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1 Introduction
Recently the study of discrete spaces in functional and harmonic analysis has become an
active field of research. For example, the study of discrete Cesàro space has been consid-
ered by some authors, see for example [6, 22, 27, 29] and the references they cited. Whereas
some results from Euclidean functional analysis admit an obvious variant in the discrete
setting, some others do not. In fact, it is well known that passage from integral operators
to their discrete analogues is not trivial, and each of these two settings requires its own
techniques. In this paper, we study the structure of the weighted Cesàro and Copson se-
quence spaces. Throughout the paper, we assume that 1 ≤ p ≤ ∞. The Cesàro function
space Cesp(R+) is the set of all Lebesgue measurable real functions defined on R

+ = [0,∞)
such that

‖f ‖Cesp =
(∫ ∞

0

(
1
x

∫ x

0

∣∣f (t)
∣∣dt

)p

dx
) 1

p
< ∞, when 1 ≤ p < ∞,

and

‖f ‖Ces∞ = sup
x∈R+,x>0

1
x

∫ x

0

∣∣f (t)
∣∣dt < ∞, when p = ∞.

The Cesàro function spaces Cesp(R+) for 1 ≤ p ≤ ∞ were considered first by Shiue [26]
and later by Hassard and Hussein [15], Sy, Zhang, and Lee [28], and Astashkin and Ma-
ligranda [4]. They proved that Cesp(R+) for 1 < p < ∞ are separable Banach spaces and
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are not reflexive, and they do not have the fixed point property. They also proved that
Ces∞(R+) is a nonseparable Banach space. By the Hardy inequality [14]

∫ ∞

0

(
1
x

∫ x

0

∣∣f (t)
∣∣dt

)p

dx ≤
(

p
p – 1

)p ∫ ∞

0

∣∣f (x)
∣∣p dx, (1)

we see that the spaces Lp(R+) (i.e. space of all functions f such that (
∫ ∞

0 |f (x)|p dx)
1
p < ∞)

are continuously embedded into Cesp(R+) for 1 < p < ∞ with strict embedding. In other
words, f ∈ Cesp(R+) if and only if the operator T(f ) = (1/x)

∫ x
0 f (t) dt belongs to Lp(R+).

Also, for 1 < p ≤ q < ∞, we see by the inequality

(∫ ∞

0
u(x)

(∫ x

0
f (t) dt

)q

dx
)1/q

≤ C
(∫ ∞

0
υ(x)f p(x) dx

)1/p

(2)

due to Opic and Kufner [24] that the spaces Lp
v (R+) with weight v are embedded into

Cesq(R+) with weight u with strict embedding if

sup
a<x<∞

(∫ ∞

x
u(t) dt

)1/q(∫ x

a
υ1–p′ (t) dt

)1/p′

< ∞.

It is clear that Hardy’s inequality (1) can be interpreted as inclusions between the space of
functions Lp(R+) and Cesàro space of functions Cesp(R+); as a consequence, we get that

Lp ⊆ Cesp for 1 < p < ∞.

The Cesàro sequence space cesp(N) is the set of all real sequences (λn)n≥1 on N that satisfy

‖λ‖cesp =

( ∞∑
n=1

(
1
n

n∑
k=1

|λk|
)p) 1

p

< ∞, when 1 ≤ p < ∞,

and

‖λ‖ces∞ = sup
n∈N

1
n

n∑
k=1

|λk| < ∞, when p = ∞.

In 1968 the Dutch mathematical society posted a problem of finding an explicit represen-
tation of the discrete dual of the Cesàro space of sequences. In [26] Shiue investigated this
problem for the first time, and later it was analyzed by Leibowitz [20] and Jagers [16], and
for dual spaces of Cesàro space of sequences and functions, we refer to [29]. In particular,
they proved that cesp(N) is a separable reflexive Banach space for 1 < p < ∞, and it does
have the fixed point property, and if 1 < p < q < ∞, then cesp ⊂ cesq with continuous strict
embedding. The representation result for the dual of the space of sequences of Cesàro
type has been extended to the classical Lorentz space of sequences

d(v, q) =

{
λ : ‖λ‖v,q =

( ∞∑
n=1

∣∣λ∗(n)
∣∣qv(n)

)1/q

< ∞
}

,
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where λ∗(n) is the nonincreasing rearrangement of |λ(n)| and q∗ is the conjugate of q by
Arińo and Muckenhoupt [3]. They proved that the space d(v–q∗/q, q∗) is the dual space of
d(v, q) when v(n) is a nonincreasing sequence and satisfies the regularity condition

1
n

n∑
i=1

v(i) ≤ Cv(n). (3)

By Hardy’s inequality [13],

∞∑
m=1

(
1
m

m∑
k=1

|λk|
)p

≤
(

p
p – 1

)p ∞∑
m=1

|λm|p, 1 < q < ∞, (4)

the space lp(N) (i.e. space of all sequences (λn)n≥1 such that (
∑∞

n=1 |λk|p)
1
p < ∞) is con-

tinuously embedded into cesp(N) for 1 < p < ∞ with strict embedding. In other words
λk ∈ cesp(N) if and only if the operator T(λ) = ( 1

m
∑m

k=1 |λk|) belongs to lp(N). Inspired by
the development in the continuous case, it is proved in [2, Theorem 4.1] that

( ∞∑
n=1

un

( n∑
k=1

|ak|
)q) 1

q

≤ C

( ∞∑
n=1

vn|an|p
) 1

p

for 1 ≤ p ≤ q < ∞ (5)

holds, where {un}∞n=1, {vn}∞n=1 are positive sequences if

sup
n∈N

( ∞∑
k=n

uk

) 1
q
( n∑

k=1

v1–p∗
k

) 1
p∗

< ∞, where p∗ :=
p

p – 1
.

Inequality (4) can also be interpreted as inclusions between the space of sequences lp
v (N)

and the Cesàro space of sequences cesp
u(N). In fact this inequality (5) implies that the spaces

lp
v (N) with weight are embedded into cesp

u(N) with strict embedding; as a consequence, we
have that

lp
v (N) ⊆ cesp

u(N) for 1 < p < ∞.

We say that the function η : N→R belongs to the space lp
λ(N) with a nonnegative weight

λ defined on N =[1,∞) if

‖η‖lpλ(N) =

( ∞∑
n=1

λ(n)
∣∣η(n)

∣∣p
) 1

p

< ∞ if 1 ≤ p < ∞.

