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Abstract
The proximal gradient method is a highly powerful tool for solving the composite
convex optimization problem. In this paper, firstly, we propose inexact inertial
acceleration methods based on the viscosity approximation and proximal scaled
gradient algorithm to accelerate the convergence of the algorithm. Under reasonable
parameters, we prove that our algorithms strongly converge to some solution of the
problem, which is the unique solution of a variational inequality problem. Secondly,
we propose an inexact alternated inertial proximal point algorithm. Under suitable
conditions, the weak convergence theorem is proved. Finally, numerical results
illustrate the performances of our algorithms and present a comparison with related
algorithms. Our results improve and extend the corresponding results reported by
many authors recently.
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1 Introduction
Let H be a real Hilbert space with the inner product 〈·, ·〉 and the induced norm ‖ · ‖, and
let C be a nonempty closed convex subset of H . Let �0(H) be a space of functions in H
that are proper, convex, and lower semicontinuous. We will deal with the unconstrained
convex optimization problem of the following type:

min
x∈H

f (x) + g(x), (1.1)

where f , g ∈ �0(H). It is often the case where f is differentiable and g is subdifferentiable.
In 1978, problem (1.1) was first studied in [13] and provided a natural tool to study

various generic optimization models under a common framework. In recent years, many
researchers have already proposed some algorithms to solve problem (1.1) and have dis-
cussed a lot of weak and strong convergence results, such as [1, 6, 12, 23, 25], just to name
a few. As we know, lots of important optimization problems can be cast in this form. See,
for instance, [23], where the author introduced the properties and iterative methods for
the lasso as a special case of (1.1); due to the involvement of the l1 norm, which promotes
sparsity, we can get a good result on solving the corresponding problem.
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The following proposition is very useful for constructing the iterative algorithms.

Proposition 1.1 (see [23]) Let f , g ∈ �0(H). Let x∗ ∈ H and λ > 0. Assume that f is finite-
valued and differential on H . Then x∗ is a solution to (1.1) if and only if x∗ solves the fixed
point equation

x∗ =
(
proxλg(I – λ∇f )

)
x∗. (1.2)

On the other hand, we know that the errors often are produced in the process of cal-
culation. It is an important property of algorithms which guarantees the convergence of
the iterate under summable errors. Many authors have studied algorithms with perturba-
tions and their convergence. Some related results are found in [3–5]. In 2011, Boikanyo
and Morosanu introduced [2] a proximal point algorithm with error sequence. Under the
summability condition on errors and some additional conditions on the parameters, they
obtained strong convergence theorem.

In 2016, Jin, Censor, and Jiang [11] presented the projected scaled gradient (PSG)
method with bounded perturbations in a finite dimensional setting for solving the fol-
lowing minimization problem:

min
x∈C

f (x), (1.3)

where f is a continuously differentiable, convex function. More precisely, the method gen-
erates a sequence according to

xn+1 = PC
(
xn – λnD(xn)∇f (xn) + e(xn)

)
, n ≥ 0, (1.4)

and converges to a solution of problem (1.3) under suitable conditions, where D(xn) is a
diagonal scaling matrix.

In 2017, Xu extended the method to infinite dimensional space and projected the superi-
orization techniques for the relaxed PSG [24]. The following iterative step was introduced:

xn+1 = (1 – τn)xn + τnPC
(
xn – γnD(xn)∇f (xn) + e(xn)

)
, n ≥ 0, (1.5)

where τn ∈ [0, 1]. The weak convergence theorem was obtained in [24].
Quite recently, Guo and Cui [8] considered the modified proximal gradient method:

xn+1 = αnh(xn) + (1 – αn) proxλng(I – λn∇f )(xn) + e(xn), n ≥ 0, (1.6)

where h is a contractive mapping. The algorithm converges strongly to a solution of prob-
lem (1.1).

To accelerate the convergence of iteration methods, Polyak [19] introduced the following
algorithm that can speed up gradient descent:

⎧
⎨

⎩
yn = xn + δn(xn – xn–1),

xn+1 = yn – λn∇F(xn).
(1.7)
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This modification was made immensely popular by Nesterov’s accelerated gradient algo-
rithm [18]. Generally, an inertial iteration for operator P writes

⎧
⎨

⎩
yn = xn + δn(xn – xn–1),

xn+1 = P(yn).
(1.8)

In 2009, Beck and Teboulle [1] proposed a fast iterative shrinkage-thresholding algorithm
for linear inverse problems. By applying the inertial technique, {xn} is not employed on
the previous point {xn–1}, but rather at the point {yn} which uses a very specific linear
combination of the previous two points {xn–1, xn–2}. Therefore, the convergence speed of
the algorithm is greatly accelerated.

