using the results of [20],

A diyasuren et al. [21] considered an extension of (1) involving the partial sums, and Mo et
al. [22] gave an extension of (2) involving the upper limit functions. In 2016–2017, by ap-
plying the weight functions, Hong et al. [23, 24] considered some equivalent statements of
the extensions of (1) and (2) with several parameters. For some similar work, see [25–28].

In this paper, following [21, 23], by the use of weight functions, the idea of introduc-
ing parameters, the reverse extension of (1) and the technique of real analysis, a reverse
Hardy–Hilbert-type integral inequality with the kernel 1

(x+y)λ+1 (λ > 0) involving one deriva-
tive function and the beta function is given. The equivalent statements of the best possi-
ble constant factor related to several parameters are considered. The equivalent form, the
cases of non-homogeneous kernel and a few particular inequalities are obtained.

2 Some lemmas
In what follows, we assume that 0 < p < 1, 1

p + 1
q = 1,λ > 0,λi ∈ (0,λ) (i = 1, 2), a := λ – λ1 –

λ2, f (x) is a non-negative measurable function in R+ = (0,∞), and g(y) is a non-negative
increasing differentiable function unless at finite points in R+, with g(y) = o(1) (y → 0+),
g(y) = o(ety) (t > 0; y → ∞) satisfying

0 <
∫ ∞

0
xp(1–λ1)–a–1f p(x) dx < ∞ and 0 <

∫ ∞

0
yq(1–λ2)–a–1g ′q(y) dy < ∞.

By the definition of the gamma function, for λ, x, y > 0, the following expression holds
(cf. [29]):

1
(x + y)λ

=
1

�(λ)

∫ ∞

0
tλ–1e–(x+y)t dt, (4)

where the gamma function is defined by

�(α) :=
∫ ∞

0
e–ttα–1 dt (α > 0),

satisfying

�(α + 1) = α�(α) (α > 0).

Lemma 1 For t > 0, we have the following expression:

∫ ∞

0
e–tyg(y) dy =

1
t

∫ ∞

0
e–tyg ′(y) dy. (5)

Proof Since g(y) = o(1) (y → 0+), we find

∫ ∞

0
e–tyg ′(y) dy =

∫ ∞

0
e–ty dg(y)

= e–tyg(y)|∞0 –
∫ ∞

0
g(y) de–ty = lim

y→∞
g(y)
ety + t

∫ ∞

0
e–tyg(y) dy.
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In view of g(y) = o(ety) (t > 0; y → ∞), we have limy→∞ g(y)
ety = 0, and then

t
∫ ∞

0
e–tyg(y) dy =

∫ ∞

0
e–tyg ′(y) dy,

namely, Eq. (5) follows.
The lemma is proved. �

Lemma 2 Define the following weight functions:

� (λ2, x) := xλ–λ2

∫ ∞

0

tλ2–1

(x + t)λ
dt (x ∈ R+), (6)

ω(λ1, y) := yλ–λ1

∫ ∞

0

tλ1–1

(t + y)λ
dt (y ∈ R+). (7)

We have the following expressions:

� (λ2, x) = B(λ2,λ – λ2) (x ∈ R+), (8)

ω(λ1, y) = B(λ1,λ – λ1) (y ∈ R+), (9)

where B(u, v) :=
∫ ∞

0
tu–1

(1+t)u+v dt(u, v > 0) is the beta function, such that

B(u, v) =
1

�(u + v)
�(u)�(v). (10)

Proof Setting u = t
x , we find

� (λ2, x) = xλ–λ2

∫ ∞

0

(ux)λ2–1

(x + ux)λ
x du =

∫ ∞

0

uλ2–1

(1 + u)λ
du = B(λ2,λ – λ2),

namely, (8) follows. In the same way, we have (9).
The lemma is proved. �

Lemma 3 We have the following reverse Hardy–Hilbert integral inequality involving one
derivative function:

∫ ∞

0

∫ ∞

0

f (x)g ′(y)
(x + y)λ

dx

> B
1
p (λ2,λ – λ2)B

1
q (λ1,λ – λ1)

×
[∫ ∞

0
xp(1–λ1)–a–1f p(x) dx

] 1
p
[∫ ∞

0
yq(1–λ2)–a–1g ′q(y) dy

] 1
q

. (11)