The inclusion interpretation for the discrete spaces has been considered by Bennett in his
memorial in [8]. He proved that the validation of inequality (4) is equivalent to an inclusion
theorem between the spaces lp(N) and cesp(N). Precisely Bennett [8] was concerned with
the multipliers from lp(N) into cesp(N), namely those sequences z = {zn} with the property
that y · z ∈ cesp(N) whenever yn ∈ lp(N) and zn ∈ G(N) such that

∑n
m=1 |zm|p∗ = O(n). The

set G(N) of all such multipliers clearly satisfies

lp(N) · G(N) ⊆ cesp(N).
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Since the discovery of this new way of looking at inequalities, several mathematicians such
as Johnson and Mohapatra (see [1, 17–19, 21, 23, 25]) studied the generalizations of the
sequence spaces lp(N) and cesp(N).

In the case of functions, the same factorization results as well as the dual space of Cesàro
space are only mentioned in Bennett [8] for the unweighted spaces. A factorization result
for the unweighted Cesàro function spaces was proved in Astashkin and Maligranda [5].
In [10] Carton and Heining proved a factorization result which can be considered as a
weighted integral analogue of the result obtained by Bennett in [8] for the discrete Hardy
operator in the unweighted case. In [7] Barza et al. extended the results proved in [5] and
proved some factorization theorems for the Cesàro and Copson functions spaces with
weights.

However, the results of Bennett have a big impact in many parts of analysis, but it seems
that the corresponding results for weighted spaces are less studied. In some special cases
it is possible to translate or adapt almost straightforward the objects and results from the
continuous setting to the discrete setting or vice versa; however, in some other cases that
is far from being trivial.

In this paper, we develop a new technique to study the structure of weighted Cesàro
and Copson sequences spaces and prove some factorization theorems. We mention here
that our technique, which is based on some useful lemma proved and designed for this
purpose, can be considered as the modification of the technique used in [5] to prove the
unweighted results and the technique used in [7] to prove the weighted results for the
Cesàro functions space. To the best of the authors’ knowledge, the results in this paper for
the Cesàro sequences space have not been considered before.

We denote by H the Cesàro operator and by M the Copson operator, which are defined
by

Hη(n) :=
1
n

n∑
m=1

∣∣η(m)
∣∣ and Mη(n) : =

∞∑
s=n

|η(s)|
s

for n > 0.

Throughout the paper, the letters A, B, C , D are used for nonnegative constants indepen-
dent of the relevant variables that may change from one occurrence to another. In [2] (see
also [9]) the authors proved that the discrete inequality

∞∑
m=1

λ(m)

(
1
m

m∑
k=1

∣∣η(m)
∣∣
)p

≤ C
∞∑

m=1

λ(m)
∣∣η(m)

∣∣p (6)

holds for all nonnegative sequence η and 1 < p < ∞ if

M1 := sup
n∈N

( ∞∑
k=n

λ(k)
kp

)1/p( n∑
k=1

λ1–q(k)

)1/q

< ∞, where 1/p + 1/q = 1. (7)

This result proves that the operator H is bounded on the weighted space lp
λ(N) if (7) holds.

Also in [9] the authors proved that the inequality of Copson type

∞∑
k=1

λ(k)

( ∞∑
m=k

|η(m)|
m

)p

≤ C
∞∑

k=1

λ(k)
∣∣η(k)

∣∣p (8)
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holds for all nonnegative sequence η and 1 < p < ∞ if

M2 := sup
n∈N

( n∑
k=1

λ(k)

) 1
p
( ∞∑

k=n

λ1–q(k)
kq

) 1
q

< ∞. (9)

Inequality (8) is a generalization of the discrete inequality due to Copson, see [11, 12].
The rest of the paper is divided into three sections: Sect. 2 is devoted to some basic

lemmas that will be needed in the proofs of the main results. Section 3 is devoted to the
proof of the discrete weighted Cesàro space Cesp

λ(N) for p > 1, and the case when p = 1,
which has not been considered before, is treated separately. In fact we are concerned with
the multipliers from lp

λ(N) into Cesp
λ(N), namely those sequences β with the property that

η × β ∈ Cesp
λ(N) whenever η ∈ lp

λ(N) and β ∈ Aq
λ(1–q) (N). The set Aq

λ(1–q) (N), which will be
defined later in the next section, of all such multipliers clearly satisfies

lp
λ(N) · Aq

λ(1–q) (N) ⊆ Cesp
λ(N).

Section 4 is devoted to the same problem but for the discrete weighted Copson space
Copp

λ(N). The results show that the boundedness of the discrete operators Hη and Mη on
the weighted space lp

λ(N) can be obtained from general norm discrete inequalities.

2 Basic lemmas
In this section, we state and prove the main basic lemmas that are needed in the rest of
the papers. The first two are adapted from [9].

Lemma 2.1 Let 0 < γ ≤ 1, then

( n∑
m=1

φ(m)

)γ

≥ γ

n∑
m=1

φ(m)

( m∑
s=1

φ(s)

)γ –1

. (10)

Lemma 2.2 Let 0 < γ ≤ 1, then

( ∞∑
m=n

φ(m)

)γ

≥ γ

∞∑
m=n

φ(m)

( ∞∑
s=m

φ(s)

)γ –1

. (11)

In what follows, it will be convenient to use the convention
∑b

m=a y(m) = 0, whenever
a > b,

�

( n–1∑
s=k0

y(s)

)
= y(n), and

( n–1∑
s=m

�y(s)

)
= y(n) – y(s).

The following lemmas will be also needed in the proofs.

Lemma 2.3 Let φ, ϕ, h be nonnegative sequences. If

n∑
k=1

φ(k) ≤
n∑

k=1

ϕ(k), (12)
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then

N∑
k=1

φ(k)H(k) ≤
N∑

k=1

ϕ(k)H(k), where H(n) =
N∑

k=n

h(k). (13)

Proof By defining F(n) =
∑n

k=1 φ(k) and G(n) =
∑n

k=1 ϕ(k), we see from (12) that F(n) ≤
G(n). Applying summation by parts

N∑
k=1

�η(k)υ(k + 1) = η(k)υ(k)|N+1
k=1 –

N∑
k=1

η(k)�υ(k) (14)

on the left-hand side of (13), we get

N∑
k=1

φ(k)H(k) = F(k)H(k)|Nk=1 +
N∑

k=1

F(k + 1)h(k).

