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Abstract
In this article, we study the existence of periodic solutions to second order
Hamiltonian systems. Our goal is twofold. When the nonlinear term satisfies a strictly
monotone condition, we show that, for any T > 0, there exists a T -periodic solution
with minimal period T . When the nonlinear term satisfies a non-decreasing condition,
using a perturbation technique, we prove a similar result. In the latter case, the
periodic solution corresponds to a critical point which minimizes the variational
functional on the Nehari manifold which is not homeomorphic to the unit sphere.
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1 Introduction
Denote by N, Z, R∗, R the sets of all positive integers, integers, nonnegative real numbers
and real numbers, respectively.

In the past 40 years, many authors have studied the existence of periodic solutions to
classical Hamiltonian systems,

ẍ + V ′(x) = 0, x ∈R
N , (1)

where N ∈N and R
N is the set of N-tuples of real numbers. Suppose that

(V 1) V ∈ C1(RN ,R) and V (x) ≥ 0 for all x ∈ R
N ;

(V 2) (AR-condition) there exist α > 2 and r0 > 0 such that

0 < αV (x) ≤ (
V ′(x), x

)
, ∀|x| ≥ r0;

(V 3) V (x) = o(|x|2), as |x| → 0.
In 1978, Rabinowitz (cf. [16]) has proved that, for any T > 0, system (1) admits a T-

periodic solution under the assumptions (V 1)–(V 3). He conjectured that such a solution
has T as its minimal period. This is called the Rabinowitz conjecture. Since then many
mathematicians devoted themselves to resolve this conjecture. Below we describe some
important contributions related to this conjecture.
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In 1985, Ekeland and Hofer (cf. [3]) proved that, for any T > 0, there exists a T-periodic
solution to system (1) with prescribed minimal period T when V is strictly convex with
some additional conditions. For more results in this direction, we refer to [2, 7, 8] and the
references therein.

Let us mention the approach of Long (cf. [10]) in which the convexity hypothesis was
replaced by the following conditions:

(V 1′) V ∈ C2(RN ,R), V (x) ≥ 0, ∀x ∈R
N ;

(V 4) V is even, i.e., V (–x) = V (x), ∀x ∈R
N .

By developing the Maslov-type index theory, Long showed that, under the assumptions
(V 1′), (V 2)–(V 4), system (1) has a non-constant T-periodic solution with minimal period
T or T/3. On the other hand, if V satisfies the conditions (V 1′), (V 2) and (V 3), it was
proved in [11] that system (1) admits a non-constant T-periodic solution with minimal
period T/k for some integer k belonging to [1, N + 2]. We refer the interested reader to
[12, 13] for more results in this direction.

In 1997, Fei and Wang (cf. [5]) studied system (1), where V (x) = 1/2h0x ·x+ Ṽ (x) and h0 is
a real positive semi-definite symmetric matrix. Assume that Ṽ satisfies (V 1′), (V 3)–(V 4)
and the following assumptions:

(V 2′) There exist constants μ > 2, r0 > 0, 0 ≤ β ≤ 2, and d ≥ 0 such that

μV (x) – V ′(x) · x ≤ d|x|β , ∀|x| ≥ r0;

(V 5) V (x)/|x|2 → ∞, as |x| → ∞,
where V is replaced by Ṽ . Then system (1) has a T-periodic solution with minimal period
T/k for some odd integer k satisfying 1 ≤ k ≤ 2(iT (h0) + vT (h0)) + 3. Here iT (h0) and vT (h0)
denote the dimensions of negative space and null space of a self-adjoint operator related
to h0, respectively. Furthermore, if V satisfies (V 1′), (V 2)–(V 4) and its Jacobian matrix
V ′′(x) is semi-positive definite, Fei and Wang (cf. [4]) showed that system (1) admits a
non-constant T-periodic solution with minimal period T . We refer to [6] for other similar
results.

A different kind of hypothesis is the so-called strongly global AR-condition.
(V 2′′) (strongly global AR-condition) There exists a constant θ > 1 such that

0 < θ
(
V ′(x), x

) ≤ (
V ′′(x)x, x

)
, ∀x ∈R

N \ {0}.

In 2010, Xiao (cf. [25]) proved that, if V satisfies the conditions (V 1′), (V 2′) and (V 4),
system (1) admits a non-constant T-periodic solution with minimal period T . Under the
same assumptions as in [25], Krawcewicz, Lv and Xiao (cf. [9]) showed the existence of
multiple T-periodic solutions with common minimal period T . Recently, a variant of
(V 2′), which is the so-called ARS condition, was introduced by Souissi in [18]. The ARS
condition was used to study the existence of periodic solutions to Hamiltonian systems,
when the nonlinearity satisfies a local one (cf. [18]) or a global one (cf. [19, 20]). For more
related results under the strongly global AR condition, we refer to [1, 14, 24] and the ref-
erences therein.