Proof By the reverse Hölder inequality (cf. [30]), we obtain

∫ ∞

0

∫ ∞

0

f (x)g ′(y)
(x + y)λ

dx dy

=
∫ ∞

0

∫ ∞

0

1
(x + y)λ

[
y(λ2–1)/p

x(λ1–1)/q f (x)
][

x(λ1–1)/q

y(λ2–1)/p g ′(y)
]

dx dy
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≥
{∫ ∞

0

[∫ ∞

0

1
(x + y)λ

yλ2–1 dy
x(λ1–1)(p–1)

]

f p(x) dx
} 1

p

×
{∫ ∞

0

[∫ ∞

0

1
(x + y)λ

xλ1–1 dx
y(λ2–1)(q–1)

]

g ′q(y) dy
} 1

q

=
[∫ ∞

0
� (λ2, x)xp(1–λ1)–a–1f p(x) dx

] 1
p

×
[∫ ∞

0
ω(λ1, y)yq(1–λ2)–a–1g ′q(y) dy

] 1
q

. (12)

If (12) keeps the form of an equality, then there exist constants A and B, such that they
are not all zero, satisfying

A
yλ2–1

x(λ1–1)(p–1) f p(x) = B
xλ1–1

y(λ2–1)(q–1) g ′q(y) a.e. in (0,∞) × (0,∞).

We assume that A �= 0. For fixed a.e. y ∈ (0,∞), we have

xp(1–λ1)–a–1f p(x) =
(

B
A

yq(1–λ2)g ′q(y)
)

x–1–a a.e. in (0,∞).

Integration in the above expression, since for any a = λ – λ1 – λ2 ∈ R,
∫ ∞

0 x–1–a dx = ∞,
which contradicts the fact that

0 <
∫ ∞

0
xp(1–λ1)–a–1f p(x) dx < ∞.

Therefore, by (8) and (9), we have (11).
The lemma is proved. �

3 Main results
Theorem 1 We have the following reverse Hardy–Hilbert-type integral inequality involv-
ing one derivative function:

I :=
∫ ∞

0

∫ ∞

0

f (x)g(y)
(x + y)λ+1 dx dy

>
1
λ

B
1
p (λ2,λ – λ2)B

1
q (λ1,λ – λ1)

×
[∫ ∞

0
xp(1–λ1)–a–1f p(x) dx

] 1
p
[∫ ∞

0
yq(1–λ2)–a–1g ′q(y) dy

] 1
q

. (13)

In particular, for λ1 + λ2 = λ (or a = 0), we reduce (13) to the following:

∫ ∞

0

∫ ∞

0

f (x)g(y)
(x + y)λ+1 dx dy

>
1
λ

B(λ1,λ2)
(∫ ∞

0
xp(1–λ1)–1f p(x) dx

) 1
p
(∫ ∞

0
yq(1–λ2)–1g ′q(y) dy

) 1
q

, (14)

where the constant factor 1
λ

B(λ1,λ2) is the best possible.
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Proof Using (4) and (5), in view of the Fubini theorem (cf. [31]), we find

I =
1

�(λ + 1)

∫ ∞

0

∫ ∞

0
f (x)g(y)

[∫ ∞

0
t(λ+1)–1e–(x+y)t dt

]

dx dy

=
1

�(λ + 1)

∫ ∞

0
t(λ+1)–1

(∫ ∞

0
e–xtf (x) dx

)(∫ ∞

0
e–ytg(y) dy

)

dt

=
1

�(λ + 1)

∫ ∞

0
t(λ+1)–1

(∫ ∞

0
e–xtf (x) dx

)(∫ ∞

0
t–1e–ytg ′(y) dy

)

dt

=
1

λ�(λ)

∫ ∞

0

∫ ∞

0
f (x)g ′(y)

[∫ ∞

0
tλ–1e–(x+y)t dt

]

dx dy

=
�(λ)
λ�(λ)

∫ ∞

0

∫ ∞

0

f (x)g ′(y)
(x + y)λ

dx dy. (15)

Then by (11), we have (13).
For a = 0 in (13), we have (14). For any ε > 0, we set

f̃ (x) :=

⎧
⎨

⎩

0, 0 < x ≤ 1,

xλ1– ε
p –1, x > 1,

g̃(y) :=

⎧
⎨

⎩

0, 0 < y ≤ 1,

yλ2– ε
q , y > 1.

We obtain g̃(y) = o(1) (y → 0+), g̃(y) = o(ety) (t > 0; y → ∞), g̃ ′(y) ≡ 0 (0 < y < 1), and

g̃ ′(y) =
(

λ2 –
ε

q

)

yλ2– ε
q –1 (y > 1).

