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Abstract
In this paper, we present the Picard-HSS-SOR iteration method for finding the solution
of the absolute value equation (AVE), which is more efficient than the Picard-HSS
iteration method for AVE. The convergence results of the Picard-HSS-SOR iteration
method are proved under certain assumptions imposed on the involved parameter.
Numerical experiments demonstrate that the Picard-HSS-SOR iteration method for
solving absolute value equations is feasible and effective.
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1 Introduction
Let A ∈ Rn×n, b ∈ Rn. We consider the following absolute value equation (AVE):

Ax – |x| = b, (1.1)

where |x| denotes the vector in Rn with absolute values of component of x. The AVE (1.1)
is the special case of generalized system of absolute value equations of the form

Ax + B|x| = b, (1.2)

where B ∈ Rn×n. The system of absolute value equation (1.2) was introduced in [1] and
investigated in a more general context in [2].

The importance of the AVE (1.1) arises from the fact that linear programs, bimatrix
games and other important problems in optimization all can be reduced to the system of
absolute value equations. In recent years, the problem of finding solution of AVE has been
attracted much attention and has been studied in the literature [3–18]. For the numeri-
cal solution of the AVE (1.1), there exist many efficient numerical methods, such as the
SOR-like iteration method [12], the relaxed nonlinear PHSS-like iteration method [15],
the Levenberg–Marquardt method [16], the generalized Newton method [17], the Gauss–
Seidel iteration method [19] and so on.
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Recently, Salkuyeh [18] presented the Picard-HSS iteration method for solving the AVE
and established the convergence theory under suitable conditions. Some numerical ex-
periments showed in [18] that the Picard-HSS iteration method is more efficient than the
Picard iteration method and generalized Newton method.

In the paper, we present a new version iteration method for finding the solution of the ab-
solute value equation(AVE), which is more efficient than the Picard-HSS iteration method
for AVE. The convergence results of the Picard-HSS-SOR iteration method are proved
under certain assumptions imposed on the involved parameter. Numerical experiments
demonstrate that the Picard-HSS-SOR iteration method for solving absolute value equa-
tions is feasible and effective.

This article is arranged as follows. In Sect. 2, we recall the Picard-HSS iteration method
and some results that will be used in following analysis. The Picard-HSS-SOR iteration
method and its convergence analysis are proposed in Sect. 3. Experimental results and
conclusions are given in Sects. 4 and 5, respectively.

2 Preliminaries
Firstly, we present some notations and auxiliary results.

The symbol In denotes the n×n identity matrix. ‖A‖ denotes the spectral norm defined
by ‖A‖ := max{‖Ax‖ : x ∈ Rn,‖x‖ = 1}, where ‖x‖ is the 2-norm. For x ∈ Rn, sign(x) denotes
a vector with components equal to –1, 0 or 1 depending on whether the corresponding
component of x is negative, zero or positive. In addition, diag(sign(x)) is a diagonal matrix
whose diagonal elements are sign(x). A matrix A = (aij) ∈ Rm×n is said to be nonnegative
(positive) if its entries satisfy aij ≥ 0(aij > 0) for all 1 ≤ i ≤ m and 1 ≤ j ≤ n.

Proposition 2.1 ([2]) Suppose that A ∈ Rn×n is invertible. If ‖A–1‖ < 1, then the AVE in
(1.1) has a unique solution for any b ∈ Rn.

Lemma 2.1 ([20]) For any vectors x = (x1, x2, . . . , xn)T ∈ Rn and y = (y1, y2, . . . , yn)T ∈ Rn,
the following results hold:

(I) ‖|x| – |y|‖ ≤ ‖x – y‖; (II) if 0 ≤ x ≤ y, then ‖x‖ ≤ ‖y‖;
(III) if x ≤ y and P is a nonnegative matrix, then Px ≤ Py, where x ≤ y denotes xi ≤ yi, 1 ≤

i ≤ n.
Let A ∈ Rn×n be a non-Hermitian positive definite matrix. Then the matrix A possesses

a Hermitian/skew-Hermitian (HSS) splitting

A = H + S,

where

H =
1
2
(
A + AH)

and S =
1
2
(
A – AH)

.