In this article, we weaken the condition (V 2′). Assume that V satisfies (V 1), (V 4) and
the following hypotheses:

(V 3′) V ′(x) = o(|x|), as x → 0 in R
N ,



Xiao and Shen Journal of Inequalities and Applications        (2020) 2020:257 Page 3 of 15

(V 6) there exist p > 2 and C > 0 such that |V ′(x)| ≤ C(1 + |x|p–1),
(V 7) for any x ∈ R

N with |x| = 1, the map s 
→ (V ′(sx), x)/s is strictly increasing on
(0,∞),

(V 7′) for any x ∈R
N with |x| = 1, the map s 
→ (V ′(sx), x)/s is non-decreasing on (0,∞).

The hypotheses (V 7) and (V 7′) are the so-called strictly monotonic condition and the
non-decreasing condition, respectively. Under the strictly monotonic condition, there ex-
ists a homeomorphism between the Nehari manifold and the unit sphere of a subspace. By
making use of the Nehari manifold method, we can prove that, for any T > 0, there exists a
ground state solution to system (1). Recall that a solution is called a ground state solution
if its energy is minimal among all nontrivial solutions (cf. [21]). Also, we can prove that
such a periodic solution has T as its minimal period.

However, under the non-decreasing condition, there is no such a homeomorphism any
more. Hence the Nehari manifold cannot be used directly to study the existence of T-
periodic solutions. There are some approaches dealing with the non-decreasing assump-
tion. For example, by finding a minimizing Cerami sequence, Tang (cf. [22]) proved the
existence of periodic solutions to asymptotically periodic Schrödinger equations. Here,
we adopt a different approach to deal with this situation. Inspired by the [15] (see The-
orem 3.1 for details), we make use of a perturbation technique to study the existence of
T-periodic solutions to systems (1). We show that there exists a sequence of critical points
corresponding to perturbed variational functionals. The critical points converge strongly
to a critical point of the original functional which corresponds to a T-periodic solution to
system (1). Moreover, we can prove that such a solution has T as its minimal period. Our
main results are presented below.

Theorem 1.1 Assume that V satisfies (V 1), (V 3′) and (V 4)–(V 7). Then, for any given
positive constant T , system (1) admits a non-constant T-periodic solution with minimal
period T .

Corollary 1.1 Assume that V satisfies (V 1′), (V 2′′) and (V 4). Then, for any given positive
constant T , system (1) admits a non-constant T-periodic solution with minimal period T .

Remark 1.1 Corollary 1.1 is the main result proved in [25].

Theorem 1.2 Assume that V satisfies (V 1), (V 3′), (V 4)–(V 6) and (V 7′). Then, for any
given positive constant T , system (1) admits a non-constant T-periodic solution with min-
imal period T .

The rest of this article splits into three parts. In Sect. 2, we establish the variational func-
tional corresponding to system (1) and state some useful lemmas. In Sect. 3, we will make
use of the Nehari manifold method to prove Theorem 1.1 and Corollary 1.1. In Sect. 4, we
will use the perturbed technique to prove Theorem 1.2.

2 Preliminaries
Given T > 0, let ST = R/(TZ). Denote by H

1 = W 1,2(ST ,RN ) the space of functions x ∈
L2([0, T],RN ) having a weak derivative ẋ ∈ L2([0, T],RN ), equipped with the usual norm

‖x‖2
H1 =

∫ T

0

(|ẋ|2 + |x|2)dt, ∀x ∈H
1,
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where | · | denotes the standard norm in R
N . Then H

1 is a Hilbert space with the inner
product

〈x, y〉H1 =
∫ T

0

[
(ẋ, ẏ) + (x, y)

]
dt, ∀x, y ∈ H

1,

where (·, ·) denotes the standard inner product in R
N . Any x ∈H

1 admits a Fourier expan-
sion

x(t) = a0 +
+∞∑

k=1

(
ak cos

2kπ t
T

+ bk sin
2kπ t

T

)
,

where a0, ak , bk ∈R
N , k = 1, 2, . . . .