In 2015, for solving the maximal monotone inclusion problem, Mu and Peng [17] intro-
duced alternated inertial proximal point iterates as follows:

xn+1 = JλT (yn), (1.9)

where yn is defined as

yn =

⎧
⎨

⎩
xn + δn(xn – xn–1), n = odd,

xn, n = even.
(1.10)

In equation (1.9), T is a set-valued maximal monotone operator and λ > 0. This form is a
lot less popular than general inertia. However, it has pretty good convergence properties
and performance.

In 2017, Iutzeler and Hendrickx [10] proposed a generic acceleration for optimization
algorithm via relaxation and inertia, they also used alternated inertial acceleration in their
algorithm. They obtained the convergence of the iterative sequence under some suitable
assumptions.

Very recently, Shehu and Gibali [21] studied a new alternated inertial procedure for solv-
ing split feasibilities. Under some mild assumptions, they showed that the sequence con-
verges strongly.

In this paper, mainly inspired and motivated by the above works, we introduce several it-
erative algorithms. Firstly, we combine the contractive mapping and proximal operator to
propose an inertial acceleration proximal gradient method with errors for solving problem
(1.1). Under more general and flexible conditions, we prove that the sequence converges
strongly. Further, we extend the algorithm to a more generalized viscosity inertial accelera-
tion method. Secondly, we propose a kind of alternating inertial proximal point algorithm
with errors to solve problem (1.1), then we prove that the sequence converges weakly un-
der appropriate conditions. Finally, we present several numerical examples to illustrate
the effectiveness of our iterative schemes.

2 Preliminaries
We start by recalling some lemmas, definitions, and propositions needed in the proof of
the main results.
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Recall that given a closed subset C of a real Hilbert space H , for any x ∈ H , there exists
a unique nearest point in C denoted by PCx such that

‖x – PCx‖ ≤ ‖x – y‖, ∀y ∈ C.

Such a PCx is called the metric projection of H onto C.

Lemma 2.1 (see [14]) Let C be a nonempty closed convex subset of a real Hilbert space H .
Given x ∈ H and z ∈ C, then y = PCx if and only if we have the relation

〈x – y, y – z〉 ≥ 0, ∀z ∈ C.

Lemma 2.2 Let H be a real Hilbert space, the following statements hold:
(i) ‖x + y‖2 = ‖x‖2 + 2〈x, y〉 + ‖y‖2, ∀x, y ∈ H .

(ii) ‖x + y‖2 ≤ ‖x‖2 + 2〈x + y, y〉, ∀x, y ∈ H .
(iii) ‖αx + (1 – α)y‖2 = α‖x‖2 + (1 – α)‖y‖2 – α(1 – α)‖x – y‖2 for all α ∈R and x, y ∈ H .

Definition 2.3 A mapping F : H → H is said to be
(i) Lipschitzian if there exists a positive constant L such that

‖Fx – Fy‖ ≤ L‖x – y‖, ∀x, y ∈ H .

In particular, if L = 1, F is called nonexpansive. If L ∈ [0, 1), F is called contractive.
(ii) α-averaged mapping(α-av for short) if

F = (1 – α)I + αT ,

where α ∈ (0, 1) and T : H → H is nonexpansive.

Proposition 2.4 ([22])
(i) If T1, T2, . . . , Tn are averaged mappings, then we can get that TnTn–1 · · ·T1 is

averaged. In particular, if Ti is αi-av for each i = 1, 2, where αi ∈ (0, 1), then T2T1 is
(α2 + α1 – α2α1)-av.

(ii) If the mappings {Ti}N
i=1 are averaged and have a common fixed point, then we have

N⋂

i=1

Fix(Ti) = Fix(T1 · · ·TN ).

Here, the notation Fix(T) denotes the set of fixed points of the mapping T ; that is,
Fix(T) := {x ∈ H : Tx = x}.

(iii) If T is ν-ism, then, for any τ > 0, τT is ν
τ

-ism.
(iv) T is averaged if and only if I – T is ν-ism for some ν > 1

2 . Indeed, for any 0 < α < 1,
T is α-averaged if and only if I – T is 1

2α
-ism.