By noting that F(1) = H(N + 1) = 0 and making use of F(k + 1) ≤ G(k + 1), we get that

N∑
k=1

φ(k)H(k) ≤
N∑

k=1

G(k + 1)h(k). (15)

Applying summation by parts on the right-hand side of inequality (15), we have that

N∑
k=1

G(k + 1)h(k) = G(k)H(k)|Nk=1 +
N∑

k=1

ϕ(k)H(k).

Since G(1) = H(N) = 0, we have from the last inequality that

N∑
k=1

G(k + 1)h(k) ≤
N∑

k=1

ϕ(k)H(k). (16)

Combining (15) and (16), we get

N∑
k=1

φ(k)H(k) ≤
N∑

k=1

ϕ(k)H(k),

which is the desired inequality (13). The proof is complete. �

Lemma 2.4 Let φ, ϕ, h be nonnegative sequences. If C is a positive constant such that

F(n) =
N∑

k=n

φ(k) ≤ C
N∑

k=n

ϕ(k) = CG(n),

then

N∑
k=1

φ(k)H(k) ≤ C
N∑

k=1

ϕ(k)H(k), where H(n) =
n∑

k=1

h(k).
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Proof Applying summation by parts twice. �

Lemma 2.5 Let ϕ, ψ be nonnegative sequences, then

N–1∑
k=1

ϕ(k)

(N–1∑
s=k

ψ(s)

)
=

N–1∑
k=1

ψ(k)

( k∑
s=1

ϕ(s)

)
. (17)

Proof By defining �(k) =
∑N–1

s=k ψ(s) and applying summation by parts on the left-hand
side of (17) with η(k) = �(k) and �v(k) = ϕ(k), we get

N–1∑
k=1

ϕ(k)

(N–1∑
s=k

ψ(s)

)
=

N–1∑
k=1

ϕ(k)�(k)

= �(k)v(k)|Nk=1 –
N–1∑
k=1

��(k)v(k + 1),

where v(k) =
∑k–1

s=1 ϕ(s). Since v(1) = �(N) = 0, we have

N–1∑
k=1

ϕ(k)

(N–1∑
s=k

ψ(s)

)
=

N–1∑
k=1

(–��)(k)v(k + 1) =
N–1∑
k=1

ψ(k)

( k∑
s=1

ϕ(s)

)
.

The proof is complete. �

3 Weighted Cesàro sequences space
In this section, we prove a factorization theorem of the discrete weighted Cesàro space
Cesp

λ(N); as a consequence, we recover some best known forms of the discrete Hardy type
inequalities as special cases. We start by presenting the basic definitions.

Definition 3.1 The discrete weighted Cesàro space Cesp
λ(N) for p ≥ 1 with a discrete

weight λ is the space of all sequences η defined on N with a norm

‖η‖Ces
p
λ(N) =

( ∞∑
n=1

λ(n)

(
1
n

n∑
m=1

∣∣η(m)
∣∣
)p)1/p

< ∞. (18)

Claim 1 The space Cesp
λ(N) with norm (18) for p > 1 is obviously a Banach space, and if

the discrete weight λ satisfies (7), then the operator H is bounded on lp
λ(N), and we have

lp
λ(N) ⊆ Cesp

λ(N).

Definition 3.2 We define the sequence space Ap
λ(N) for p ≥ 1 of positive sequences β of

real numbers defined on N with a discrete weight λ by

Ap
λ(N) =

{
β :

n∑
m=1

∣∣β(m)
∣∣p

λ(m) = O
(
�(n)

)}
, where �(n) =

n∑
m=1

λ(m), (19)

with the norm

‖β‖Ap
λ(N) = sup

n>0

(
1

�(n)

n∑
m=1

∣∣β(m)
∣∣p

λ(m)

)1/p

< ∞. (20)
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We denote

J := inf
{‖η‖lpλ(N)‖β‖Aq

λ(1–q) (N)
}

.

The infimum is taken over all possible decompositions of � = η × β with η ∈ lp
λ(N) and

β ∈ Aq
λ(1–q) (N).

Definition 3.3 We denote by M∗ the discrete class of weights λ such that, for all n ≥ 1,
it follows that

( ∞∑
k=n

λ(k)
kp

)1/p( n∑
k=1

λ1–q(k)

)1/q

≤A∗ (21)

for p > 1, where 1/p + 1/q = 1 and A∗ is the smallest positive constant such that (21) holds.

Definition 3.4 We denote by M∗ the discrete class of weights such that, for all n ≥ 1, it
follows that the reverse of inequality (21) holds, and we denote by A∗ the largest positive
constant for which this reverse holds.

Definition 3.5 The weight λ belongs to the class M if it belongs to M∗ and M∗.

Theorem 3.1 Assume that p > 1 and λ ∈M. Then � ∈ Cesp
λ(N) iff it admits a factorization

� = η × β with η ∈ lp
λ(N) and β ∈ Aq

(λ1–q)(N). Moreover,

JA∗ ≤ ‖�‖Ces
p
λ(N) ≤ q1/qp1/pJA∗. (22)

Proof We start by proving the imbedding ↪→ i.e. we prove that the sequence � = η × β ∈
Cesp

λ(N), where η ∈ lp
λ(N) and β ∈ Aq

(λ1–q)(N). By defining w(n) = (
∑n

m=1 λ1–q(m))–1/pq and
employing discrete Hölder’s inequality

∑∣∣η(n)
∣∣∣∣β(n)

∣∣ ≤
[∑∣∣η(n)

∣∣q
]1/q

[ p∑∣∣β(n)
∣∣p

]1/p

, (23)

with 1/p + 1/q = 1, we get that

n∑
m=1

∣∣�(m)
∣∣ =

n∑
m=1

∣∣η(m)β(m)
∣∣

≤
( n∑

m=1

∣∣η(m)
∣∣p λ(m)

wp(m)

)1/p( n∑
m=1

∣∣β(m)
∣∣q

λ1–q(m)wq(m)

)1/q

. (24)

Now, Definition (19) leads to

( n∑
m=1

∣∣β(m)
∣∣q

λ1–q(m)

)1/q

≤ ‖β‖Aq
(λ1–q)

(N)

( n∑
m=1

λ1–q(m)

)1/q

.
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By applying Lemma 2.3, since wq(n) is decreasing, we obtain that

( n∑
m=1

∣∣β(m)
∣∣q

λ1–q(m)wq(m)

)1/q

≤ ‖β‖Aq
(λ1–q)

(N)

( n∑
m=1

λ1–q(m)wq(m)

)1/q

. (25)

Dividing (24) by n > 0 and summing from 1 to ∞ and then using (25) and applying
Lemma 2.5, we get that

∞∑
n=1

(
1
n

n∑
m=1

∣∣�(m)
∣∣
)p

λ(n)

≤ ‖β‖p
Aq

(λ1–q)
(N)

∞∑
n=1

( n∑
m=1

∣∣η(m)
∣∣p λ(m)

wp(m)

)( n∑
s=1

λ1–q(s)wq(s)

)p–1
λ(n)
np

= ‖β‖p
Aq

(λ1–q)
(N)

∞∑
n=1

∣∣η(n)
∣∣p λ(n)

wp(n)

( ∞∑
s=n

λ(s)
sp

( s∑
τ=1

λ1–q(τ )wq(τ )

)p–1)
.