The variational functional corresponding to the system (1) is

ϕ(x) =
∫ T

0

[
1
2
|ẋ|2 – V (x)

]
dt, ∀x ∈H

1. (2)

Lemma 2.1 ([17]) Assume that V satisfies (V 1), (V 5), (V 6). Then ϕ is continuously differ-
entiable on H

1 and

〈
ϕ′(x), y

〉
H1 =

∫ T

0

[
(ẋ, ẏ) –

(
V ′(x), y

)]
dt, ∀x, y ∈H

1.

Set φ(x) =
∫ T

0 V (x) dt. Then φ is weakly continuous and φ′ : H1 →H
1 is compact.

Define a subspace E of H1 by setting

E =
{

x ∈H
1|x is odd in t

} ≡
{

x ∈H
1
∣
∣∣x(t) =

∞∑

k=1

bk sin
2πkt

T
, bk ∈R

N

}

.

Obviously, E is a closed subspace of H1 and R
N ∩E = {0}. Define an inner product 〈·, ·〉 on

E by setting

〈x, y〉 =
∫ T

0
(ẋ, ẏ) dt, ∀x, y ∈ E. (3)

The norm ‖ · ‖ on E, induced by the inner product (3), is

‖x‖2 =
∫ T

0
|ẋ|2 dt, ∀x ∈ E.

It is well known that ‖ · ‖H1 and ‖ · ‖ are equivalent norms on E.
Restricted to E, functional (2) can be rewritten as

ϕ(x) =
∫ T

0

[
1
2
|ẋ|2 – V (x)

]
dt =

1
2
‖x‖2 – φ(x), x ∈ E. (4)

Lemma 2.2 ([23, 26]) Critical points of ϕ restricted to E are critical points of ϕ on the
whole space H1, which correspond to periodic solutions to system (1).
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At the end of this section, we state some useful lemmas.

Lemma 2.3 For any x ∈H
1 satisfying

∫ T
0 x(t) dt = 0, there exists a c∞ > 0 such that

‖x‖L∞ ≤ c∞‖x‖, ‖x‖L2 ≤ T
2π

‖x‖. (5)

Obviously, for any x ∈ E,
∫ T

0 x(t) dt = 0. Hence all elements of E satisfy (5).

Lemma 2.4 ([15]) If a sequence {uk} converges weakly to u in H
1, then {uk} converges uni-

formly to u on [0, T].

To prove our main results, we state a useful result which had been proved in [21] (see
Theorem 12 for details).

Lemma 2.5 Let F be a Hilbert space and suppose that �(x) = 1
2‖x‖2 – I(x), where

(i) I ′(x) = o(‖x‖) as x → 0 in F,
(ii) s 
→ I ′(sx)x/s is strictly increasing for all x �= 0 and s > 0,

(iii) I(sx)/s2 → ∞ uniformly for x on weakly compact subsets of F \ {0} as s → ∞,
(iv) I ′ is completely continuous.

Then the equation �′(x) = 0 has a ground state solution. Moreover, if I is even, then this
equation has infinitely many pairs of solutions.

3 The strictly monotonic case
In this section, we make use of Lemma 2.5 to prove Theorem 1.1. To do this, let us define
the Nehari manifold.

Given x ∈ E \ {0}, define gx : R∗ → R by setting gx(s) = ϕ(sx). One can easily verify that
gx is continuously differentiable. In particular, if x ∈ S

1, where S
1 denotes the unit sphere

of E, then gx ∈ C1(R∗,R).

Lemma 3.1 Assume that V satisfies (V 1), (V 3′) and (V 5)–(V 7). Given x ∈ S
1, there exists

a unique positive constant sx depending on x such that

gx(sx) = max
s∈R∗ gx(s),

g ′
x(s) > 0, ∀0 < s < sx,

g ′
x(s) < 0, ∀s > sx.

Proof Firstly, we will show that gx(s) > 0 in a small interval. Thanks to (V 3′), for any ε > 0,
there exists sε > 0 such that

∣∣V ′(x)
∣∣ ≤ ε|x|, ∀|x| < sε .

Consequently, we have

V (x) ≤ ε|x|2, ∀|x| < sε . (6)
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Substituting (6) into (4), we have

gx(s) =
1
2

s2 –
∫ T

0
V (sx) dt ≥ 1

2
s2 – ε‖sx‖2

L2 ≥
[

1
2

– ε
T2

4π2

]
s2, ∀|x| < sε . (7)

Take ε1 ≤ π2/T2 and choose s1 > 0 so small that

∣∣sx(t)
∣∣ < sε1 , ∀0 < s < s1. (8)

Together (7) with (8) give us

gx(s) ≥ 1
4

s2 > 0, ∀0 < s < s1. (9)

Next, we will show that there exists s2 > 0 such that gx(s) < 0, ∀s > s2. Denote δ1 =
∫ T

0 |x(t)|2 dt/T > 0. Fixing δ ∈ (0, δ1), set

�1 =
{

t ∈ [0, T]|∣∣x(t)
∣
∣2 ≥ δ

}
and �2 = [0, T] \ �1.