Definition 2.5 (see [16]) The proximal operator of ϕ ∈ �0(H) is defined by

proxϕ(x) = arg min
ν∈H

{
ϕ(ν) +

1
2
‖ν – x‖2

}
, x ∈ H .
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The proximal operator of ϕ of order λ > 0 is defined as the proximal operator of λϕ, that
is,

proxλϕ(x) = arg min
ν∈H

{
ϕ(ν) +

1
2λ

‖ν – x‖2
}

, x ∈ H .

Lemma 2.6 The proximal identity

proxλϕ x = proxμϕ

(
μ

λ
x +

(
1 –

μ

λ

)
proxλϕ x

)
(2.1)

holds for ϕ ∈ �0(H), λ > 0 and μ > 0.

Lemma 2.7 (Demiclosedness principle, see [7]) Let H be a real Hilbert space, and let
T : H → H be a nonexpansive mapping with Fix(T) �= ∅. If {xn} is a sequence in H weakly
converging to x and if {(I – T)xn} converges strongly to y, then (I – T)x = y; in particular, if
y = 0, then x ∈ Fix(T).

Lemma 2.8 (see [9]) Assume that {sn} is a sequence of nonnegative real numbers such that

sn+1 ≤ (1 – γn)sn + γnμn, n ≥ 0,

sn+1 ≤ sn – ηn + ϕn, n ≥ 0,

where {γn} is a sequence in (0, 1), {ηn} is a sequence of nonnegative real numbers and {μn}
and {ϕn} are two sequences in R such that

(i)
∑∞

n=0 γn = ∞,
(ii) limn→∞ ϕn = 0,

(iii) limk→∞ ηnk = 0 implies lim supk→∞ μnk ≤ 0 for any subsequence {nk} ⊂ {n}.
Then limn→∞ sn = 0.

Lemma 2.9 (see [7]) Let C be a nonempty closed convex subset of a real Hilbert space H .
Let {xn} be a sequence in H satisfying the properties:

(i) limn→∞ ‖xn – z‖ exists for each z ∈ C,
(ii) ωw(xn) ⊂ C, where ωw(xn) := {x : ∃xnj ⇀ x} ({xnj} is a subsequence of {xn}) denotes

the weak ω-limit set of {xn}.
Then {xn} converges weakly to a point in C.

Lemma 2.10 (see [20]) Let {sn} be a sequence of nonnegative numbers satisfying the gen-
eralized nonincreasing property

sn+1 ≤ sn + σn, n ≥ 0,

where {σn} is a sequence of nonnegative numbers such that
∑∞

n=0 σn < ∞. Then {sn} is
bounded and limn→∞ sn exists.
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3 Main results
3.1 Inertial proximal gradient algorithm
In this section, we combine a viscosity iterative method for approximating the unique fixed
point of the following variational inequality problem (VIP for short):

〈
(I – h)x∗, x̃ – x∗〉 ≥ 0, ∀x̃ ∈ Fix(Vλ), (3.1)

where h : H → H is ρ-contractive and Vλ is nonexpansive.
We propose an inertial acceleration algorithm.

Algorithm 1
1. Choose x0, x1 ∈ H and set n := 1.
2. Given xn, xn–1, compute

yn = xn + δn(xn – xn–1). (3.2)

3. Calculate the next iterate via

xn+1 = αnh(yn) + (1 – αn)
(
proxλng

(
yn – λnD(yn)∇f (yn) + e(yn)

))
. (3.3)

4. If ‖xn – xn+1‖ < ε, then stop. Otherwise, set n = n + 1 and go to 2.

Rewrite iteration (3.3) as follows:

xn+1 = αnh(yn) + (1 – αn) proxλng
(
yn – λn∇f (yn) + ên

)

= αnh(yn) + (1 – αn)
(
proxλng

(
yn – λn∇f (yn)

)
+ ẽn

)
, (3.4)

where ên = λnθ (yn) + e(yn), θ (yn) = ∇f (yn) – D(yn)∇f (yn), and

ẽn = proxλng
(
yn – λn∇f (yn) + ên

)
– proxλng

(
yn – λn∇f (yn)

)
.