If there exists a constant M(≥ 1
λ

B(λ1,λ2)), such that (14) is valid when replacing
1
λ

B(λ1,λ2) by M, then in particular, by substitution of f (x) = f̃ (x), g(y) = g̃(y) and g ′(y) =
g̃ ′(y), we have

Ĩ :=
∫ ∞

0

∫ ∞

0

f̃ (x)g̃(y)
(x + y)λ+1 dx dy

> M
[∫ ∞

0
xp(1–λ1)–1 f̃ p(x) dx

] 1
p
[∫ ∞

0
yq(1–λ2)–1g̃ ′q(y) dy

] 1
q

. (16)

We obtain

J̃ :=
[∫ ∞

0
xp(1–λ1)–1 f̃ p(x) dx

] 1
p
[∫ ∞

0
yq(1–λ2)–1g̃ ′q(y) dy

] 1
q

=
(

λ2 –
ε

q

)(∫ ∞

1
x–ε–1 dx

) 1
p
(∫ ∞

1
y–ε–1 dy

) 1
q

=
(

λ2 –
ε

q

)∫ ∞

1
x–ε–1 dx =

1
ε

(

λ2 –
ε

q

)

.

In view of the Fubini theorem (cf. [31]), it follows that

Ĩ =
∫ ∞

1

[∫ ∞

1

yλ2– ε
q

(x + y)λ+1 dy
]

xλ1– ε
p –1 dx =

∫ ∞

1
x–ε–1

[∫ ∞

1
x

uλ2– ε
q

(1 + u)λ+1 du
]

dx
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=
∫ ∞

1
x–ε–1

[∫ 1

1
x

uλ2– ε
q

(1 + u)λ+1 du
]

dx +
∫ ∞

1
x–ε–1

[∫ ∞

1

uλ2– ε
q

(1 + u)λ+1 du
]

dx

=
∫ 1

0

(∫ ∞

1
u

x–ε–1 dx
)

uλ2– ε
q

(1 + u)λ+1 du +
1
ε

∫ ∞

1

uλ2– ε
q

(1 + u)λ+1 du

=
1
ε

[∫ 1

0

uλ2+ ε
p

(1 + u)λ+1 du +
∫ ∞

1

uλ2– ε
q

(1 + u)λ+1 du
]

.

By (16), we obtain

∫ 1

0

uλ2+ ε
p

(1 + u)λ+1 du +
∫ ∞

1

uλ2– ε
q

(1 + u)λ+1 du > εĨ > εMJ̃ > M
(

λ2 –
ε

q

)

.

Putting ε → 0+ in the above inequality, in view of the continuity of the beta function, we
find

λ2

λ
B(λ1,λ2) =

λ2�(λ1)�(λ2)
λ�(λ)

= B(λ1,λ2 + 1) ≥ Mλ2,

namely, 1
λ

B(λ1,λ2) ≥ M. Hence, M = 1
λ

B(λ1,λ2) is the best possible constant factor in (14).
The theorem is proved. �

Remark 1 We set λ̂1 := λ1 + a
p = λ–λ2

p + λ1
q , λ̂2 := λ2 + a

q = λ–λ1
q + λ2

p . It follows that λ̂1 + λ̂2 = λ.
For

a = λ – λ1 – λ2 ∈ (
–pλ1, p(λ – λ1)

)
,

we find 0 < λ̂1 < λ, and then 0 < λ̂2 = λ – λ̂1 < λ. So we rewrite (13) as follows:

I :=
∫ ∞

0

∫ ∞

0

f (x)g(y)
(x + y)λ+1 dx dy

>
1
λ

B
1
p (λ2,λ – λ2)B

1
q (λ1,λ – λ1)

×
[∫ ∞

0
xp(1–λ̂1)–1f p(x) dx

] 1
p
[∫ ∞

0
yq(1–λ̂2)–1g ′q(y) dy

] 1
q

. (17)

Theorem 2 If the constant factor

1
λ

B
1
p (λ2,λ – λ2)B

1
q (λ1,λ – λ1)

in (13) (or (17)) is the best possible, then λ1 + λ2 = λ.