Since the average of |x(t)|2 equals δ1, there exists δ2 > 0 such that meas(�1) ≥ δ2. Here and
hereafter, meas(·) denotes the measure of the set. Put M = 1/(δδ2). Thanks to the condition
(V 5), there exists RM > 0 such that V (x) ≥ M|x|2 for all |x| ≥ RM . For s2 large enough, one
has |s2x(t)| ≥ RM for all t ∈ �1. Consequently, for all s > s2, we have

gx(s) = ϕ(sx) =
1
2
‖sx‖2 –

∫ T

0
V (sx) dt

≤ 1
2

s2 –
∫

�1

Ms2|x|2 dt –
∫

�2

V (sx) dt

≤ 1
2

s2 – Ms2δδ2 ≤ –
1
2

s2 < 0. (10)

Both (9) and (10) imply that gx attains its maximum on [0, s2]. Hence there exists sx ∈ [0, s2]
such that gx(sx) = maxs∈R∗ gx(s) > 0. Consequently, g ′

x(sx) = 0.
Finally, we will show that there exists a unique sx such that gx(sx) = maxs∈R∗ gx(s). Calcu-

lating the derivative of gx, one obtains

g ′
x(s) = s –

∫ T

0

(
V ′(sx), x

)
dt = s

[
1 –

∫ T

0

(V ′(sx), x)
s

dt
]

. (11)

Thanks to (V 7), g ′
x has the unique zero, which is sx, and g ′

x(s) > 0 for all s ∈ (0, sx), g ′
x(s) < 0

for all s > sx. This finishes the proof of Lemma 3.1. �

Remark 3.1 Take x ∈ E\ {0}. Then Lemma 3.1 states that there exists a unique sx > 0 such
that gx(sx) = sups∈R∗ gx(s) = sups∈R∗ ϕ(s‖x‖ · x/‖x‖) and g ′

x(s) > 0 for all s ∈ (0, sx), g ′
x(s) < 0

for all s > sx.

Define the Nehari manifold by setting

M =
{

sxx
∣
∣x ∈ E \ {0}, gx(sx) = max

s∈R∗ gx(s)
}

,
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or equivalently

M =
{

sxx
∣∣x ∈ S

1, gx(sx) = max
s∈R∗ gx(s)

}
.

Now we are ready to prove Theorem 1.1. To do this, put F = E, �(x) = ϕ(x) and I(x) =
φ(x). Let us check that all conditions of Lemma 2.5 hold.

Lemma 3.2 If V satisfies (V 1) and (V 3′), then φ′(x) = o(‖x‖) as x → 0 in E.

Proof Since V satisfies (V 3′), for any ε > 0, there exists δ > 0 such that

∣
∣V ′(x)

∣
∣ < ε|x|, ∀|x| < δ.

If x → 0 in E, choosing x such that ‖x‖ < δ/c∞, it follows that

∣
∣x(t)

∣
∣ ≤ ‖x‖L∞ ≤ c∞‖x‖ < δ,

where c∞ is given in (5). Thanks to Lemma 2.1, for all ‖x‖ < δ/c∞, one has

〈
φ′(x), y

〉
=

∫ T

0

(
V ′(x), y

)
dt ≤ ε

∫ T

0

[|x| · |y|]dt

≤ ε‖x‖L2 · ‖y‖L2 ≤ ε
T2

4π2 ‖x‖ · ‖y‖, ∀y ∈ E. (12)

This implies that ‖φ′(x)‖ ≤ ε T2

4π2 ‖x‖. Since ε is arbitrary, one has φ′(x)| = o(‖x‖). Thus (i)
of Lemma 2.5 holds. �

Lemma 3.3 If V satisfies (V 1), (V 6) and (V 7), s 
→< φ′(sx), x > /s is strictly increasing for
all x �= 0 and s > 0.

Proof According to Lemma 2.1, for all x ∈ E \ {0}, s > 0, one has

〈φ′(sx), x〉
s

=
∫ T

0

(V ′(sx), x)
s

dt.