By employing (10) with φ(x) = λ1–q(x) and γ = 1/q < 1 and using the definition of w(n), we
obtain that

n∑
m=1

λ1–q(m)

( m∑
s=1

λ1–q(s)

)1/q–1

≤ q

( n∑
m=1

λ1–q(m)

)1/q

,

and then

∞∑
n=1

(
1
n

n∑
m=1

∣∣�(m)
∣∣
)p

λ(n)

≤ qp–1‖β‖p
Aq

(λ1–q)
(N)

∞∑
n=1

∣∣η(n)
∣∣p

λ(n)

( n∑
m=1

λ1–q(m)

)1/q ∞∑
s=n

λ(s)
sp

( s∑
τ=1

λ1–q(τ )

)(p–1)/q

= R
∞∑

n=1

∣∣η(n)
∣∣p

λ(n)

( n∑
m=1

λ1–q(m)

)1/q ∞∑
s=n

λ(s)
sp

( ∞∑
x=s

λ(x)
xp

) (1–p)
p

×
[( s∑

τ=1

λ1–q(τ )

)(p–1)/q( ∞∑
x=s

λ(x)
xp

)(p–1)/p]
,

where R = qp–1‖β‖p
Aq

(λ1–q)
(N)

. By using the definition of A∗ and employing (11) with γ =

1/p < 1 and φ = λ(n)/np, we get that

∞∑
n=1

(
1
n

n∑
m=1

∣∣�(m)
∣∣
)p

λ(n)

≤ qp–1(A∗)p–1‖β‖p
Aq

(λ1–q)
(N)

∞∑
n=1

∣∣η(n)
∣∣p

λ(n)

×
( n∑

m=1

λ1–q(m)

)1/q ∞∑
s=n

λ(s)
sp

( ∞∑
x=s

λ(x)
xp

)–1/q
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≤ pR
(
A∗)p–1

∞∑
n=1

∣∣η(n)
∣∣p

λ(n)

( n∑
m=1

λ1–q(m)

)1/q( ∞∑
s=n

λ(s)
sp

)1/p

≤ p
(
A∗)pR

∞∑
n=1

∣∣η(n)
∣∣p

λ(n) ≤ p
(
A∗)pR‖η‖p

lpλ(N)
.

This implies that � ∈ Cesp
λ(N) and

‖�‖Cesp
λ(N) ≤ q1/qp1/pA∗ inf

{‖η‖lpλ(N)‖β‖Aq
(λ1–q)

(N)
}

,

and the infimum is determined over all possible factorization of �. This leads to the
completeness of the first part of the proof. For the reversed direction ←↩, we prove that
Cesp

λ(N) ⊆ lp
λ(N) × Aq

(λ1–q)(N). Now let � ∈ Cesp
λ(N) and define

v(n) :=
1

λ(n)

∞∑
s=n

λ(s)
s

(
1
s

s∑
m=1

∣∣�(m)
∣∣
)p–1

> 0 for n > 0, (26)

and let

η(n) =
∣∣�(n)

∣∣1/pv1/p(n), and β(n) =
∣∣�(n)

∣∣1/qv–1/p(n).

Since ηp(n) = |�(n)|v(n), then we have

‖η‖p
lpλ(N)

=
∞∑

m=1

ηp(m)λ(m) =
∞∑

m=1

∣∣�(m)
∣∣ ∞∑

s=m

λ(s)
s

(
1
s

s∑
m=1

∣∣�(m)
∣∣
)p–1

.

By applying Lemma 2.5, we obtain that

‖η‖p
lpλ(N)

=
∞∑

m=1

( m∑
s=1

∣∣�(s)
∣∣�s

)(
1
m

m∑
k=1

∣∣�(k)
∣∣
)p–1

λ(m)
m

=
∞∑

m=1

(
1
m

m∑
k=1

∣∣�(k)
∣∣
)(

1
m

m∑
k=1

∣∣�(k)
∣∣
)p–1

λ(m)

=
∞∑

m=1

λ(m)

(
1
m

m∑
k=1

∣∣�(k)
∣∣
)p

= ‖�‖p
Ces

p
λ(N)

(27)

i.e. ‖η‖lpλ(N) = ‖�‖Cesp
λ(N) < ∞. By Hölder’s inequality, we see that

( n∑
m=1

βq(m)λ1–q(m)

)p

=

( n∑
m=1

∣∣�(m)
∣∣v–q/p(m)λ1–q(m)

)p

≤
( n∑

m=1

∣∣�(m)
∣∣
)p–1( n∑

m=1

∣∣�(m)
∣∣v–q(m)λ–q(m)

)
. (28)
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Now (26) implies that �[λ(n)v(n)] ≤ 0 and then λ(n)v(n) is decreasing. Multiplying (28)
by

∑∞
s=n s–pλ(s) and using the fact that λ(n)v(n) is decreasing, we get that

( ∞∑
s=n

λ(s)
sp

)( n∑
m=1

βq(m)λ1–q(m)

)p

≤
( ∞∑

s=n

λ(s)
sp

( s∑
m=1

∣∣�(m)
∣∣
)p–1)( n∑

m=1

|�(m)|
λq(m)

v–q(m)

)

= λ(n)v(n)
n∑

m=1

|�(m)|
λq(m)

v–q(m) ≤
n∑

m=1

∣∣�(m)
∣∣v1–q(m)λ1–q(m)

=
n∑

m=1

∣∣�(m)
∣∣v1–q(m)λ1–q(m) =

n∑
m=1

βq(m)λ1–q(m).

Since |β(n)|q = |�(n)|v1–q(n), we obtain

(∑n
m=1 βq(m)λ1–q(m)∑n

m=1 λ1–q(m)

)1/q

≤
( ∞∑

s=n

λ(s)
sp

)–1/p( n∑
m=1

λ1–q(m)

)–1/q

.