Note that ‖ẽn‖ ≤ ‖ên‖ ≤ ‖e(yn)‖ + λn‖θ (yn)‖, it is easy to get
∑∞

n=0 ‖ẽn‖ < ∞ from condi-
tions (iii)–(iv) of Theorem 3.1. We use S to denote the solution set of problem (1.1).

Theorem 3.1 Let f , g ∈ �0(H) and assume that (1.1) is consistent (i.e., S �= ∅). Let h be
ρ-contractive self-map of H with 0 ≤ ρ < 1 and ∇f is L-Lipschitzian. Assume that D is a
diagonal scaling matrix. Given x0, x1 ∈ H , let {xn} be a sequence generated by Algorithm 1,
where λn ∈ (0, 2

L ), αn ∈ (0, 2+λnL
4 ). Suppose that

(i) limn→∞ αn = 0,
∑∞

n=0 αn = ∞;
(ii) 0 < lim infn→∞ λn ≤ lim supn→∞ λn < 2

L ;
(iii)

∑∞
n=0 ‖e(yn)‖ < ∞;

(iv)
∑∞

n=0 ‖θ (yn)‖ < ∞;
(v)

∑∞
n=0 δn‖xn – xn–1‖ < ∞.

Then {xn} converges strongly to x∗, where x∗ is a solution of (1.1), which is also the unique
solution of variational inequality problem (3.1).
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Proof We divide the proof into several steps.
Step 1. Show that {xn} is bounded. For any z ∈ S,

‖yn – z‖ =
∥
∥xn + δn(xn – xn–1) – z

∥
∥

≤ ‖xn – z‖ + δn‖xn – xn–1‖. (3.5)

Put Vλn := proxλng(I – λn∇f ), from (3.4) and (3.5), we have

‖xn+1 – z‖
=

∥
∥αnh(yn) + (1 – αn)(Vλn yn + ẽn) – z

∥
∥

=
∥
∥αn

(
h(yn) – z

)
+ (1 – αn)(Vλn yn – z) + (1 – αn)ẽn

∥
∥

≤ αn
∥∥h(yn) – h(z)

∥∥ + αn
∥∥h(z) – z

∥∥ + (1 – αn)‖Vλn yn – z‖ + ‖ẽn‖
≤ αnρ‖yn – z‖ + αn

∥
∥h(z) – z

∥
∥ + (1 – αn)‖yn – z‖ + ‖ẽn‖

=
(
1 – αn(1 – ρ)

)‖yn – z‖ + αn
∥∥h(z) – z

∥∥ + ‖ẽn‖
≤ (

1 – αn(1 – ρ)
)‖xn – z‖ + δn‖xn – xn–1‖ + αn

∥∥h(z) – z
∥∥ + ‖ẽn‖

=
(
1 – αn(1 – ρ)

)‖xn – z‖ + αn(1 – ρ)
‖h(z) – z‖ + (δn‖xn – xn–1‖ + ‖ẽn‖)/αn

1 – ρ
. (3.6)

From conditions (iii)–(v) and αn > 0, we get {(δn‖xn – xn–1‖ + ‖ẽn‖)/αn} is bounded. Thus
there exists some M1 > 0 such that

M1 ≥ sup
{∥∥h(z) – z

∥
∥ +

(
δn‖xn – xn–1‖ + ‖ẽn‖

)
/αn

}

for all n ≥ 0. Then the mathematical induction implies that

‖xn – z‖ ≤ max

{
‖x0 – z‖,

M1

1 – ρ

}
.

Therefore, the sequence {xn} is bounded and so are {yn}, {h(yn)}, and {Vλn yn}.
Step 2. Show that limk→∞ ηnk = 0 implies

lim
k→∞

‖xnk – Vλnk
xnk ‖ = 0

for any sequence {nk} ⊂ {n}. Firstly, fix z ∈ S, we have

‖yn – z‖2 =
∥
∥xn + δn(xn – xn–1) – z

∥
∥2

≤ ‖xn – z‖2 + 2
〈
xn – z + δn(xn – xn–1), δn(xn – xn–1)

〉

≤ ‖xn – z‖2 + 2δn‖xn – xn–1‖
(‖xn – z‖ + δn‖xn – xn–1‖

)
. (3.7)

Then from (3.4) we get

‖xn+1 – z‖2

=
∥∥αnh(yn) + (1 – αn)(Vλn yn + ẽn) – z

∥∥2
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≤ ∥∥αnh(yn) + (1 – αn)Vλn yn – z
∥∥2 + 2(1 – αn)