If x ∈ E \ {0}, then |x(t)| �= 0 almost everywhere on [0, T]. By setting τ = s|x| and y = x/|x|,
one can easily observe that τ > 0 and |y| = 1 almost everywhere on [0, T]. By straightfor-
ward computation, one has

〈φ′(sx), x〉
s

=
∫ T

0

(V ′(s|x| x
|x| ),

x
|x| )

s|x| |x|2 dt =
∫ T

0

(V ′(τy), y)
τ

|x|2 dt.

Obviously, τ is strictly increasing only if so is s. Thanks to assumption (V 7), the map s 
→<
φ′(sx), x > /s is strictly increasing on (0,∞). Hence (ii) of Lemma 2.5 holds. �

Lemma 3.4 If V satisfies (V 5), then φ(sx)/s2 → ∞ uniformly for x on weakly compact
subsets of E \ {0} as s → ∞.
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Proof Let X ⊂ E \ {0} be a weakly compact set and let {xn} ⊂ X . It suffices to show that
if sn → ∞ as n → ∞, then so does a subsequence of φ(snxn)/s2

n. Passing to a subsequence,
xn converges weakly to a point, denoted by x0, i.e. xn ⇀ x0 in E. According to Lemma 2.4,
{xn} converges uniformly to x0 on [0, T]. The weak compactness of X implies that x0 �= 0.
Consequently |snxn(t)| → ∞ as n → ∞ almost everywhere on [0, T]. Assumption (V 5)
and Fatou’s lemma yield

φ(snxn)
s2

n
=

∫ T

0

V (snxn)
|snxn|2 |xn|2 dt → ∞ as n → ∞.

Hence (iii) of Lemma 2.5 holds. �

Now we are in a position to prove Theorem 1.1.

Proof of Theorem 1.1 We have showed in Lemma 2.1 that φ′ is completely continuous.
Thus (iv) of Lemma 2.5 holds. According to Lemmas 3.2, 3.3 and 3.4, all conditions of
Lemma 2.5 are satisfied. Applying Lemma 2.5, one finds that ϕ restricted to M has a
ground state solution x0. As we can see in the proof of Theorem 12 in [21], ϕ(x0) > 0.
Consequently, x0 is not a trivial solution.

Next, we will show that x0 has T as its minimal period. Arguing as in [18, 24, 25], sup-
pose that x0 has minimal period T/k, where k ≥ 2 is an integer. Denote y0(t) = x0(t/k).
Obviously, y0 ∈ E. It follows from the definition of M that there is a positive constant ry0

such that ry0 y0 ∈M. By straightforward computation, one has

inf
x∈M

ϕ(x) ≤ ϕ(ry0 y0) =
∫ T

0

[
1

2k2

∣
∣∣
∣ry0 ẋ0

(
t
k

)∣
∣∣
∣

2

– V
(

ry0 x0

(
t
k

))]
dt

=
∫ T

0

[
1

2k2

∣
∣ry0 ẋ0(τ )

∣
∣2 – V

(
ry0 x0(τ )

)]
dτ

<
∫ T

0

[
1
2
∣∣ry0 ẋ0(τ )

∣∣2 – V
(
ry0 x0(τ )

)]
dτ

= ϕ(ry0 x0) ≤ ϕ(x0) = inf
x∈M

ϕ(x),

which is a contradiction. Hence x0 has a minimal period T . �

Proof of Corollary 1.1 We need only to check that V satisfies (V 3′), (V 5)–(V 7) under the
hypotheses (V 2′′). It is easy to check that V satisfies (V 3′), (V 5) and (V 6). Therefore, we
only verify (V 7).

Set k(s) = (V ′(sx), x)/s. Calculating the derivative of k, one has

k′(s) =
(V ′′(sx)sx, x) – (V ′(sx), x)

s2 =
(V ′′(sx)sx, sx) – (V ′(sx), sx)

s3 .

Thanks to hypotheses (V 2′′), k′(s) > 0. Hence (V 7) holds. By applying Theorem 1.1, system
(1) admits a T-periodic solution with minimal period T . �
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4 The non-decreasing case
In this section, we will use a perturbation technique to prove Theorem 1.2. Using the same
argument as in the proof of Lemma 3.1 and Remark 3.1, one can obtain the following
lemma.

Lemma 4.1 Assume that V satisfies (V 1), (V 3′), (V 5) and (V 7′). Given x ∈ E \ {0}, there
exist s2 > s1 > 0 and at least a sx ∈ [s1, s2] such that

gx(s) >
s2

4
, ∀0 < s < s1,

gx(s) < 0, ∀s > s2,

gx(sx) = max
s∈R∗ gx(s) = max

s∈R∗ ϕ(sx).