Hence

(
1∑n

m=1 λ1–q(m)

n∑
m=1

βq(m)λ1–q(m)

)1/q

≤ 1
A∗

,

which shows that β belongs to Aq
(λ1–q)(N), and

‖�‖Ces
p
λ(N) = ‖η‖lpλ(N) ≥A∗‖η‖lpλ(N)‖β‖Aq

(λ1–q)
(N).

This implies that

‖�‖Cesp
λ(N) ≥A∗ inf

{‖η‖lpλ(N)‖β‖Aq
(λ1–q)

(N)
}

,

which gives the left-hand side of inequality (22), and the infimum is taken over all possible
decompositions of � = η ·β such that η ∈ lp

λ(N) and β ∈ Aq
(λ1–q)(N). The proof is complete.�

Example 1 If we take β(n) = 1, then

‖�‖Ces
p
λ(N) = ‖Hη‖lpλ(N) =

( ∞∑
n=1

λ(n)

(
1
n

n∑
m=1

∣∣η(m)
∣∣
)p)1/p

,

where Hη(n) = (1/n)
∑n

m=1 |η(m)| is the Hardy operator. Then we have from Theorem 3.1
that the Hardy operator is bounded on lp

λ(N) if and only if

( ∞∑
k=n

λ(k)
kp

)1/p( n∑
k=1

λ1–q(k)

)1/q

≤ C.
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Moreover,

A∗
∥∥η(n)

∥∥
lpλ(N) ≤ ∥∥Hη(n)

∥∥
lpλ(N) ≤ q1/qp1/pA∗∥∥η(n)

∥∥
lpλ(N), (29)

where A∗ and A∗ are defined as above.

Now, we consider the case when p = 1, which is an independent and important case in
its own. In this case, we consider the space Ces1

λ(N) which will be obtained from Cesp
λ(N)

by putting p = 1. On the other hand, if we consider ‖β‖∞ = supn>0 |β(n)| < ∞, we see that

1
�(n)

n∑
m=1

∣∣β(m)
∣∣λ(m) ≤ ‖β‖∞

1
�(n)

n∑
m=1

λ(m) = ‖β‖∞.

This allows us to replace the space A1
λ(N) with the space l∞(N) with a norm ‖β‖∞ =

ess supn>0 |β(n)| < ∞. Now, we consider a new space U of weights which is defined by

U : =

{
λ :

1
λ(n)

∞∑
s=n

λ(s)
s

≤ C for n > 0

}
,

and assume that there exists a positive constant P∗ which is the smallest constant such
that the inequality

1
λ(n)

∞∑
s=n

λ(s)
s

≤ C (30)

holds, and there exists a positive constant P∗ which is the largest constant for which the
reverse of (30) holds. In the following, we denote

F = inf
{‖η‖l1λ(N)‖β‖∞

}
,

where the infimum is taken over all possible decompositions of � = η × β with η ∈ l1
λ(N)

and β ∈ l∞(N).

Theorem 3.2 Let λ belong to the class U . Then � ∈ Ces1
λ(N) iff it can be represented by the

factorization � = η × β , with η ∈ l1
λ(N) and β ∈ l∞(N). Moreover,

FP∗ ≤ ‖�‖Ces1
λ(N) ≤FP∗. (31)

Proof Let η ∈ l1
λ(N) and β ∈ l∞(N). We prove that the function � = η × β ∈ Ces1

λ(N). By
employing Hölder’s inequality, we get

∞∑
n=1

(
1
n

n∑
m=1

∣∣�(m)
∣∣
)

λ(n) ≤ ‖β‖∞
∞∑

n=1

(
1
n

n∑
m=1

∣∣η(m)
∣∣
)

λ(n), (32)

which implies that � ∈ Ces1
λ(N). Also since l1

λ(N) × l∞(N) = l1
λ(N), then Ces1

λ(N) = l1
λ(N) ×

l∞(N) = l1
λ(N). Now, we prove the right-hand side of inequality (31). By Lemma 2.5 and
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taking into account that λ belongs to the class U , we have that

‖�‖Ces1
λ(N) ≤P∗‖η‖l1λ

‖β‖∞.

This completes the first part of the proof and the right-hand side of (31). Conversely, let
� ∈ Ces1

λ(N) and

v(n) :=
1

λ(n)

∞∑
s=n

λ(s)
s

> 0 for n > 0,

and set

η(n) =
∣∣�(n)

∣∣v(n) sign�(n) and β(n) = 1/v(n).

It is easy to see that ‖η‖l1(λ) = ‖�‖Ces1
λ(N) < ∞. Since λ belongs to the class U and

β ∈ l∞(N) with ‖β‖∞ ≤ 1/P∗,

we have that

‖�‖Ces1
λ(N) = ‖η‖l1λ(N) ≥P∗‖η‖l1λ(N)‖β‖∞,

and then we get the left-hand side of inequality (31). This completes the proof. �

Remark 3.1 Theorem 3.2 proves that the Hardy operator Hη(n) = 1
n
∑n

m=1 |η(m)| for n > 0
is bounded on l1

λ(N) if and only if there exists C > 0 such that

1
λ(n)

∞∑
s=n

λ(s)
s

≤ C.

In the following, we denote by lp
nα (N), Cesp

nα (N), and Ap
nα (N) the spaces with the power

weight λ(n) = nα . In analogy with the general case, we denote

S := inf
{‖η‖lpnα (N)‖β‖Aq

nα(1–q) (N)
}

,

where the infimum is taken over all possible decompositions of � = η × β with η ∈ lp
nα (N)

and β ∈ Aq
nα(1–q) (N). This gives us the following result.

