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Abstract
The main objective of this paper is to establish some new Hermite–Hadamard type
inequalities involving k-Riemann–Liouville fractional integrals. Using the convexity of
differentiable functions some related inequalities have been proved, which have
deep connection with some known results. At the end, some applications of the
obtained results in error estimations of quadrature formulas are also considered.
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1 Introduction
In literature, inequalities are very important for convex functions especially the integral in-
equalities for convex functions originated form Hermite and Hadamard (see [11, p. 137]).
The researchers have worked on Hermite–Hadamard type inequalities since 1893 [4]. The
classical Hermite–Hadamard inequality reads as follows: if f : I → R is convex on the in-
terval I of real numbers and a, b ∈ I with a < b, then

f
(

a + b
2

)
≤ 1

b – a

∫ b

a
f (μ) dμ ≤ f (a) + f (b)

2
.

We note that the Hermite–Hadamard inequality may be assessed as a treatment of the
conception of convexity. The Hermite–Hadamard inequality for convex functions has
conferred revived awareness in the latest years and some unusual variations of essential
and conclusion have been established (see, for example, [5, 6, 14, 17]). In the last few years,
the theory of inequalities has progressed very fast. The evolution of the hypothesis associ-
ated with ancient inequalities has developed in a resumption of attentiveness in this field.
In many classical inequalities, the Hermite–Hadamard inequality is one of the important
inequality of analysis. Such an inequality has been applied for different types of problems
of fractional calculus (see [1, 2, 8–10, 15, 16]). In this paper, as a continuation of the study
of the Hermite–Hadamard inequality, we establish some results for k-Riemann–Liouville
fractional integral by using the definition of convex functions via fractional calculus.
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Below, let us recall first some basic concepts and some earlier results.

Definition 1 A function f : [a, b] →R is said to be convex on an interval [a, b] ⊆R, if

f
(
τξ + (1 – τ )η

) ≤ τ f (ξ ) + (1 – τ )f (η) (1)

holds for ξ ,η ∈ [a, b] and τ ∈ [0, 1].

Definition 2 ([13]) Let f ∈ L1[a, b]. The Riemann–Liouville integrals Iλ
a+ f and Iλ

b– f of or-
der λ > 0 with a ≥ 0 are defined by

Iλ
a+ f (ξ ) =

1
�(λ)

∫ ξ

a
(ξ – μ)λ–1f (μ) dμ, ξ > a,

and

Iλ
b– f (ξ ) =

1
�(λ)

∫ b

ξ

(μ – ξ )λ–1f (μ) dμ, ξ < b,

respectively, where � is the classical Gamma function and I0
a+ f = I0

b– f = f (ξ ).

Theorem 1 ([14]) Consider f : [a, b] → R a positive mapping with 0 ≤ a < b and f ∈
L1[a, b]. If f is a convex function on [a, b], then

f
(

a + b
2

)
≤ �(λ + 1)

2(b – a)λ
[
Iλ

a+ f (b) + Iλ
b– f (a)

] ≤ f (a) + f (b)
2

. (2)

Lemma 1.1 ([14]) Suppose f : [a, b] →R is a differentiable function on (a, b) with a < b. If
f ′ ∈ Ł[a, b], then

f (a) + f (b)
2

–
�(λ + 1)
2(b – a)λ

[
Iλ

a+ f (b) + Iλ
b– f (a)

]

=
b – a

2

∫ 1

0

[
(1 – μ)λ – μλ

]
f ′(μa + (1 – μ)b

)
dμ. (3)

Theorem 2 ([14]) Assume that f : [a, b] → R is a differentiable function on (a, b) with
a < b. If |f ′| is convex on [a, b], then

∣∣∣∣ f (a) + f (b)
2

–
�(λ + 1)
2(b – a)λ

[
Iλ

a+ f (b) + Iλ
b– f (a)

]∣∣∣∣
≤ b – a

2(λ + 1)

(
1 –

1
2λ

)[
f ′(a) + f ′(b)

]
. (4)

Theorem 3 ([12]) Let f : [a, b] → R be a positive mapping with 0 ≤ a < b and f ∈ L1[a, b].
If f is a convex function on [a, b], then

f
(

a + b
2

)
≤ 2λ–1�(λ + 1)

(b – a)λ
[
Iλ

( a+b
2 )+ f (b) + Iλ

( a+b
2 )– f (a)