Remark 4.1 Since g ′
x(s) = s[1 –

∫ T
0

(V ′(sx),x)
s dt], then (V 7′) implies that gx may attain its

maximum at a point or an interval.

Define the Nehari manifold by setting

M∗ =
{

sxx
∣
∣x ∈ E \ {0}, gx(sx) = max

s∈R∗ ϕ(sx)
}

=
{

sxx
∣
∣x ∈ S

1, gx(sx) = max
s∈R∗ ϕ(sx)

}
.

Thanks to Remark 4.1, there is no homeomorphism between M∗ and S
1. Now the Ne-

hari manifold method cannot be used directly to study the existence of periodic solutions.
Being inspired by [15], we will use a perturbation technique. For η ∈ (0, 1), define Vη by

setting

Vη(x) =
η

p
|x|p + V (x), ∀x ∈ R

N ,

where p was defined in (V 6).

Lemma 4.2 Assume that (V 1), (V 3′), (V 4)–(V 6) and (V 7′) hold. Then Vη satisfies (V 1),
(V 3′), (V 4)–(V 7) with V and V ′ being replaced by Vη and V ′

η , respectively.

Proof It is easy to check that Vη satisfies (V 1), (V 3′), (V 4)–(V 6). We only verify (V 7). By
straightforward computation, one obtains

1
s

d(Vη(sx))
ds

=
(V ′

η(sx), x)
s

= ηsp–2|x|p +
(V ′(sx), x)

s
.

Since p > 2, ηsp–2|x|p is strictly increasing in s on (0,∞). However, by (V 7′), (V ′(sx), x)/s
is non-decreasing in s on (0,∞). Consequently, (V ′

η(sx), x)/s is strictly increasing in s on
(0,∞). This finishes the proof of Lemma 4.2. �

Consider the perturbed variational functional defined on H
1 by

ϕη(x) =
∫ T

0

[
1
2
|ẋ|2 – Vη(x)

]
dt. (13)
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Using the same argument as in the Sect. 2, ϕη is continuously differentiable on H
1. Re-

stricted to E, the variational functional (13) can be rewritten as

ϕη(x) =
1
2
‖x‖2 –

∫ T

0
Vη(x) dt, x ∈ E, (14)

and critical points of ϕη restricted to E correspond to T-periodic solutions to systems

ẍ + V ′
η(x) = 0, x ∈R

N . (15)

Fixing x ∈ E \ {0}, define the continuous function hx : R∗ → R by setting hx(r) = ϕη(rx).
Since Vη satisfies the same conditions as V in Sect. 3, according to Lemma 3.1 and Re-
mark 3.1, we conclude that the following lemma holds.

Lemma 4.3 Assume that Vη satisfies (V 1), (V 3), (V 5) and (V 7). Given x ∈ E \ {0}, there
exists a unique positive constant rx depending on x such that

hx(rx) = max
r∈R∗ hx(r) = max

r∈R∗ ϕη(rx).

Now we can define the Nehari manifold as follows:

Mη =
{

rxx
∣∣x ∈ E \ {0}, hx(rx) = max

r∈R∗ hx(r)
}

=
{

rxx
∣∣x ∈ S

1, hx(rx) = max
r∈R∗ hx(r)

}
. (16)

Denote by cη the minimum value of ϕη restricted to Mη , i.e.

cη = inf
x∈Mη

ϕη(x) = inf
x∈S1

sup
r≥0

ϕη(rx).

As follows from the proof of Theorem 12 in [21], cη > 0.
Choose a sequence {ηn} such that ηn → 0 as n → ∞. Both Lemma 4.3 and Theo-

rem 1.1 imply that there exist the unique xηn ∈ S
1 and rxηn > 0 such that rxηn xηn ∈ Mηn

and ϕηn (rxηn xηn ) = cηn . Hence rxηn xηn is a nontrivial T-periodic solution of system (15)
with minimal period T . Next we will show that {rxηn xηn} converges strongly to a critical
point which corresponds to a periodic solution to system (1).

To simplify our notation, we denote Vn = Vηn , ϕn = ϕηn , xn = xηn , rn = rxηn , Mn = Mηn

and cn = cηn . Since {xn} ⊂ S
1, passing to a subsequence, {xn} converges weakly, whose weak

limit is denoted by x0, i.e. xn ⇀ x0 in E. Lemma 2.4 implies that {xn} converges uniformly
to x0 on [0, T].

Proposition 4.1 Assume that all assumption of Theorem 1.2 hold. Then ϕ′
n(rnxn) = 0 for

all n ∈N.