Corollary 3.1 Assume that p > 1 and p – 1 > α > 0. Then � ∈ Cesp
nα (N) iff � can be factor-

ized into two sequences η ∈ lp
nα (N) and β ∈ Aq

nα(1–q) (N) such � = η × β . Moreover,

(
1
p

)1/p(1
q

)1/q pS
(p – α – 1)

≤ ‖�‖Ces
p
α (N) ≤ 2pS

(p – α – 1)
. (33)

Proof By using λ(n) = nα , we see that condition (21) now reads

( ∞∑
m=n

mα–p

)1/p( n∑
m=1

mα(1–q)

)1/q

. (34)
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By employing the inequality [14]

γ zγ –1(y – z) ≤ yγ – zγ ≤ γ yγ –1(y – z) for y ≥ z > 0,γ ≥ 1, or γ < 0, (35)

with γ = α – p + 1 < 0, we obtain

�
(
kα–p+1) = (k + 1)α–p+1 – kα–p+1 ≥ (α – p + 1)kα–p[(k + 1) – k

]
= (α – p + 1)kα–p. (36)

For 0 < γ = α(1 – q) + 1 < 1, we also have by using the inequality [14]

γ yγ –1(y – z) ≤ yγ – zγ ≤ γ zγ –1(y – z) for y ≥ z > 0 and 0 < γ < 1 (37)

that

�
(
sα(1–q)+1) = (s + 1)α(1–q)+1 – sα(1–q)+1

≤ (
α(1 – q) + 1

)
sα(1–q)[(s + 1) – s

]
=

(
α(1 – q) + 1

)
sα(1–q). (38)

Then, from (36) and (38) in (34), we get that

( ∞∑
m=n

mα–p

)1/p( n∑
m=1

mα(1–q)

)1/q

≥
(∑∞

m=n �(mα–p+1)
(α – p + 1)

)1/p(∑n
m=1 �(mα(1–q)+1)
(α(1 – q) + 1)

)1/q

=
(

–n
α+1

p –1

(α – p + 1)1/p

)(
n

α
q (1–q)+ 1

q

(α(1 – q) + 1)1/q

)

=
1

p – α – 1

(
p
q

)1/q

. (39)

By using

A∗ =
1

p – α – 1

(
p
q

)1/q

,

on the left-hand side side of (22), we get the proof of the left-hand side of (33). On the
other hand, by using (35) with γ = α – p + 1 < 0, we get

�
(
kα–p+1) = (k + 1)α–p+1 – kα–p+1 ≤ (α – p + 1)(k + 1)α–p[(k + 1) – k

]
= (α – p + 1)(k + 1)α–p.

Using the fact (k + 1) ≤ 2k for k ≥ 1, we have that

�
(
kα–p+1) ≤ 2α–p(α – p + 1)kα–p, (40)
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and by using (37) with 0 < γ = α(1 – q) + 1 < 1, we obtain

�
(
sα(1–q)+1) = (s + 1)α(1–q)+1 – sα(1–q)+1

≥ 2α(1–q)(α(1 – q) + 1
)
sα(1–q). (41)

Then from (40) and (41) in (34), we get that

( ∞∑
m=n

mα–p

)1/p( n∑
m=1

mα(1–q)

)1/q

≤
(∑∞

m=n �(mα–p+1)
2α–p(α – p + 1)

)1/p( ∑n
m=1 �(mα(1–q)+1)

2α(1–q)(α(1 – q) + 1)

)1/q

≤ 2
p – α – 1

(
p
q

)1/q

. (42)

By using

A∗ =
2

p – α – 1

(
p
q

)1/q

,

on the right-hand side of (22), we have that

‖�‖Ces
p
α (N) ≤ 2pS

(p – α – 1)
,

which leads to the proof of the left-hand side of (33). The proof is complete. �

4 Weighted Copson sequences space
In this section, we prove a theorem of factorization of the Copson space Copp

λ(N) of dis-
crete weights; as a consequence, we obtain the well-known forms of the discrete Copson
type inequalities with best constants. We consider the two cases p > 1 and p = 1.

Definition 4.1 The discrete weighted Copson space Copp
λ(N) for p ≥ 1 with a weight λ by

the space of all sequences η defined on N is defined by

‖η‖Copp
λ(N) =

( ∞∑
n=1

λ(n)

( ∞∑
m=n

|η(m)|
m

)p)1/p

< ∞. (43)

Definition 4.2 We define the discrete weighted space Bq
λ(N) for q ≥ 1 with a weight λ by

the space of all sequences β defined on N such that

‖β‖Bq
λ(T) = sup

n>0

( ∞∑
s=n

λ(s)
sq

)–1/q( ∞∑
s=n

|β(s)|qλ(s)
sq

)1/q

< ∞. (44)

Claim 2 For p ≥ 1, the space Copp
λ(N) with a norm (43) is a Banach space, and if the weight

λ satisfies (9), then M is bounded in lp
λ(N) and we have lp

λ(N) ⊆ Copp
λ(N).
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We denote

J = inf
{‖η‖lpλ(N)‖β‖Bq

λ(N)
}

,

where the infimum is taken over all possible decompositions of � = η × β with η ∈ lp
λ(N)

and β ∈ Bq
λ(N).

Definition 4.3 We denote by W∗ the class of discrete weights λ such that, for all n ≥ 1, it
follows that

( ∞∑
m=n

λ1–q(m)
mq

)1/q( n∑
m=1

λ(m)

)1/p

≤D∗ (45)

for p > 1, where D∗ is the smallest constant such that (45) holds.

Definition 4.4 For p > 1, we denote by W∗ the class of discrete weights λ such that, for all
n ≥ 1, it follows that the reverse of inequality (45) holds, and we denote by D∗ the largest
constant for which the reverse holds.

Definition 4.5 We say that the weight λ belongs to W if it belongs to W∗ and W∗.

Theorem 4.1 Assume that p > 1 and λ ∈ W . The sequence � belongs to Copp
λ(N) iff it can

be represented by the factorization � = η × β with η ∈ lp
λ(N) and β ∈ Bq

(λ1–q)(N). Moreover,

D∗J ≤ ‖�‖Cop
p
λ(N) ≤ q1/qp1/pD∗J . (46)

Proof First, we prove the imbedding ↪→ i.e. we prove the sequence � = η × β ∈ Copp
λ(N)

for η ∈ lp
λ(N) and β ∈ Bq

(λ1–q)(N). By applying Hölder’s inequality, we see that

∞∑
m=n

η(m)|β(m)|
m

≤
( ∞∑

m=n

ηp(m)λ(m)
wp(m)

)1/p( ∞∑
m=n

∣∣β(m)
∣∣q λ1–q(m)

mq wq(m)

)1/q

, (47)

where w is arbitrary positive, and an increasing sequence will be defined later. From (44),
we see that

∞∑
m=n

∣∣β(m)
∣∣q λ1–q(m)

mq ≤ (‖β‖Bq
(λ1–q)

(N)
)q

∞∑
m=n

λ1–q(m)
mq .