] ≤ f (a) + f (b)
2

. (5)
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Lemma 1.2 ([12]) Suppose f : [a, b] →R is a differentiable function on (a, b) with a < b. If
f ′ ∈ Ł[a, b], then

2λ–1�(λ + 1)
(b – a)λ

[
Iλ

( a+b
2 )+ f (b) + Iλ

( a+b
2 )– f (a)

]
– f

(
a + b

2

)

=
b – a

4

[∫ 1

0
μλf ′

(
μ

2
a +

2 – μ

2
b
)

dμ –
∫ 1

0
μλf ′

(
μ

2
b +

2 – μ

2
a
)

dμ

]
. (6)

Theorem 4 ([12]) Consider f : [a, b] → R, a differentiable function on (a, b) with a < b. If
|f ′|h is convex on [a, b] for h ≥ 1, then

∣∣∣∣2λ–1�(λ + 1)
(b – a)λ

[
Iλ

( a+b
2 )+ f (b) + Iλ

( a+b
2 )– f (a)

]
– f

(
a + b

2

)∣∣∣∣

≤ b – a
4(λ + 1)

(
1

2(λ + 2)

) 1
h {(

(λ + 1)
∣∣f ′(a)

∣∣h + (λ + 3)
∣∣f ′(b)

∣∣h) 1
h

+
(
(λ + 3)

∣∣f ′(a)
∣∣h + (λ + 1)

∣∣f ′(b)
∣∣h) 1

h
}

. (7)

2 Hermite–Hadamard’s inequalities for k-fractional integrals
In [3], the k-gamma function was introduced by Diaz et al. as follows.

Definition 3 Let k and R(v) be positive. Then the k-gamma function is defined by follow-
ing integral:

�k(ξ ) =
∫ ∞

0
vξ–1 exp

(
–

vk

k

)
dv.

Definition 4 ([7]) If k > 0, Let f ∈ L1(a, b), a ≥ 0, then k-Riemann–Liouville fractional
integrals Iλ

a+,kf and Iλ
b–,kf of order λ > 0 for a real-valued continuous function f (μ) are

defined by

Iλ
a+,kf (ξ ) =

1
k�k(λ)

∫ ξ

a
(ξ – μ)

λ
k –1f (μ) dμ, ξ > a,

and

Iλ
b–,kf (ξ ) =

1
k�k(λ)

∫ b

ξ

(μ – ξ )
λ
k –1f (μ) dμ, ξ < b,

respectively. Here �k is the k-Gamma function.

Theorem 5 Let k > 0, Iλ
a+,kf and Iλ

b–,kf be the left and right sided k-Riemann–Liouville
fractional integral of order λ > 0. Let f : [a, b] → R be positive mapping with 0 ≤ a < b,
f ∈ L1[a, b]. If f is convex on [a, b], then

f
(

a + b
2

)
≤ �k(λ + k)

2(b – a)
λ
k

[
Iλ

a+,kf (b) + Iλ
b–,kf (a)

] ≤ f (a) + f (b)
2

. (8)
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Proof As f is convex mapping on [a, b], we have, for ξ ,η ∈ [a, b] with τ = 1
2 in (1),

f
(

ξ + η

2

)
≤ f (ξ ) + f (η)

2
. (9)

Now let ξ = μa + (1 – μ)b and η = μb + (1 – μ)a, then (9) becomes

2f
(

a + b
2

)
≤ f

(
μa + (1 – μ)b

)
+ f

(
μb + (1 – μ)a

)
. (10)

Multiplying both sides of (10) by μ
λ
k –1, then integrating with respect to μ over [0, 1], we

get

2k
λ

f
(

a + b
2

)
≤

∫ 1

0
μ

λ
k –1f

(
μa + (1 – μ)b

)
dμ +

∫ 1

0
μ

λ
k –1f

(
μb + (1 – μ)a

)
dμ

= I1 + I2, (11)

where

I1 =
∫ 1

0
μ

λ
k –1f

(
μa + (1 – μ)b

)
dμ

and

I2 =
∫ 1

0
μ

λ
k –1f

(
μb + (1 – μ)a

)
dμ.