Proof For each n ∈ N, since ϕn(rnxn) = infx∈Mn ϕn(rx), we have ϕ′
n(rnxn)|Mn = 0. Conse-

quently,

〈
ϕ′

n(rnxn), y
〉

= 0, ∀y ∈Mn.
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If x ∈ E \ {0}, Lemma 4.3 implies that there exists a unique rx > 0 such that rxx ∈ Mn. It
follows that

〈
ϕ′

n(rnxn), x
〉

=
1
rx

〈
ϕ′

n(rnxn), rxx
〉

= 0, ∀x ∈ E \ {0}. (17)

Obviously, 〈ϕ′
n(rnxn), 0〉 = 0. Thus (17) holds for all x ∈ E. Hence ϕ′(rnxn) = 0. This finishes

the proof of the lemma. �

Next we will show that both {cn} and {rn} are bounded.

Proposition 4.2 Assume that all assumption of Theorem 1.2 hold. Then {cn} is a bounded
sequence.

Proof Let x̃(t) = b1
√

T/(2π2) sin(2π t/T) ∈ E with b1 = (1, 0, . . . , 0)τ ∈R
N , where τ denotes

the transposition of a vector. By straightforward computation, one has

‖̃x‖2 = 1, ‖̃x‖2
L2 =

T2

4π2 .

So x̃ ∈ S
1. It follows from the definition of ϕn that

cn = inf
x∈S1

sup
r≥0

ϕn(rx) ≤ sup
r≥0

ϕn(r̃x) ≤ sup
r≥0

ϕ(r̃x).

Thanks to Lemma 3.1, there exists r̃x > 0 such that

g̃x(r̃x) = sup
r≥0

g̃x(r) = sup
r≥0

ϕ(r̃x) > 0.

By construction, cn ≤ C5 = supr∈R∗ ϕ(r̃x). �

Proposition 4.3 Assume that all assumptions of Theorem 1.2 hold. Then {rn} is a bounded
sequence.

Proof Arguing indirectly, suppose that {rn} is an unbounded sequence. Passing to a sub-
sequence, rn → ∞ as n → ∞. Consider two cases.

Case I: x0 = 0. Then xn(t) converges uniformly to 0 on [0, T]. Consequently,
∫ T

0 Vη(xn) dt → 0. Taking r >
√

2C5 + 2, by straightforward computation, one has

C5 ≥ cn = ϕn(rnxn) = sup
r≥0

ϕn(rxn) ≥ ϕn(rxn) → 1
2

r2 > C5 + 1,

which is a contradiction.
Case II: x �= 0. Then |rnxn| → ∞ almost everywhere on [0, T]. The definition of Vη im-

plies that

0 ≤ ϕn(rnxn)
r2

n
=

1
2
‖xn‖2 –

∫ T

0

Vn(rnxn)
r2

n
dt ≤ 1

2
–

∫ T

0

V (rnxn)
|rnxn|2 |xn|2 dt. (18)

Thanks to the assumption (V 5), Fatou’s lemma implies that the right-hand side of (18)
tends to –∞ as n → ∞, which is a contradiction.
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Consequently rn is bounded, which finishes the proof of this lemma. �

It follows from Proposition 4.3 that, passing to a subsequence, {rn} converges to some
point r0 ∈ R. Put y0 = r0x0 ∈ E. Then rnxn ⇀ y0 in E as n → ∞. Next we will show that
rnxn → y0 in E as n → ∞.

Lemma 4.4 Assume that all assumptions of Theorem 1.2 hold. Then ϕ′
n(rnxn) → ϕ′(y0) in

E as n → ∞.

Proof Take y ∈ E. By straightforward computation, we obtain

∣∣〈ϕ′
n(rnxn) – ϕ′(y0), y

〉∣∣

≤ ∣∣〈ϕ′
n(rnxn) – ϕ′(rnxn), y

〉∣∣ +
∣∣〈ϕ′(rnxn) – ϕ′(y0), y

〉∣∣

≤ ηnrp–1
n

∫ T

0
|xn|p–1|y|dt +

∣∣〈rnxn – y0, y〉∣∣ +
∣∣〈φ′(rnxn) – φ′(y0), y

〉∣∣. (19)

Observe that 〈rnxn – y0, y〉 → 0 since rnxn ⇀ y0 in E and y ∈ E ⊂ E
∗. To complete the

proof of the lemma, we only need to show that the first and third summands of (19) ap-
proach 0.