Algorithm 2.1 (The Picard-HSS iteration method [18]) Given an initial guess x(0) ∈ Rn

and a sequence {lk}∞k=0 of positive integers, compute x(k+1) for k = 0, 1, 2,. . . , using the follow-
ing iteration scheme until {x(k)} satisfies the following stopping criterion:

(a) Set x(k,0) := x(k);
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(b) for l = 0, 1, . . . , lk – 1, solve the following linear systems to obtain x(k,l+1):

⎧
⎨

⎩
(αI + H)x(k,l+ 1

2 ) = (αI – S)x(k,l) + |x(k)| + b,

(αI + S)x(k,l+1) = (αI – H)x(k,l+ 1
2 ) + |x(k)| + b,

(2.1)

where α is a given positive constant;
(c) set x(k+1) := x(k,lk ).
The (k + 1)th iterate of the Picard-HSS method can be written as

x(k+1) = Tlk (α)x(k) +
lk –1∑

j=0

Tj(α)G(α)
(|x| + b

)

= Tlk (α)x(k) +
(
I – Tlk (α)

)
A–1(|x| + b

)
, k = 0, 1, 2, . . . ,

(2.2)

where

T(α) = (αI + S)–1(αI – H)(αI + H)–1(αI – S)

and

G(α) = 2α(αI + S)–1(αI + H)–1.

Theorem 2.1 ([18]) Let A ∈ Rn×n be a positive definite matrix. If v = ‖A–1‖ < 1, then the
AVE (1.1) has a unique solution x∗, and for any initial guess x(0) ∈ Rn and any sequence of
positive integers lk , k = 0, 1, 2, . . . , the iteration sequence {x(k)} generated by the Picard-HSS
iteration method converges to x∗ provided that l̃ = lim infk→+∞ lk ≥ N , where N is a natural
number satisfying

∥∥Ts(α)
∥∥ <

1 – v
1 + v

, ∀s ≥ N . (2.3)

3 The Picard-HSS-SOR iteration method
In the section, we will introduce the Picard-HSS-SOR iteration method and prove the
convergence of the proposed method.

Recently, Ke et al. presented the SOR-like method for solving (1.1) in [13]. Let y = |x|,
then the AVE in (1.1) is equivalent to

⎧
⎨

⎩
Ax – y = b,

–|x| + y = 0,
(3.1)

that is,

Az :=

(
A –In

–D(x) In

)(
x
y

)

=

(
b
0

)

:= b, (3.2)

where D(x) := diag(sign(x)), x ∈ Rn.
Based on Eq. (3.2), we present the Picard-HSS-SOR iteration method for solving AVE

(3.1) as follows.
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Algorithm 3.1 (The Picard-HSS-SOR iteration method) Let A ∈ Rn×n be a positive defi-
nite matrix with H = 1

2 (A+AT ) and S = 1
2 (A–AT ) being the Hermitian and skew-Hermitian

parts of the matrix A, respectively. Given an initial guess x(0) ∈ Rn and y(0) ∈ Rn. Compute
{(x(k+1), y(k+1))} for k = 0, 1, 2,. . . , using the following iteration scheme until {(x(k), y(k))} satis-
fies the stopping criterion:

(i) Set x(k,0) := x(k);
(ii) for l = 0, 1, . . . , lk – 1, solve the following linear systems to obtain x(k,l+1):

⎧
⎨

⎩
(αI + H)x(k,l+ 1

2 ) = (αI – S)x(k,l) + y(k) + b,

(αI + S)x(k,l+1) = (αI – H)x(k,l+ 1
2 ) + y(k) + b;

(3.3)

(iii) set

⎧
⎨

⎩
x(k+1) = x(k,lk ),

y(k+1) = (1 – τ )y(k) + τ |x(k+1)|,
(3.4)

where α > 0 and 0 < τ < 2.
Let (x∗, y∗) be the solution pair of the nonlinear equation (3.1) and (x(k), y(k)) be produced

by the Algorithm 3.1. Define the iteration errors

ex
k = x∗ – x(k), ey

k = y∗ – y(k).