By taking μa + (1 – μ)b = φ in I1 and μb + (1 – μ)a = ω in I2, we get

I1 =
1

(b – a)
λ
k

∫ b

a
(b – φ)

λ
k –1f (φ) dφ (12)

and

I2 =
1

(b – a)
λ
k

∫ b

a
(ω – a)

λ
k –1f (ω) dω. (13)

Substituting the values of I1 and I2 from (12) and (13) in (11), we get

2k
λ

f
(

a + b
2

)
≤ 1

(b – a)
λ
k

[∫ b

a
(b – φ)

λ
k –1f (φ) dφ +

∫ b

a
(ω – a)

λ
k –1f (ω) dω

]
,

which implies that

f
(

a + b
2

)
≤ �k(λ + k)

2(b – a)
λ
k

[
Iλ

a+,kf (b) + Iλ
b–,kf (a)

]
. (14)

This completes the first inequality in (8). To complete the second inequality, we note that
if f is convex, then, for τ ∈ [0, 1], it yields that

f
(
μa + (1 – μ)b

) ≤ μf (a) + (1 – μ)f (b)
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and

f
(
μb + (1 – μ)a

) ≤ μf (b) + (1 – μ)f (a).

By adding the above two inequalities, we get

f
(
μa + (1 – μ)b

)
+ f

(
μb + (1 – μ)a

) ≤ f (a) + f (b). (15)

Multiplying by μ
λ
k –1 on both sides of (15), then integrating with regard to μ over [0, 1], we

get

∫ 1

0
μ

λ
k –1f

(
μa + (1 – μ)b

)
dμ +

∫ 1

0
μ

λ
k –1f

(
μb + (1 – μ)a

)
dμ ≤ k

λ

[
f (a) + f (b)

]
. (16)

We denote

K1 =
∫ 1

0
μ

λ
k –1f

(
μa + (1 – μ)b

)
dμ

and

K2 =
∫ 1

0
μ

λ
k –1f

(
μb + (1 – μ)a

)
dμ.

Putting φ = μa + (1 – μ)b in K1, and ω = μb + (1 – μ)a in K2, we obtain

K1 =
1

(b – a)
λ
k

∫ b

a
(b – φ)

λ
k –1f (φ) dφ (17)

and

K2 =
1

(b – a)
λ
k

∫ b

a
(ω – a)

λ
k –1f (ω) dω. (18)

Substituting the values of K1 and K2 from (17) and (18) in (16), we get

1

(b – a)
λ
k

[∫ b

a
(b – φ)

λ
k –1f (φ) dφ +

∫ b

a
(ω – a)

λ
k –1f (ω) dω

]
≤ k

λ

[
f (a) + f (b)

]
,

which implies that

�k(λ + k)

2(b – a)
λ
k

[
Iλ

a+,kf (b) + Iλ
b–,kf (a)

] ≤ f (a) + f (b)
2

. (19)

By combining (17), and (19), we get (8). �
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Lemma 2.1 Let k > 0, Iλ
a+,kf and Iλ

b–,kf be defined as Definition 4. Let f : [a, b] → R be a
differentiable mapping on (a, b) with a < b. If f ′ ∈ Ł[a, b], then

(b – a)
2

∫ 1

0

[
(1 – μ)

λ
k – μ

λ
k
]
f ′(μa + (1 – μ)b

)
dμ

=
f (a) + f (b)

2
–

�k(λ + k)

2(b – a)
λ
k

[
Iλ

a+,kf (b) + Iλ
b–,kf (a)

]
. (20)

Proof Let us consider

I =
∫ 1

0

[
(1 – μ)

λ
k – μ

λ
k
]
f ′(μa + (1 – μ)b

)
dμ,

which, we can write as

I =
[∫ 1

0
(1 – μ)

λ
k f ′(μa + (1 – μ)b

)
dμ

]
+

[
–

∫ 1

0
μ

λ
k
(
f ′(μa + (1 – μ)b

)
dμ

)]

= I1 + I2. (21)

Integrating I1 by parts, we get

I1 =
f (b)
b – a

–
λ

k(b – a)

∫ 1

0
(1 – μ)

λ
k –1f

(
μa + (1 – μ)b

)
dμ.

Setting ξ = μa + (1 – μ)b, then after some calculation, we get

I1 =
f (b)
b – a

–
�k(λ + k)

(b – a)
λ
k +1

[
Iλ

b–,kf (a)
]
. (22)

Now integrating I2 by parts to get

I2 =
f (a)
b – a

–
λ

k(b – a)

∫ 1

0
μ

λ
k –1f

(
μa + (1 – μ)b

)
dμ.