Now, by applying Lemma 2.4 with |�(n)| = wq(n), which is an increasing sequence, and
C = 1, we obtain that

( ∞∑
m=n

∣∣β(m)
∣∣q λ1–q(m)

mq wq(m)

)1/q

≤ ‖β‖Bq
(λ1–q)

(N)

( ∞∑
m=n

λ1–q(m)
mq wq(m)

)1/q

.
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Multiplying (47) by λ(n) and raising to the power p and summing from 1 to ∞, we get

∞∑
n=1

λ(n)

( ∞∑
m=n

|�(m)|
m

)p

≤ ‖β‖p
Bq

(λ1–q)
(N)

∞∑
n=1

λ(n)

( ∞∑
m=n

ηp(m)λ(m)
wp(m)

)

×
( ∞∑

m=n

λ1–q(m)
mq wq(m)

)p–1

.

By applying Lemma 2.5, we have

∞∑
n=1

λ(n)

( ∞∑
m=n

|�(m)|
m

)p

≤ ‖β‖p
Bq

(λ1–q)
(N)

∞∑
n=1

ηp(n)λ(n)
wp(n)

×
( n∑

τ=1

λ(τ )

( ∞∑
m=τ

λ1–q(m)
mq wq(m)

)p–1)
. (48)

By taking w(n) = (
∑∞

s=n λ1–q(s)/sq)–1/pq (note that w is an increasing sequence) and from
Lemma 2.2, we get that

∞∑
m=n

λ1–q(m)
mq wq(m) =

∞∑
m=n

λ1–q(m)
mq

( ∞∑
s=m

λ1–q(s)
sq

)1– 1
q

≤ q

( ∞∑
m=n

λ1–q(m)
mq

)1/q

. (49)

By combining (48) and (49), we have that

∞∑
n=1

λ(n)

( ∞∑
m=n

|�(m)|
m

)p

≤ qp–1‖β‖p
Bq

(λ1–q)
(N)

∞∑
n=1

ηp(n)λ(n)

( ∞∑
s=n

λ1–q(s)
sq

)1/q

×
( n∑

τ=1

λ(τ )

( ∞∑
m=τ

λ1–q(m)
mq

)(p–1)/q)

= qp–1‖β‖p
Bq

(λ1–q)
(N)

∞∑
n=1

ηp(n)λ(n)

( ∞∑
s=n

λ1–q(s)
sq

)1/q

×
n∑

τ=1

λ(τ )

( n∑
m=1

λ(m)

) 1
p –1( ∞∑

m=n

λ1–q(m)
mq

)(p–1)/q( n∑
m=1

λ(m)

) p–1
p

.

By the definition of D∗, we get

∞∑
n=1

λ(n)

( ∞∑
m=n

|�(m)|
m

)p

≤ qp–1(D∗)p–1‖β‖p
Wq

(λ1–q)
(N)

∞∑
n=1

ηp(n)λ(n)

×
( ∞∑

s=n

λ1–q(s)
sq

)1/q n∑
τ=1

λ(τ )

( n∑
m=1

λ(m)

) 1
p –1

.
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Again by applying (10) with φ = λ and γ = 1/p, we have that

∞∑
n=1

λ(n)

( ∞∑
m=n

|�(m)|
m

)p

≤ pqp–1(D∗)p–1‖β‖p
Bq

(λ1–q)
(N)

∞∑
n=1

ηp(n)λ(n)

×
( ∞∑

s=n

λ1–q(s)
sq

)1/q( n∑
m=1

λ(m)

)1/p

≤ pqp–1(D∗)p‖β‖p
Bq

(λ1–q)
(N)

∞∑
n=1

ηp(n)λ(n)

= pqp–1(D∗)p‖β‖p
Bq

(λ1–q)
(N)

‖η‖p
lpλ(N)

.

This implies that � ∈ Copp
λ(N), and

‖�‖Cop
p
λ(N) ≤ q1/qp1/pD∗ inf

{‖β‖Bq
(λ1–q)

(N)‖η‖lpλ(N)
}

,

which proves the first part. For the reversed direction ←↩, we will prove that Copp
λ(N) ⊂

lp
λ(N).Bq

(λ1–q)(N). Let � ∈ Copp
λ(N) and assume that

v(n) =
1

nλ(n)

n∑
m=1

λ(m)

( ∞∑
s=m

�(s)
s

)p–1

> 0. (50)

Define

η(n) = |�|1/p(n)v1/p(n) sign�(n), and β(n) = |�|1/q(n)v–1/p(n).

As in the proof of Theorem 3.1, we can see that ‖η‖lpλ(N) = ‖�‖Cop
p
λ(N) < ∞ (see (27)). By

using the definition of β and applying Hölder’s inequality, we have

( ∞∑
s=n

∣∣β(s)
∣∣q λ1–q(s)

sq

)p

≤
( ∞∑

s=n

|�(s)|
s

)p–1( ∞∑
s=n

|�(s)|
s

v–q(s)
λ–q(s)

sq

)
. (51)

By multiplying inequality (51) by
∑n

s=1 λ(s) and using the fact that nλ(n)v(n) is increasing
(see (50)), we get that

( n∑
s=1

λ(s)

)( ∞∑
s=n

∣∣β(s)
∣∣q λ1–q(s)

sq

)p

≤
( n∑

s=1

λ(s)

)( ∞∑
s=n

|�(s)|
s

)p–1( ∞∑
s=n

|�(s)|
s

v–q(s)
λ–q(s)

sq

)

≤
( n∑

s=1

λ(s)

( ∞∑
m=s

|�(m)|
m

)p–1)( ∞∑
s=n

|�(s)|
s

v–q(s)
λ–q(s)

sq

)
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= nv(n)λ(n)

( ∞∑
s=n

|�(s)|
s

v–q(s)
λ–q(s)

sq

)

≤
( ∞∑

s=n

∣∣�(s)
∣∣v1–q(s)

λ1–q(s)
sq

)
=

∞∑
s=n

∣∣β(s)
∣∣q λ1–q(s)

sq .

Since βq(s) = |�(s)|v1–q(s), we obtain

( ∞∑
s=n

λ1–q(s)
sq

)–1/q( ∞∑
s=n

βq(s)
λ1–q(s)

sq

)1/q

≤
( ∞∑

s=n

λ1–q(s)
sq

)–1/q( n∑
s=1

λ(s)

)–1/p

.

Hence

( ∞∑
s=n

λ1–q(s)
sq

)–1/q( ∞∑
s=n

∣∣β(s)
∣∣q λ1–q(s)

sq

)1/q

≤ 1
D∗

,

which means that β belongs to Bq
(λ1–q)(N). Moreover, we have that

‖�‖Cop
p
λ(N) = ‖η‖lpλ(N) ≥D∗ inf‖η‖lpλ(N)‖β‖Bq

(λ1–q)
(N),

which leads to the proof of the second part. The proof is complete. �

Example 2 If we take β(n) = 1, then inequality (46) gives the boundedness of the weighted
Copson operator for 1 < p < ∞ on the space lp

λ(N).