Next, we will prove the main result of this paper.

Theorem 3.1 Let v = ‖A–1‖, β = |1 – τ | and l̃ = lim infk→+∞ lk ≥ N , where N is a natural
number satisfying (2.3). If 0 < τ < 2 and

4βτv +
(
1 + τ 2)(1 + 4v2) < 1, (3.5)

then the inequality

∥∥
∥∥∥

(
ex

k+1
ey

k+1

)∥∥
∥∥∥

<

∥∥
∥∥∥

(
ex

k
ey

k

)∥∥
∥∥∥

(3.6)

holds for k = 0, 1, 2, . . . .

Proof The (k + 1)th iterate of the Picard-HSS-SOR iteration method can be written as

⎧
⎨

⎩
x(k+1) = Tlk (α)x(k) + (I – Tlk (α))A–1(y(k) + b),

y(k+1) = (1 – τ )y(k) + τ |x(k+1)|,
(3.7)

where

T(α) = (αI + S)–1(αI – H)(αI + H)–1(αI – S).
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Since (x∗, y∗) is the solution pair of the nonlinear equation (3.1), from (3.7), we can obtain

ex
k+1 = Tlk (α)ex

k +
(
I – Tlk (α)

)
A–1ey

k , (3.8)

ey
k+1 = (1 – τ )ey

k + τ
(∣∣x∗∣∣ –

∣∣x(k+1)∣∣). (3.9)

From Lemma 2.1 and (3.9), we can obtain

∥∥ey
k+1

∥∥ ≤ |1 – τ | · ∥∥ey
k
∥∥ + τ

∥∥∣∣x∗∣∣ –
∣∣x(k+1)∣∣∥∥

≤ |1 – τ | · ∥∥ey
k
∥
∥ + τ

∥
∥x∗ – x(k+1)∥∥

= β · ∥∥ey
k
∥∥ + τ

∥∥ex
k+1

∥∥. (3.10)

From Theorem 2.1 and (3.8), we have

∥∥ex
k+1

∥∥ ≤ ∥∥Tlk (α)
∥∥∥∥ex

k
∥∥ +

(
1 +

∥∥Tlk (α)
∥∥)∥∥A–1∥∥∥∥ey

k
∥∥

≤ ∥∥ex
k
∥∥ + 2v

∥∥ey
k
∥∥.

(3.11)

Therefore, from (3.10) and (3.11), we have
(

1 0
–τ 1

)(
‖ex

k+1‖
‖ey

k+1‖

)

≤
(

1 2v
0 β

)(
‖ex

k‖
‖ey

k‖

)

. (3.12)

Let P =
( 1 0

τ 1

)
. In this case we have P is nonnegative, i.e. P ≥ 0.

According to Lemma 2.1, multiplying (3.12) from left by the nonnegative matrix P, we
can obtain

(
‖ex

k+1‖
‖ey

k+1‖

)

≤
(

1 2v
τ β + 2τv

)(
‖ex

k‖
‖ey

k‖

)

. (3.13)

Let

W =

(
1 2v
τ β + 2τv

)

,

thus, we get

(
‖ex

k+1‖
‖ey

k+1‖

)

≤ ‖W‖
(

‖ex
k‖

‖ey
k‖

)

. (3.14)

Next, we will consider the choice of the parameter τ such that ‖W‖ < 1, therefore the
inequality (3.6) holds. Since

W T W =

(
1 + τ 2 τβ + 2v(1 + τ 2)