Setting ξ = (μa + (1 – μ)b), after some calculation, we get

I2 =
f (a)
b – a

–
�k(λ + k)

(b – a)
λ
k +1

[
Iλ

a+,kf (b)
]
. (23)

Applying (22) and (23) in (21), it follows that

I =
f (b)
b – a

+
f (a)
b – a

–
�k(λ + k)

(b – a)
λ
k +1

[
Iλ

a+,kf (b) + Iλ
b–,kf (a)

]
,

or
∫ 1

0

[
(1 – μ)

λ
k – μ

λ
k
]
f ′(μa + (1 – μ)b

)
dμ

=
f (b)
b – a

+
f (a)
b – a

–
�k(λ + k)

(b – a)
λ
k +1

[
Iλ

a+,kf (b) + Iλ
b–,kf (a)

]
. (24)

Multiplying both sides of (24) by b–a
2 to get the required result. �
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Theorem 6 Let k > 0, Iλ
a+,kf and Iλ

b–,kf be defined as Definition 4. Let f : [a, b] → R be
differentiable on (a, b) with a < b. If |f ′| is convex on [a, b], then

∣∣∣∣ f (a) + f (b)
2

–
�k(λ + k)

2(b – a)
λ
k

[
Iλ

a+,kf (b) + Iλ
b–,kf (a)

]∣∣∣∣

≤ (b – a)
2( λ

k + 1)

(
1 –

1

2
λ
k

)(∣∣f ′(a)
∣∣ +

∣∣f ′(b)
∣∣). (25)

Proof By using Lemma 2.1 and the definition of a convex function of |f ′|, we have

∣∣∣∣ f (a) + f (b)
2

–
�k(λ + k)

2(b – a)
λ
k

[
Iλ

a+,kf (b) + Iλ
b–,kf (a)

]∣∣∣∣

≤ (b – a)
2

∫ 1

0

∣∣(1 – μ)
λ
k – μ

λ
k
∣∣∣∣f ′(μa + (1 – μ)b

)∣∣dμ

≤ (b – a)
2

∫ 1

0

∣∣(1 – μ)
λ
k – μ

λ
k
∣∣[μ∣∣f ′(a)

∣∣ + (1 – μ)
∣∣f ′(b)

∣∣]dμ

=
(b – a)

2

[∫ 1

0

∣∣(1 – μ)
λ
k – μ

λ
k
∣∣μ∣∣f ′(a)

∣∣dμ +
∫ 1

0

∣∣(1 – μ)
λ
k – μ

λ
k
∣∣(1 – μ)

∣∣f ′(b)
∣∣dμ

]

=
(b – a)

2
(K1 + K2), (26)

where

K1 =
∣∣f ′(a)

∣∣[∫ 1
2

0
μ(1 – μ)

λ
k dμ –

∫ 1
2

0
μ

λ
k +1 dμ

]

+
∣∣f ′(b)

∣∣[∫ 1
2

0
(1 – μ)

λ
k +1 dμ –

∫ 1
2

0
(1 – μ)μ

λ
k dμ

]

and

K2 =
∣∣f ′(a)

∣∣[∫ 1

1
2

μ
λ
k +1 dμ –

∫ 1

1
2

μ(1 – μ)
λ
k dμ

]

+
∣∣f ′(b)

∣∣[∫ 1

1
2

(1 – μ)μ
λ
k dμ –

∫ 1

1
2

(1 – μ)
λ
k +1 dμ

]
.

We calculate K1 to get

K1 =
∣∣f ′(a)

∣∣[ 1
( λ

k + 1)( λ
k + 2)

–
( 1

2 )
λ
k +1

( λ
k + 1)

]
–

∣∣f ′(b)
∣∣[ 1

( λ
k + 2)

–
( 1

2 )
λ
k +1

( λ
k + 1)

]
. (27)

Similarly we can calculate K2 and get

K2 =
∣∣f ′(a)

∣∣[ 1
( λ

k + 2)
–

( 1
2 )

λ
k +1

( λ
k + 1)

]
+

∣∣f ′(b)
∣∣[ 1

( λ
k + 1)( λ

k + 2)
–

( 1
2 )

λ
k +1

( λ
k + 1)

]
. (28)

Substituting the values of K1 and K2 in (26) and after some calculations, we get (25). �



Wu et al. Journal of Inequalities and Applications         (2021) 2021:32 Page 8 of 14