Proof By (14) (for λi = λ̂i (i = 1, 2)), since

1
λ

B
1
p (λ2,λ – λ2)B

1
q (λ1,λ – λ1)

is the best possible constant factor in (17), we have the following inequality:

1
λ

B
1
p (λ2,λ – λ2)B

1
q (λ1,λ – λ1) ≥ 1

λ
B(λ̂1, λ̂2) (∈ R+),
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namely,

B(λ̂1, λ̂2) ≤ B
1
p (λ2,λ – λ2)B

1
q (λ1,λ – λ1).

By the reverse Hölder inequality (cf. [30]), we obtain

B(λ̂1, λ̂2) =
∫ ∞

0

uλ̂1–1

(1 + u)λ
du

=
∫ ∞

0

1
(1 + u)λ

u
λ–λ2

p + λ1
q –1 du =

∫ ∞

0

1
(1 + u)λ

(
u

λ–λ2–1
p

)(
u

λ1–1
q

)
du

≥
[∫ ∞

0

uλ–λ2–1

(1 + u)λ
du

] 1
p
[∫ ∞

0

uλ1–1

(1 + u)λ
du

] 1
q

= B
1
p (λ2,λ – λ2)B

1
q (λ1,λ – λ1). (18)

It follows that (18) keeps the form of an equality.
We observe that (18) keeps the form of an equality if and only if there exist constants A

and B, such that they are not all zero and

Auλ–λ2–1 = Buλ1–1 a.e. in R+

(cf. [30]). Assuming that A �= 0, it follows that

uλ–λ2–λ1 =
B
A

a.e. in R+.

We have a = λ – λ1 – λ2 = 0, namely, λ1 + λ2 = λ.
The theorem is proved. �

Theorem 3 The following statements (i), (ii), (iii) and (iv) are equivalent:
(i) Both B

1
p (λ2,λ – λ2)B

1
q (λ1,λ – λ1) and B( λ–λ2

p + λ1
q , λ–λ1

q + λ2
p ) are finite and

independent of p, q;
(ii) B

1
p (λ2,λ – λ2)B

1
q (λ1,λ – λ1) is equal to a single convergent integral

B(λ̂1, λ̂2) =
∫ ∞

0

uλ̂1–1

(1 + u)λ
du;

(iii) if a = λ – λ1 – λ2 ∈ (–pλ1, p(λ – λ1)), then λ1 + λ2 = λ;
(iv) the constant factor

1
λ

B
1
p (λ2,λ – λ2)B

1
q (λ1,λ – λ1)

is the best possible in (13).

Proof (i) ⇒ (ii). In view of the assumption and the continuity of the beta function, we find

B
1
p (λ2,λ – λ2)B

1
q (λ1,λ – λ1)
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= lim
p→1–

lim
q→–∞ B

1
p (λ2,λ – λ2)B

1
q (λ1,λ – λ1) = B(λ2,λ – λ2),

B(λ̂1, λ̂2) = lim
p→1–

lim
q→–∞ B

(
λ – λ2

p
+

λ1

q
,
λ – λ1

q
+

λ2

p

)

= B(λ2,λ – λ2).

Hence, B
1
p (λ2,λ – λ2)B

1
q (λ1,λ – λ1) is equal to B(λ̂1, λ̂2), which is a single convergent

integral.
(ii) ⇒ (iii). Suppose that B

1
p (λ2,λ – λ2)B

1
q (λ1,λ – λ1) is equal to a single convergent in-

tegral
∫ ∞

0
1

(1+u)λ uλ̂1–1 du(∈ R+). Then (18) keeps the form of an equality. By the proof of
Theorem 2, we have λ1 + λ2 = λ.

(iii) ⇒ (iv). If λ1 + λ2 = λ, then by Theorem 1, the constant factor

1
λ

B
1
p (λ2,λ – λ2)B

1
q (λ1,λ – λ1)

(

=
1
λ

B(λ1,λ2)
)

in (13) is the best possible.
(iv) ⇒ (i). By Theorem 2, we have λ1 + λ2 = λ, and then

B
1
p (λ2,λ – λ2)B

1
q (λ1,λ – λ1) = B(λ1,λ2),

B
(

λ – λ2

p
+

λ1

q
,
λ – λ1

q
+

λ2

p

)

= B(λ1,λ2).

It follows that both of them are finite and independent of p, q.
Hence, the statements (i), (ii), (iii) and (iv) are equivalent.
The theorem is proved. �

Remark 2 For a = 0 in (11), we have

∫ ∞

0

∫ ∞

0

f (x)g ′(y)
(x + y)λ

dx

> B(λ1,λ2)
[∫ ∞

0
xp(1–λ1)–1f p(x) dx

] 1
p
[∫ ∞

0
yq(1–λ2)–1g ′q(y) dy

] 1
q

. (19)

We conform that the constant factor B(λ1,λ2) in (19) is the best possible. Otherwise, we
would reach a contradiction by (15) (for a = 0): the constant factor in (14) is not the best
possible.