First, we find that (5) implies that |xn(t)| ≤ ‖xn‖L∞ ≤ c∞‖x‖ ≤ c∞. The boundedness of
{rn} and {|xn|} together with the fact that ηn → 0 as n → ∞, implies that

ηnrp–1
n

∫ T

0
|xn|p–1|y|dt → 0 as n → ∞.

Now, since φ′ is compact and rnxn ⇀ y0 in E, φ′(rnxn) → φ′(y0) in E
∗ as n → ∞. Thus

〈φ′(rnxn) – φ′(y0), y〉 → 0 as n → ∞. �

Remark 4.2 Since ϕ′
n(rnxn) = 0 for all n ∈N, we have ϕ′(y0) = 0.

Now we are ready to show that rnxn → y0 in E as n → ∞. This is the following lemma.

Lemma 4.5 Assume that all assumptions of Theorem 1.2 hold. Then {rnxn} converges
strongly to y0 in E.

Proof Since rnxn ⇀ y0 in E, it suffices to show that ‖rnxn‖ → ‖y0‖. On the one hand, since
‖ · ‖ is continuous and convex, ‖ · ‖ is weakly lower semi-continuous. Consequently, one
has

‖y0‖ ≤ lim
n→∞

‖rnxn‖.

On the other hand, Proposition 4.1 and Remark 4.2 imply that

〈
ϕ′(rnxn), rnxn

〉 → 〈
ϕ′(y0), y0

〉
, as n → ∞,

which is equivalent to

‖rnxn‖2 –
∫ T

0

(
V ′(rnxn), rnxn

)
dt → ‖y0‖2 –

∫ T

0

(
V ′(y0), y0

)
dt, as n → ∞. (20)
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Since {rnxn} converges uniformly to y0 on [0, T], Lebesgue’s dominated convergence the-
orem implies that

∫ T

0

(
V ′(rnxn), rnxn

)
dt →

∫ T

0

(
V ′(y0), y0

)
dt, as n → ∞. (21)

Then (20) together with (21) gives us ‖rnxn‖ → ‖y0‖ as n → ∞ and the result follows. �

Lemma 4.6 Assume that all assumptions of Theorem 1.2 hold. Then ϕn(rnxn) → ϕ(y0) as
n → ∞.

Proof By straightforward computation, we obtain

∣∣ϕn(rnxn) – ϕ(y0)
∣∣ ≤ ∣∣ϕn(rnxn) – ϕ(rnxn)

∣∣ +
∣∣ϕ(rnxn) – ϕ(y0)

∣∣

≤ ηnrp
n

p

∫ T

0
|xn|p dt +

∣∣ϕ(rnxn) – ϕ(y0)
∣∣. (22)

On one hand, using the same argument as in the proof of the first summand of (19), one
can conclude that the first summand in (22) tends to 0 as n → ∞. On the other hand,
since rnxn → y0 in E as n → ∞, ϕ(rnxn) – ϕ(y0) → 0 as n → ∞. Consequently, the right
side item of (22) tends to 0 as n → ∞. Thus, the lemma is proved. �

Now we are ready to complete the proof of Theorem 1.2.

Proof of Theorem 1.2 It follows from Remark 4.2 and Lemma 4.6 that

ϕ(y0) = lim
n→∞ϕn(rnxn) and ϕ′(y0) = 0.

Then y0 is a periodic solution to system (1). Next we prove that y0 has T as its minimal
period.

Denote c0 = infx∈M∗ ϕ(x) = infx∈S1 supr∈R∗ ϕ(rx).

Claim ϕ(y0) = c0.

On the one hand, as Vn(rx) ≥ V (rx), we have ϕn(rx) ≤ ϕ(rx), for all x ∈ S
1 and r ∈ R

∗. It
follows that

inf
x∈S1

sup
r∈R∗

ϕn(rx) ≤ inf
x∈S1

sup
r∈R∗

ϕ(rx).

Hence

ϕ(y0) = lim
n→∞ϕn(rnxn) = lim

n→∞ cn ≤ c0. (23)

On the other hand, since ϕ′(y0) = 0, setting z0 = y0/‖y0‖, one has

g ′
z0

(‖y0‖
)

=
〈
ϕ′(‖y0‖z0

)
, z0

〉
=

〈
ϕ′(y0), z0

〉
= 0.
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It follows from the definition of M∗ that y0 ∈M∗. Hence we obtain

c0 = inf
x∈M∗ ϕ(x) ≤ ϕ(y0). (24)

Together (23) with (24) we conclude that the claim holds. Arguing similarly to the proof
of Theorem 1.1, we can prove that y0 has T as its minimal period. �
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