3 Some more fractional inequalities for convex functions
Definition 5 Let f ∈ L1[a, b]. The k-Riemann–Liouville integrals Iλ

( a+b
2 )+,k

f and Iλ

( a+b
2 )–,k

f
of order λ > 0 and k > 0 with a ≥ 0 are defined by

Iλ

( a+b
2 )+,k

f (ξ ) =
1

k�k(λ)

∫ ξ

a+b
2

(ξ – μ)
λ
k –1f (μ) dμ, ξ >

a + b
2

,

and

Iλ

( a+b
2 )–,k

f (ξ ) =
1

k�k(λ)

∫ a+b
2

ξ

(μ – ξ )
λ
k –1f (μ) dμ, ξ <

a + b
2

,

respectively. Here �k(λ) is the k-Gamma function.

Theorem 7 Let k > 0, Iλ

( a+b
2 )+,k

f and Iλ

( a+b
2 )–,k

f be defined in Definition 5. Let f : [a, b] → R

be positive mapping with 0 ≤ a < b and f ∈ L1[a, b]. If f is a convex function on [a, b], then

f
(

a + b
2

)
≤ 2

λ
k –1�k(λ + k)

(b – a)
λ
k

[
Iλ

( a+b
2 )+,k

f (b) + Iλ

( a+b
2 )–,k

f (a)
] ≤ f (a) + f (b)

2
. (29)

Proof As f is convex function on [a, b], we have, for ξ ,η ∈ [a, b] with τ = 1
2 ,

f
(

ξ + η

2

)
≤ f (ξ ) + f (η)

2
. (30)

Putting ξ = μa
2 + (2–μ)b

2 and η = μb
2 + (2–μ)a

2 , then (30) becomes

2f
(

a + b
2

)
≤ f

(
μa
2

+
(2 – μ)b

2

)
+ f

(
μb
2

+
(2 – μ)a

2

)
. (31)

Multiplying by μ
λ
k –1 on both sides of (31), then integrating with respect to μ over [0, 1],

we get

2k
λ

f
(

a + b
2

)
≤

∫ 1

0
μ

λ
k –1f

(
μa
2

+
(2 – μ)b

2

)
dμ

+
∫ 1

0
μ

λ
k –1f

(
μb
2

+
(2 – μ)a

2

)
dμ. (32)

We set

I1 =
∫ 1

0
μ

λ
k –1f

(
μa
2

+
(2 – μ)b

2

)
dμ. (33)

Taking φ = μa
2 + (2–μ)b

2 , after some calculations we get

I1 =
2

λ
k

(b – a)
λ
k

∫ b

a+b
2

(b – φ)
λ
k –1f (φ) dφ, (34)
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and we set

I2 =
∫ 1

0
μ

λ
k –1f

(
μb
2

+
(2 – μ)a

2

)
dμ.

Putting ω = μb
2 + (2–μ)a

2 to get

I2 =
2

λ
k

(b – a)
λ
k

∫ a+b
2

a
(ω – a)

λ
k –1f (ω) dω. (35)

Substituting the values of I1 and I2 from (33) and (35) in (32), we get

f
(

a + b
2

)
≤ 2

λ
k –1�k(λ + k)

(b – a)
λ
k

[
Iλ

( a+b
2 )+,k

f (b) + Iλ

( a+b
2 )–,k

f (a)
]
. (36)

The first part of the inequality is proved. To complete the second inequality, we note that
if f is convex function, then, for τ ∈ [0, 1], showing

f
(

μ

2
a +

2 – μ

2
b
)

≤ μ

2
f (a) +

2 – μ

2
f (b)

and

f
(

μ

2
b +

2 – μ

2
a
)

≤ μ

2
f (b) +

2 – μ

2
f (a).

By adding the above two inequalities, we get

f
(

μ

2
a +

2 – μ

2
b
)

+ f
(

μ

2
b +

2 – μ

2
a
)

≤ f (a) + f (b). (37)

Multiplying by μ
λ
k –1 on both sides of (37) and integrating inequalities with respect to μ

over [0, 1], we get

∫ 1

0
μ

λ
k –1f

(
μ

2
a +

2 – μ

2
b
)

dμ +
∫ 1

0
μ

λ
k –1f

(
μ

2
b +

2 – μ

2
a
)

dμ ≤ k
λ

[
f (a) + f (b)

]
. (38)