4 Equivalent form and some particular inequalities
Theorem 4 Inequality (13) is equivalent to the following reverse Hardy–Hilbert-type in-
tegral inequality involving one derivative function:

J :=
{∫ ∞

0
xq(λ1+a)–a–1

[∫ ∞

0

g(y)
(x + y)λ+1 dy

]q

dx
} 1

q

>
1
λ

B
1
p (λ2,λ – λ2)B

1
q (λ1,λ – λ1)

[∫ ∞

0
yq(1–λ2)–a–1g ′q(y) dy

] 1
q

. (20)
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In particular, for λ1 + λ2 = λ (or a = 0), we reduce (20) to the equivalent form of (14) as
follows:

{∫ ∞

0
xqλ1–1

[∫ ∞

0

g(y)
(x + y)λ+1 dy

]q

dx
} 1

q
>

1
λ

B(λ1,λ2)
[∫ ∞

0
yq(1–λ2)–1g ′q(y) dy

] 1
q

, (21)

where the constant factor 1
λ

B(λ1,λ2) is the best possible.

Proof Suppose that (20) is valid. By the reverse Hölder integral inequality (cf. [30]), we
have

I =
∫ ∞

0

[
x

1
q –λ1– a

p f (x)
]
[

x– 1
q +λ1+ a

p

∫ ∞

0

g(y)
(x + y)λ+1 dy

]

dx

≥
{∫ ∞

0
xp(1–λ1)–a–1f p(x) dx

} 1
p

J . (22)

Then by (20), we have (13).
On the other hand, assuming that (13) is valid, we set

f (x) := xq(λ1+a)–a–1
[∫ ∞

0

g(y)
(x + y)λ+1 dy

]q–1

, x ∈ R+.

If J = ∞, then (20) is naturally valid; if J = 0, then it is impossible to make (20) valid,
namely J > 0. Suppose that 0 < J < ∞. By (13), we have

∫ ∞

0
xp(1–λ1)–a–1f p(x) dx

= Jq = I >
1
λ

B
1
p (λ2,λ – λ2)B

1
q (λ1,λ – λ1)Jq–1

[∫ ∞

0
yq(1–λ2)–a–1g ′q(y) dy

] 1
q

,

J =
[∫ ∞

0
xp(1–λ1)–a–1f p(x) dx

] 1
q

>
1
λ

B
1
p (λ2,λ – λ2)B

1
q (λ1,λ – λ1)

[∫ ∞

0
yq(1–λ2)–a–1g ′q(y) dy

] 1
q

,

namely, (20) follows, which is equivalent to (13).
The constant factor 1

λ
B(λ1,λ2) is the best possible in (21). Otherwise, by (22) (for a = 0),

we would reach a contradiction: that the constant factor in (14) is not the best possible.
The theorem is proved. �

Replacing x by 1
x , and then replacing xλ–1f ( 1

x ) by f (x) in (13) and (20), by calculation, we
have the following.

Corollary 1 The following reverse Hardy–Hilbert-type integral inequalities with the non-
homogeneous kernel involving one derivative function are equivalent:

∫ ∞

0

∫ ∞

0

f (x)g(y)
(1 + xy)λ+1 dx dy



Chen and Yang Journal of Inequalities and Applications        (2020) 2020:259 Page 10 of 12

>
1
λ

B
1
p (λ2,λ – λ2)B

1
q (λ1,λ – λ1)

×
[∫ ∞

0
xp(λ1–λ)+a–1f p(x) dx

] 1
p
[∫ ∞

0
yq(1–λ2)–a–1g ′q(y) dy

] 1
q

, (23)

{∫ ∞

0
xq(λ–λ1–a+1)+a–1

[∫ ∞

0

g(y)
(1 + xy)λ+1 dy

]q

dx
} 1

q

>
1
λ

B
1
p (λ2,λ – λ2)B

1
q (λ1,λ – λ1)

[∫ ∞

0
yq(1–λ2)–a–1g ′q(y) dy

] 1
q

. (24)