〈
αnh(yn) + (1 – αn)Vλn yn – z, ẽn

〉

+ ‖ẽn‖2

≤ α2
n
∥∥h(yn) – z

∥∥2 + (1 – αn)2‖Vλn yn – z‖2 + 2αn(1 – αn)
〈
h(yn) – z, Vλn yn – z

〉

+
(
2αn

∥
∥h(yn) – z

∥
∥ + 2(1 – αn)‖yn – z‖ + ‖ẽn‖

)‖ẽn‖
≤ 2α2

n
(∥∥h(yn) – h(z)

∥
∥2 +

∥
∥h(z) – z

∥
∥2) + (1 – αn)2‖yn – z‖2

+ 2αn(1 – αn)
〈
h(yn) – z, Vλn yn – z

〉
+ M2‖ẽn‖

≤ 2α2
n
(∥∥h(yn) – h(z)

∥
∥2 +

∥
∥h(z) – z

∥
∥2) + (1 – αn)2‖yn – z‖2

+ 2αn(1 – αn)
(∥∥h(yn) – h(z)

∥∥‖yn – z‖ +
〈
h(z) – z, Vλn yn – z

〉)
+ M2‖ẽn‖

≤ (
1 – αn

(
2 – αn

(
1 + 2ρ2) – 2(1 – αn)ρ

))‖yn – z‖2

+ 2αn(1 – αn)
〈
h(z) – z, Vλn yn – z

〉
+ 2α2

n
∥
∥h(z) – z

∥
∥2 + M2‖ẽn‖, (3.8)

where M2 is some constant such that

M2 ≥ sup
{

2αn
∥∥h(yn) – z

∥∥ + 2(1 – αn)‖yn – z‖ + ‖ẽn‖
}

.

Put γn := αn(2 – αn(1 + 2ρ2) – 2(1 – αn)ρ), using (3.4) and (3.7), we deduce that

‖xn+1 – z‖2

≤ (1 – γn)‖xn – z‖2 + 2δn(1 – γn)‖xn – xn–1‖
(‖xn – z‖ + δn‖xn – xn–1‖

)

+ 2αn(1 – αn)
〈
h(z) – z, Vλn yn – z

〉
+ 2α2

n
∥∥h(z) – z

∥∥2 + M2‖ẽn‖. (3.9)

Secondly, since Vλn is 2+λnL
4 -av by Proposition 2.4, we can rewrite

Vλn = proxλng(I – λn∇f ) = (1 – wn)I + wnTn, (3.10)

where wn = 2+λnL
4 , Tn is nonexpansive and, by condition (ii), we get 1

2 < lim infn→∞ wn ≤
lim supn→∞ wn < 1. Combining (3.4), (3.8), and (3.10), we obtain

‖xn+1 – z‖2

=
∥∥αnh(yn) + (1 – αn)(Vλn yn + ẽn) – z

∥∥2

≤ ∥∥αnh(yn) + (1 – αn)Vλn yn – z
∥∥2 + M2‖ẽn‖

=
∥∥Vλn yn – z + αn

(
h(yn) – Vλn yn

)∥∥2 + M2‖ẽn‖
= ‖Vλn yn – z‖2 + αn

2∥∥h(yn) – Vλn yn
∥
∥2 + 2αn

〈
Vλn yn – z, h(yn) – Vλn yn

〉
+ M2‖ẽn‖

=
∥
∥(1 – wn)yn + wnTnyn – z

∥
∥2 + αn

2∥∥h(yn) – Vλn yn
∥
∥2

+ 2αn
〈
Vλn yn – z, h(yn) – Vλn yn

〉
+ M2‖ẽn‖

= (1 – wn)‖yn – z‖2 + wn‖Tnyn – Tnz‖2 – wn(1 – wn)‖Tnyn – yn‖2

+ αn
2∥∥h(yn) – Vλn yn

∥∥2 + 2αn
〈
Vλn yn – z, h(yn) – Vλn yn

〉
+ M2‖ẽn‖
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≤ ‖yn – z‖2 – wn(1 – wn)‖Tnyn – yn‖2 + α2
n
∥∥h(yn) – Vλn yn