We take

L1 =
∫ 1

0
μ

λ
k –1f

(
μa
2

+
(2 – μ)b

2

)
dμ

and choose φ = μa
2 + (2–μ)b

2 , we get after some simple calculations

L1 =
2

λ
k

(b – a)
λ
k

∫ b

a+b
2

(b – φ)
λ
k –1f (φ) dφ. (39)

Likewise we take

L2 =
∫ 1

0
μ

α
k –1f

(
μb
2

+
(2 – μ)a

2

)
dμ,



Wu et al. Journal of Inequalities and Applications         (2021) 2021:32 Page 10 of 14

and choose ω = μb
2 + (2–μ)a

2 , we get

L2 =
2

λ
k

(b – a)
λ
k

∫ a+b
2

a
(ω – a)

λ
k –1f (ω) dω. (40)

Substituting the values of L1 and L2 from (39) and (40) in (38), we get

2
λ
k

(b – a)
λ
k

[∫ b

a+b
2

(b – φ)
λ
k –1f (φ) dφ +

∫ a+b
2

a
(ω – a)

λ
k –1f (ω) dω

]
≤ k

λ

[
f (a) + f (b)

]
.

This implies that

2
λ
k –1λ�k(λ)

(b – a)
λ
k

[
Iλ

( a+b
2 )+,k

f (b) + Iλ

( a+b
2 )–,k

f (a)
] ≤ f (a) + f (b)

2
. (41)

From (36) and (41), we get the required result. �

Lemma 3.1 Let k > 0, Iλ

( a+b
2 )+,k

f and Iλ

( a+b
2 )–,k

f be defined as Definition 5. Let f : [a, b] → R

be differentiable on (a, b) with a < b. If f ′ ∈ Ł[a, b], then

2
λ
k –1�k(λ + k)

(b – a)
λ
k

[
Iλ

( a+b
2 )+,k

f (b) + Iλ

( a+b
2 )–,k

f (a)
]

– f
(

a + b
2

)

=
b – a

4

[∫ 1

0
μ

λ
k f ′

(
μ

2
a +

2 – μ

2
b
)

dμ –
∫ 1

0
μ

λ
k f ′

(
μ

2
b +

2 – μ

2
a
)

dμ

]
. (42)

Proof Let

I =
[∫ 1

0
μ

λ
k f ′

(
μ

2
a +

2 – μ

2
b
)

dμ –
∫ 1

0
μ

λ
k f ′

(
μ

2
b +

2 – μ

2
a
)

dμ

]

= I1 – I2.

Note that

I1 =
∫ 1

0
μ

λ
k f ′

(
μ

2
a +

2 – μ

2
b
)

dμ

= –f
(

a + b
2

)(
2

b – a

)
+

λ

k

(
2

b – a

)∫ 1

0
μ

λ
k –1f

(
μ

2
a +

2 – μ

2
b
)

dμ.

Substituting ξ = μa
2 + (2–μ)b

2 , we get after some computations

I1 = –f
(

a + b
2

)(
2

b – a

)
+

2
λ
k +1�k(λ + k)

(b – a)
λ
k +1

[
Iλ

( a+b
2 )+,k

f (b)
]
. (43)

Similarly we can write for I2

I2 =
∫ 1

0
μ

λ
k f ′

(
μ

2
b +

2 – μ

2
a
)

dμ

= f
(

a + b
2

)(
2

b – a

)
–

λ

k

∫ 1

0
μ

λ
k –1f

(
μ

2
b +

2 – μ

2
a
)(

2
b – a

)
dμ.
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Taking ξ = μb
2 + (2–μ)a

2 , we get

I2 = f
(

a + b
2

)(
2

b – a

)
–

2
λ
k +1�k(λ + k)

(b – a)
λ
k +1

[
Iλ

( a+b
2 )–,k

f (a)
]
. (44)

By using (43) and (44), it follows that

I1 – I2 =
2

λ
k +1�k(λ + k)

(b – a)
λ
k +1

[
Iλ

( a+b
2 )+,k

f (b) + Iλ

( a+b
2 )–,k

f (a)
]

– f
(

a + b
2

)(
4

b – a

)
.