Now, we consider the case when p = 1. Note that ‖β‖∞ = ess supn>0 |β(n)| < ∞, we see
that

∞∑
s=n

|β(s)|pλ(s)
sp ≤ ‖β‖∞

∞∑
s=n

λ(s)
sp ,

so we are able to replace the space B1
λ(N) with the space l∞(N). Now, we consider the space

V of weights λ such that

1
n

n∑
m=1

λ(m) ≤ Cλ(n), (52)

and assume that there exist a positive constant V∗, the smallest constant for which in-
equality (52) holds, and a positive constant V∗, which is the largest constant for which the
reverse of it holds. In the following, we denote

F = inf
{‖η‖l1λ(N)‖β‖∞

}
,

where the infimum is taken over all possible decompositions of � = η × β with η ∈ l1
λ(N)

and β ∈ l∞(N).
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The proof of the following theorem is similar to the proof of Theorem 3.2 by using the
class of the sequences V and the sequence

v(n) =
1

nλ(n)

n∑
m=1

λ(m) > 0,

and hence it is omitted.

Theorem 4.2 Let λ belong to the class V . The sequence � ∈ Cop1
λ(N) if and only if it admits

a factorization � = η × β with η ∈ l1
λ(N) and β ∈ l∞(N). Moreover,

V∗F ≤ ‖�‖Cop1
λ(N) ≤ V∗F .

Remark 4.1 This theorem proves the sufficient condition of the boundedness of adjoint
Hardy’s operator Mη(n) : =

∑∞
s=n(|η(s)|/s) for n > 0 on l1

λ(N).

In the following, we will denote by lp
nα (N), Bq

nα(1–q) (N), and Copp
nα (N) the spaces of power

weights λ(n) = nα . In analogy with the general case, we also denote

S := inf
{‖η‖lpnα (N)‖β‖Bq

nα(1–q) (N)
}

with η ∈ lp
nα (N) and β ∈ Bq

nα(1–q) (N), and the infimum is taken over all possible decomposi-
tions of � = η × β . This gives us the following result.

Corollary 4.1 Assume that p > 1 and p – 1 > α > 0. Then � ∈ Copp
nα (N) iff it admits a

factorization � = η × β with η ∈ lp
nα (N) and β ∈ Bq

nα(1–q) (N). Moreover,

2
–α
p

(p – 1)1/qS
(α + 1)

≤
( ∞∑

n=1

( ∞∑
m=n

|η(m)|
m

)p

nα

)1/p

≤ 2
α
p +1 pS

(α + 1)
. (53)

Proof By using λ(n) = nα , we see that the condition in (45) now reads

( n∑
m=1

mα

)1/p( ∞∑
m=n

mα(1–q)–q

)1/q

. (54)

By employing inequality (35) with β = α + 1 > 1, we obtain

�
(
sα+1) = (s + 1)α+1 – sα+1 ≤ (α + 1)(s + 1)α

(
(s + 1) – s

)
= (α + 1)(s + 1)α .

By using (m + 1) < 2m, we get

�
(
sα+1) ≤ 2α(α + 1)sα . (55)
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For β = α(1 – q) – q + 1 < 0, we also have

�
(
sα(1–q)–q+1) = (s + 1)α(1–q)–q+1 – sα(1–q)–q+1

≥ (
α(1 – q) – q + 1

)
sα(1–q)–q((s + 1) – s

)
=

(
α(1 – q) – q + 1

)
sα(1–q)–q. (56)

Then from (55) and (56) in (54) we get

( n∑
m=1

mα

)1/p( ∞∑
m=n

mα(1–q)–q

)1/q

≥
(∑n

m=1 �(mα+1)
2α(α + 1)

)1/p(∑∞
m=n �(mα(1–q)–q+1)

(α(1 – q) – q + 1)

)1/q

= 2
–α
p

(
n(α+1)/p

(α + 1)1/p

)(
–n

α
q (1–q)– 1

p

(α(1 – q) – q + 1)1/q

)

=
–2

–α
p

α + 1
(–p/q)1/q = 2

–α
p

(p – 1)1/q

α + 1
.

By using

D∗ = 2
–α
p

(p – 1)1/q

α + 1
,

on the left-hand side of (46), we get the proof of the left-hand side of (53). On the other
hand, by using (35) with γ = α + 1 > 1, we obtain

�
(
sα+1) = (s + 1)α+1 – sα+1 ≥ (α + 1)sα

(
(s + 1) – s

)
= (α + 1)sα . (57)

For γ = α(1 – q) – q + 1 < 0, we also have

�
(
sα(1–q)–q+1) = (s + 1)α(1–q)–q+1 – sα(1–q)–q+1

≤ (
α(1 – q) – q + 1

)
(s + 1)α(1–q)–q((s + 1) – s

)
= 2α(1–q)–q(α(1 – q) – q + 1

)
sα(1–q)–q. (58)

From (57) and (58) in (54) we get

( n∑
m=1

mα

)1/p( ∞∑
m=n

mα(1–q)–q

)1/q

≤
(∑n

m=1 �(mα+1)
(α + 1)

)1/p( ∑∞
m=n �(mα(1–q)–q+1)

2α(1–q)–q(α(1 – q) – q + 1)

)1/q

= 2
α(q–1)+q

q

(
n(α+1)/p

(α + 1)1/p

)(
–n

α
q (1–q)– 1

p

(α(1 – q) – q + 1)1/q

)

≤ –2
α
p +1

(α + 1)(1 – q)1/q = 2
α
p +1 (p – 1)1/q

α + 1
.
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So from (46) and using

D∗ = 2
α
p +1 (p – 1)1/q

α + 1
,

we have that

‖h‖Cop
p
α (T) ≤ 2

α
p +1q1/qp1/p (p – 1)1/q

α + 1
= 2

α
p +1 p

α + 1
,

which leads to the proof of the right-hand side of (53). The proof is complete. �

Remark 4.2 In Corollary 4.1, if α = 0, then we get the result that has been obtained in [8].

Conclusion In this paper the authors studied the discrete weighed Cesàro and Copson
sequence spaces. They derived and proved some properties of these spaces by establish-
ing some factorization theorems and also obtained conditions for the boundedness of the
generalized discrete Hardy and Copson operators.
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