∥∥2

+ 2αn
〈
Vλn yn – z, h(yn) – Vλn yn

〉
+ M2‖ẽn‖

≤ ‖xn – z‖2 – wn(1 – wn)‖Tnyn – yn‖2 + α2
n
∥∥h(yn) – Vλn yn

∥∥2

+ 2αn
〈
Vλn yn – z, h(yn) – Vλn yn

〉

+ 2δn‖xn – xn–1‖
(‖xn – z‖ + δn‖xn – xn–1‖

)
+ M2‖ẽn‖. (3.11)

Set

sn = ‖xn – z‖2, ηn = wn(1 – wn)‖Tnyn – yn‖2,

μn =
1

2 – αn(1 + 2ρ2) – 2(1 – αn)ρ

(
2αn

∥
∥h(z) – z

∥
∥2 + M2

‖ẽn‖
αn

+
2δn‖xn – xn–1‖(‖xn – z‖ + δn‖xn – xn–1‖)

αn

+ 2(1 – αn)
〈
h(z) – z, Vλn yn – z

〉
)

,

ϕn = α2
n
∥
∥h(yn) – Vλn yn

∥
∥2 + 2αn

〈
Vλn yn – z, h(yn) – Vλn yn

〉
+ M2‖ẽn‖.

Since
∑∞

n=0 γn = ∞ and ϕn → 0 hold obviously, in order to complete the proof by using
Lemma 2.8, it suffices to verify that ηnk → 0 (k → ∞) implies

lim sup
k→∞

μnk ≤ 0

for any subsequence {nk} ⊂ {n}.
Indeed, as k → ∞, ηnk → 0 implies ‖Tnk ynk – ynk ‖ → 0, from (3.10), we have

‖ynk – Vλnk
ynk ‖ = wnk ‖ynk – Tnk ynk ‖ → 0. (3.12)

Due to condition (v), it follows that

‖ynk – xnk ‖ = δnk ‖xnk – xnk –1‖ → 0. (3.13)

Thus, we have

lim
k→∞

‖xnk – Vλnk
xnk ‖

= lim
k→∞

‖xnk – ynk + ynk – Vλnk
ynk + Vλnk

ynk – Vλnk
xnk ‖

≤ lim
k→∞

‖xnk – ynk ‖ + lim
k→∞

‖ynk – Vλnk
ynk ‖ + lim

k→∞
‖Vλnk

ynk – Vλnk
xnk ‖

≤ lim
k→∞

2‖xnk – ynk ‖ + lim
k→∞

‖ynk – Vλnk
ynk ‖. (3.14)

It follows from (3.12) and (3.13) that

lim
k→∞

‖xnk – Vλnk
xnk ‖ = 0. (3.15)
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Step 3. Show that

ωw(xnk ) ⊂ S. (3.16)

Take x̃ ∈ ωw(xnk ) and assume that {xnkj
} is a subsequence of {xnk } weakly converging to

x̃. Without loss of generality, we still use {xnk } to denote {xnkj
}. Assume λnk → λ, then

0 < λ < 2
L . Set Vλ = proxλg(I – λ∇f ), then Vλ is nonexpansive. Set

tk = xnk – λnk ∇f (xnk ), zk = xnk – λ∇f (xnk ).

Using the proximal identity of Lemma 2.6, we deduce that

‖Vλnk
xnk – Vλxnk ‖

= ‖proxλnk g tk – proxλg zk‖

=
∥
∥∥
∥proxλg

(
λ

λnk

tk +
(

1 –
λ

λnk

)
proxλnk g tk

)
– proxλg zk

∥
∥∥
∥

≤
∥∥
∥∥

λ

λnk

tk +
(

1 –
λ

λnk

)
proxλnk g tk – zk

∥∥
∥∥

≤ λ

λnk

‖tk – zk‖ +
(

1 –
λ

λnk

)
‖proxλnk g tk – zk‖

=
λ

λnk

|λnk – λ|∥∥∇f (xnk )
∥∥ +

(
1 –

λ

λnk

)
‖proxλnk g tk – zk‖. (3.17)

Since {xn} is bounded, ∇f is Lipschitz continuous, and λnk → λ, we immediately derive
from the last relation that ‖Vλnk

xnk – Vλxnk ‖ → 0. As a result, we find

‖xnk – Vλxnk ‖ ≤ ‖xnk – Vλnk
xnk ‖ + ‖Vλnk

xnk – Vλxnk ‖ → 0. (3.18)