Thus, multiplying b–a
4 on both sides of the above, we get (42). �

Theorem 8 Let k > 0, Iλ

( a+b
2 )+,k

f and Iλ

( a+b
2 )–,k

f be defined as Definition 5. Let f : [a, b] → R

be a differentiable function on (a, b) with a < b. If |f ′|h is convex on [a, b] for h ≥ 1, then

∣∣∣∣2
λ
k –1�k(λ + k)

(b – a)
λ
k

[
Iλ

( a+b
2 )+,k

f (b) + Iλ

( a+b
2 )–,k

f (a)
]

– f
(

a + b
2

)∣∣∣∣

≤
(

b – a
4

)(
1

λ
k + 1

)(
1

2( λ
k + 2)

) 1
h
[((

λ

k
+ 1

)∣∣f ′(a)
∣∣h +

(
λ

k
+ 3

)∣∣f ′(b)
∣∣h

) 1
h

+
((

λ

k
+ 3

)∣∣f ′(a)
∣∣h +

(
λ

k
+ 1

)∣∣f ′(b)
∣∣h

) 1
h
]

. (45)

Proof First, we consider the case of h = 1. By using Lemma 3.1, and the definition of convex
function of |f ′|, we obtain

∣∣∣∣2
λ
k –1�k(λ + k)

(b – a)
λ
k

[
Iλ

( a+b
2 )+,k

f (b) + Iλ

( a+b
2 )–,k

f (a)
]

– f
(

a + b
2

)∣∣∣∣

≤ b – a
4

∫ 1

0
μ

λ
k

[∣∣∣∣f ′
(

μ

2
a +

2 – μ

2
b
)∣∣∣∣ +

∣∣∣∣f ′
(

μ

2
b +

2 – μ

2
a
)∣∣∣∣dμ

]

≤ b – a
4

(∫ 1

0
μ

λ
k

[
μ

2
∣∣f ′(a)

∣∣ +
2 – μ

2
∣∣f ′(b)

∣∣ +
μ

2
∣∣f ′(b)

∣∣ +
2 – μ

2
∣∣f ′(a)

∣∣]dμ

)

=
b – a

4

(∫ 1

0

[
μ

λ
k +1

2
∣∣f ′(a)

∣∣ +
2μ

λ
k – μ

λ
k +1

2
∣∣f ′(b)

∣∣

+
μ

λ
k +1

2
∣∣f ′(b)

∣∣ +
2μ

λ
k – μ

λ
k +1

2
∣∣f ′(a)

∣∣]dμ

)

=
b – a

4

([ |f ′(a)|
2( λ

k + 2)
+

2( λ
k + 2) – ( λ

k + 1)
( λ

k + 1)( λ
k + 2)2

∣∣f ′(b)
∣∣

+
2( λ

k + 2) – ( λ
k + 1)

( λ
k + 1)( λ

k + 2)2
∣∣f ′(b)

∣∣ +
f ′(b)

2( λ
k + 2)

])

=
b – a

4

([ |f ′(a)|
( λ

k + 2)
+

( λ
k + 3)

2( λ
k + 1)( λ

k + 2)
∣∣f ′(b)

∣∣

+
( λ

k + 3)
2( λ

k + 1)( λ
k + 2)

∣∣f ′(a)
∣∣ +

|f ′(b)|
( λ

k + 2)

])
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=
b – a

4

[(
1

2( λ
k + 2)

+
( λ

k + 3)
2( λ

k + 1)( λ
k + 2)

)∣∣f ′(a)
∣∣

+
( ( λ

k + 3)
2( λ

k + 1)( λ
k + 2)

+
1

2( λ
k + 2)

)∣∣f ′(b)
∣∣]

=
b – a

4

( 2( λ
k + 2)

2( λ
k + 1)( λ

k + 2)
[∣∣f ′(a)

∣∣ +
∣∣f ′(b)

∣∣])

=
b – a

4( λ
k + 1)

[∣∣f ′(a)
∣∣ +

∣∣f ′(b)
∣∣].

Now we consider the case of h > 1. By using Lemma 3.1, the Holder inequality and the
definition of convex function of |f ′|h, we get

∣∣∣∣2
λ
k –1�k(λ + k)

(b – a)
λ
k

[
Iλ

( a+b
2 )+,k

f (b) + Iλ

( a+b
2 )–,k

f (a)
]

– f
(

a + b
2

)∣∣∣∣

≤ b – a
4

[∫ 1

0
μ

λ
k f ′

(
μ

2
a +

2 – μ

2
b
)

dμ

+
∫ 1

0
μ

λ
k f ′

(
μ

2
b +

2 – μ

2
a
)

dμ

]