Moreover, λ1 +λ2 = λ (or a = 0) if and only if the constant factor 1
λ

B
1
p (λ2,λ–λ2)B

1
q (λ1,λ–

λ1) in (23) and (24) is the best possible.
For λ1 + λ2 = λ (or a = 0), we have the following reverse equivalent inequalities with the

non-homogeneous kernel and the best possible constant factor 1
λ

B(λ1,λ2):

∫ ∞

0

∫ ∞

0

f (x)g(y)
(1 + xy)λ+1 dx dy

>
1
λ

B(λ1,λ2) ×
(∫ ∞

0
x–pλ2–1f p(x) dx

) 1
p
[∫ ∞

0
yq(1–λ2)–1g ′q(y) dy

] 1
q

, (25)

{∫ ∞

0
xq(λ2+1)–1

[∫ ∞

0

g(y)
(1 + xy)λ+1 dy

]q

dx
} 1

q

>
1
λ

B(λ1,λ2)
[∫ ∞

0
yq(1–λ2)–1g ′q(y) dy

] 1
q

. (26)

Remark 3 For λ1 = λ
r ,λ2 = λ

s (r > 1, 1
r + 1

s = 1) in (14), (21), (25) and (26), we have the fol-
lowing two couples of reverse equivalent integral inequalities with the same best possible
constant factor 1

λ
B( λ

r , λ
s ):

∫ ∞

0

∫ ∞

0

f (x)g(y)
(x + y)λ+1 dx dy

>
1
λ

B
(

λ

r
,
λ

s

)[∫ ∞

0
xp(1– λ

r )–1f p(x) dx
] 1

p
[∫ ∞

0
yq(1– λ

s )–1g ′q(y) dy
] 1

q
, (27)

{∫ ∞

0
x

qλ
r –1

[∫ ∞

0

g(y)
(x + y)λ+1 dy

]q

dx
} 1

q

>
1
λ

B
(

λ

r
,
λ

s

)[∫ ∞

0
yq(1– λ

s )–1g ′q(y) dy
] 1

q
; (28)

∫ ∞

0

∫ ∞

0

f (x)g(y)
(1 + xy)λ+1 dx dy

>
1
λ

B
(

λ

r
,
λ

s

)(∫ ∞

0
x– pλ

s –1f p(x) dx
) 1

p
[∫ ∞

0
yq(1– λ

s )–1g ′q(y) dy
] 1

q
, (29)

{∫ ∞

0
xq( λ

s +1)–1
[∫ ∞

0

g(y)
(1 + xy)λ+1 dy

]q

dx
} 1

q

>
1
λ

B
(

λ

r
,
λ

s

)[∫ ∞

0
yq(1– λ

s )–1g ′q(y) dy
] 1

q
. (30)
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In particular, for λ = 1, r = s = 2, we have

∫ ∞

0

∫ ∞

0

f (x)g(y)
(x + y)2 dx dy > π

(∫ ∞

0
x

p
2 –1f p(x) dx

) 1
p
(∫ ∞

0
y

q
2 –1g ′q(y) dy

) 1
q

, (31)

{∫ ∞

0
x

q
2 –1

[∫ ∞

0

g(y)
(x + y)2 dy

]q

dx
} 1

q
> π

(∫ ∞

0
y

q
2 –1g ′q(y) dy

) 1
q

; (32)

∫ ∞

0

∫ ∞

0

f (x)g(y)
(1 + xy)2 dx dy > π

(∫ ∞

0
x– p

2 –1f p(x) dx
) 1

p
(∫ ∞

0
y

q
2 –1g ′q(y) dy

) 1
q

, (33)

{∫ ∞

0
x

3q
2 –1

[∫ ∞

0

g(y)
(1 + xy)2 dy

]q

dx
} 1

q
> π

(∫ ∞

0
y

q
2 –1g ′q(y) dy

) 1
q

. (34)

5 Conclusions
In this paper, following [21, 23], by the use of weight functions, the idea of introduc-
ing parameters, the reverse extension of (1) and the technique of real analysis, a reverse
Hardy–Hilbert-type integral inequality with the kernel 1

(x+y)λ+1 (λ > 0) involving one deriva-
tive function and the beta function is given in Theorem 1. The equivalent statements of the
best possible constant factor related to several parameters are considered in Theorem 3.
The equivalent form, the cases of non-homogeneous kernel and a few particular inequal-
ities are obtained in Theorem 4, Corollary 1 and Remark 3. The lemmas and theorems
provide an extensive account of this type of inequalities.
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