τβ + 2v(1 + τ 2) 4v2 + (β + 2τv)2

)

,

we can obtain

det
(
W T W

)
= β2 (3.15)
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and

tr
(
W T W

)
= β2 + 4τvβ +

(
1 + τ 2)(1 + 4v2). (3.16)

Suppose λ is an eigenvalue of the matrix W T W with λ ≥ 0. Therefore λ will satisfy

λ2 – tr
(
W T W

)
λ + det

(
W T W

)
= 0. (3.17)

Thus, we can obtain the following relations:

λ1 + λ2 = tr
(
W T W

)
, λ1λ2 = det

(
W T W

)
,

where λ1 and λ2 are eigenvalues of the matrix W T W .
If 0 < τ < 2, we have det(W T W ) < 1, that is, 0 ≤ λ1λ2 < 1.
From (3.5), we have λ1 + λ2 < 1 + λ1λ2, that is, (λ1 – 1)(λ2 – 1) > 0. Hence, we can obtain

0 ≤ λ1 < 1 and 0 ≤ λ2 < 1.

Therefore ‖W‖ < 1. The proof is completed. �

4 Numerical results
To illustrate the implementation and efficiency of the Picard-HSS-SOR iteration method,
we test the following test problems. All test problems are performed by MATLAB R2019a
on a personal computer with 2.4 GHz central processing unit (Intel (R) Core (TM) i5-
3210M), 8GB memory. We use a null vector as initial guess and all the experiments are
terminated if the current iterations satisfy

‖b + |x(k)| – Ax(k)‖2

‖b‖2
≤ 10–6,

or if the number of the prescribed iteration steps kmax = 500 is exceeded. In addition, the
stopping criterion for the inner iterations is set to be

‖b(k) – As(k,lk )‖2

‖b(k)‖2
≤ 0.01,

where b(k) = |x(k)| + b – Ax(k,lk ), s(k,lk ) = x(k,lk ) – x(k,lk–1), lk is the number of inner iteration
steps and a maximum number of iterations 10.

Next,we consider the two-dimensional convection-diffusion equation

⎧
⎨

⎩
–(uxx + uyy) + q(ux + uy) + pu = f (x, y), (x, y) ∈ �,

u(x, y) = 0, (x, y) ∈ ∂�,

where � = (0, 1) × (0, 1), ∂� is its boundary, q is a positive constant used to measure the
magnitude of the diffusive term and p is a real number. We apply the five-point finite dif-
ference scheme to the diffusive terms and the central difference scheme to the convective
terms. Let h = 1/(m + 1) and Re = (qh)/2 denote the equidistant step size and the mesh
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Table 1 Numerical results for the test problem with different values ofm and q (p = 0)

Methods m = 10 m = 20 m = 30 m = 40

q = 0 PHSS IT 10 12 14 15
CPU 0.0458 0.9178 7.9636 37.1752
RES 2.1e-5 4.9e-5 5.6e-5 1.7e-4

PHSSR IT 2 3 3 4
CPU 0.0090 0.2213 2.1105 9.4696
RES 4.7e-5 1.6e-5 6.1e-5 1.4e-4

q = 1 PHSS IT 9 12 14 15
CPU 0.03959 0.9171 8.2287 38.8795
RES 2.5e-5 3.7e-5 4.7e-5 1.2e-4

PHSSR IT 2 3 4 4
CPU 0.0092 0.2236 2.3239 10.4736
RES 4.5e-5 3.0e-5 9.8e-5 1.6e-4

q = 10 PHSS IT 6 11 13 15
CPU 0.0283 0.8427 7.4282 45.1799
RES 3.6e-5 3.7e-5 4.6e-5 6.5e-5

PHSSR IT 3 3 4 4
CPU 0.0137 0.2481 2.3239 9.3871
RES 6.0e-6 7.3e-5 9.8e-5 1.1e-4

q = 100 PHSS IT 19 8 9 11
CPU 0.1015 0.6448 5.2356 31.6856
RES 8.7e-4 1.9e-4 2.0e-4 7.1e-5