≤ b – a
4

[(∫ 1

0
μ

λ
k

∣∣∣∣f ′
(

μ

2
a +

2 – μ

2
b
)∣∣∣∣

h

dμ

) 1
h

+
(∫ 1

0
μ

λ
k

∣∣∣∣f ′
(

μ

2
b +

2 – μ

2
a
)∣∣∣∣

h

dμ

) 1
h
](∫ 1

0
μ

λ
k dμ

)1– 1
h

≤ b – a
4

[(∫ 1

0
μ

λ
k

(
μ

2
∣∣f ′(a)

∣∣h +
2 – μ

2
∣∣f ′(b)

∣∣h
)

dμ

) 1
h

+
(∫ 1

0
μ

λ
k

(
μ

2
∣∣f ′(b)

∣∣h +
2 – μ

2
∣∣f ′(a)

∣∣h
)

dμ

) 1
h
](∫ 1

0
μ

λ
k dμ

)1– 1
h

=
b – a

4

[(∫ 1

0

(
μ

λ
k +1

2
∣∣f ′(a)

∣∣h +
2μ

λ
k – μ

λ
k +1

2
∣∣f ′(b)

∣∣h
)

dμ

) 1
h

+
(∫ 1

0

(
μ

λ
k +1

2
∣∣f ′(b)

∣∣h +
2μ

λ
k – μ

λ
k +1

2
∣∣f ′(a)

∣∣h
)

dμ

) 1
h
](∫ 1

0
μ

λ
k dμ

)1– 1
h

=
b – a

4

[( |f ′(a)|h
2( λ

k + 2)
+

( λ
k + 3)

2( λ
k + 1)( λ

k + 2)
∣∣f ′(b)

∣∣h
) 1

h

+
( |f ′(b)|h

2( λ
k + 2)

+
( λ

k + 3)
2( λ

k + 1)( λ
k + 2)

∣∣f ′(a)
∣∣h

) 1
h
](∫ 1

0
μ

λ
k dμ

)1– 1
h

≤ b – a
4

(
1

2( λ
k + 1)( λ

k + 2)

) 1
h
[((

λ

k
+ 1

)∣∣f ′(a)
∣∣h +

(
λ

k
+ 3

)∣∣f ′(b)
∣∣h

) 1
h

+
((

λ

k
+ 1

)∣∣f ′(b)
∣∣h +

(
λ

k
+ 3

)∣∣f ′(a)
∣∣h

) 1
h
](

1
λ
k + 1

)1– 1
h

.

This completes the proof. �
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Remark 1 Our results described in the above theorems coincide with the results of [14]
and [12] by replacing Iλ

a+,kf (ξ ) by Iλ
a+ f (ξ ).

4 Applications to quadrature formulas
In this section we apply the obtained results in to the error estimations of quadrature
formulas. It is shown that our main results contain as special cases results such as mid-
point inequality and trapezoid inequality. Also, the Hermite–Hadamard inequality can be
deduced directly from our main results.

Proposition 1 (Hermite–Hadamard inequality) By using the assumptions of Theorem 5
with λ = 1 and k = 1, we get the following

f
(

a + b
2

)
≤ 1

b – a

∫ b

a
f (μ) dμ ≤ f (a) + f (b)

2
.

Proposition 2 (Mid-point inequality) By using the assumptions of Theorem 8 with λ = 1,
h = 1 and k = 1, we get the following mid-point type inequality:

∣∣∣∣ 1
(b – a)

∫ b

a
f (μ) dμ – f

(
a + b

2

)∣∣∣∣ ≤ b – a
8

[∣∣f ′(a)
∣∣ +

∣∣f ′(b)
∣∣].

Proposition 3 (Trapezoid inequality) By using the assumptions of Theorem 6 with λ = 1
and k = 1, we get the following trapezoid inequality:

∣∣∣∣ f (a) + (b)
2

–
1

b – a

∫ b

a
f (μ) dμ

∣∣∣∣ ≤ b – a
8

[∣∣f ′(a)
∣∣ +

∣∣f ′(b)
∣∣].

5 Conclusion
We have discussed some Hermite–Hadamard type inequalities for k-Riemann–Liouville
fractional integral using the convexity of differentiable functions. We stated our main re-
sults by Theorems 5, 6, 7 and 8, and showed that our results contain some existing results
as special cases. As applications we have established two inequalities involving the error
estimates of quadrature formulas.
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