PHSSR IT 3 3 6 4
CPU 0.0139 0.2743 3.7824 9.3845
RES 2.0e-4 9.4e-5 3.0e-5 7.1e-5

Reynolds number, respectively. Then we get a system of linear equations Bx = d, where B
is a matrix of order n = m2 of the form

B = Tx ⊗ Im + Im ⊗ Ty + pIn,

with

Tx = tridiag(t2, t1, t3)m×m and Ty = tridiag(t2, 0, t3)m×m,

where t1 = 4, t2 = –1 – Re, t3 = –1 + Re, Im and In are the identity matrices of order m and
n, respectively, ⊗ means the Kronecker product.

For our numerical experiments, we set A = B + 1
2 (L – LT ), where L is the strictly lower

part of B, and the right hand side vector b of the AVE(1.1) is taken in such a way that the
vector x = (x1, x2, . . . , xn)T with xk = (–1)k , k = 1, 2, . . . , n, being the exact solution. It is easy
to see that the matrix A is non-symmetric positive definite.

The computation of the optimal parameter is often problem-dependent and generally
difficult to determine. The optimal parameter α and τ employed in each method is exper-
imentally determined such that it results in the least number of iterations.

In Tables 1 and 2, we present the numerical results with respect to the Picard-HSS
(PHSS) and the Picard-HSS-SOR (PHSSR) iterations. We give the elapsed CPU time in
seconds for the convergence (denoted CPU), the norm of absolute residual vectors (de-
noted RES), and the number of iteration steps (denoted IT).

From Tables 1 and 2, we can see that the Picard-HSS-SOR (PHSSR) iteration method
takes fewer iterations and CPU times than the Picard-HSS iteration method. It means the
PHSSR iteration method for solving absolute value equations is feasible and effective.
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Table 2 Numerical results for the test problem with different values ofm and q (p = 0.5)

Methods m = 10 m = 20 m = 30 m = 40

q = 0 PHSS IT 9 11 13 14
CPU 0.0384 0.8241 9.1203 31.8901
RES 4.5e-5 6.2e-5 5.9e-5 1.2e-4

PHSSR IT 2 5 2 2
CPU 0.0092 0.3994 1.2641 6.6407
RES 1.6e-7 1.5e-4 1.5e-5 6.6e-5

q = 1 PHSS IT 9 11 13 14
CPU 0.0386 0.8310 8.8706 34.4268
RES 3.6e-5 5.3e-5 5.2e-5 1.2e-4

PHSSR IT 2 2 2 2
CPU 0.0092 0.1765 1.2702 5.3334
RES 4.2e-7 4.0e-6 2.2e-5 1.8e-4

q = 10 PHSS IT 9 11 12 13
CPU 0.0389 0.8306 8.1935 30.2050
RES 1.5e-5 1.5e-5 8.9e-5 1.4e-4

PHSSR IT 2 2 2 2
CPU 0.0093 0.1546 1.2707 4.8570
RES 2.1e-5 3.2e-5 3.9e-5 4.5e-5

q = 100 PHSS IT 6 8 9 10
CPU 0.0252 0.6039 5.2415 24.6826
RES 1.8e-4 1.1e-4 1.0e-4 2.4e-04

PHSSR IT 2 2 2 2
CPU 0.0093 0.1526 1.2538 5.3998
RES 3.9e-5 1.2e-5 9.4e-5 1.1e-4

5 Conclusions
In this paper, the Picard-HSS-SOR iteration method is presented to solve the absolute
value equation, which is more efficient than the Picard-HSS iteration method. We proved
the convergence results of the Picard-HSS-SOR iteration method under certain assump-
tions. Finally, numerical experiments were also implemented so as to check the effective
of the proposed method.
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