Using Lemma 2.7, we get ωw(xnk ) ⊂ S. Meanwhile, we have

lim sup
k→∞

〈
h
(
x∗) – x∗, Vλnk

ynk – x∗〉

= lim sup
k→∞

〈
h
(
x∗) – x∗, Vλnk

xnk – x∗〉

= lim sup
k→∞

〈
h
(
x∗) – x∗, xnk – x∗〉

=
〈
h
(
x∗) – x∗, x̃ – x∗〉, ∀x̃ ∈ S. (3.19)

Also, since x∗ is the unique solution of variational inequality problem (3.1), we get

lim sup
k→∞

〈
h
(
x∗) – x∗, xnk – x∗〉 ≤ 0,

and hence lim supk→∞ μnk ≤ 0. �

Furthermore, we extend Algorithm 1 to a more generalized viscosity iterative algorithm.
Suppose that the contractive mappings sequence {hn(x)} is uniformly convergent on any B,
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where B is any bounded subset of H . Assume that the solution set S �= ∅, next we prove that
the sequence {xn} generated by Algorithm 2 converges strongly to a point x∗ ∈ S, which
also solves variational inequality (3.1).

A more general inertial iterative algorithm is as follows.

Algorithm 2
1. Choose x0, x1 ∈ H and set n := 1.
2. Given xn, xn–1, compute

yn = xn + δn(xn – xn–1). (3.20)

3. Calculate the next iterate via

xn+1 = αnhn(yn) + (1 – αn)(proxλng
(
yn – λnD(yn)∇f (yn) + e(yn)

)
. (3.21)

4. If ‖xn – xn+1‖ < ε, then stop. Otherwise, set n = n + 1 and go to 2.

Theorem 3.2 Let f , g ∈ �0(H) and assume that (1.1) is consistent. Let {hn} be a sequence
of ρn-contractive self-mappings of H with 0 < ρl = lim infn→∞ ρn ≤ lim supn→∞ ρn = ρu < 1
and {hn(x)} is uniformly convergent on any B, where B is any bounded subset of H . Assume
that ∇f is L-Lipschizian and D is a diagonal scaling matrix. Given x0, x1 ∈ H , define the
sequence {xn} by Algorithm 2, where λn ∈ (0, 2

L ), αn ∈ (0, 2+λnL
4 ). Suppose that

(i) limn→∞ αn = 0,
∑∞

n=0 αn = ∞;
(ii) 0 < lim infn→∞ λn ≤ lim supn→∞ λn < 2

L ;
(iii)

∑∞
n=0 ‖e(yn)‖ < ∞;

(iv)
∑∞

n=0 ‖θ (yn)‖ < ∞;
(v)

∑∞
n=0 δn‖xn – xn–1‖ < ∞.

Then {xn} converges strongly to x∗, where x∗ is a solution of (1.1), which is also the unique
solution of variational inequality problem (3.1).

Proof Using the uniform convergence of the sequence of contractive mapping {hn} and
consulting [6], we have limn→∞ hn = h. It is not hard to complete the proof by using some
similar techniques as in Theorem 3.1. �

3.2 Alternated inertial proximal gradient algorithm
In the light of the ideas of [10, 17, 21] and more related references, combining the proximal
gradient method, we consider the following algorithm.

Algorithm 3
1. Choose x0, x1 ∈ H and set n := 1.
2. Given xn, xn–1, compute

yn =

⎧
⎨

⎩
xn + δn(xn – xn–1), n = odd,
xn, n = even.

(3.22)

3. Calculate the next iterate via

xn+1 = proxλng
(
yn – λnD(yn)∇f (yn) + e(yn)

)
. (3.23)

4. If ‖xn – xn+1‖ < ε, then stop. Otherwise, set n = n + 1 and go to 2.
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Similar to (3.3), we rewrite (3.23) as follows:

xn+1 = proxλng
(
yn – λn∇f (yn)

)
+ ẽn, (3.24)

where ên = λnθ (yn) + e(yn), θ (yn) = ∇f (yn) – D(yn)∇f (yn), and

ẽn = proxλng
(
yn – λn∇f (yn) + ên

)
– proxλng

(
yn – λn∇f (yn)

)
.

Theorem 3.3 Let f , g ∈ �0(H) and assume that (1.1) is consistent (i.e., S �= ∅). Assume that
∇f is L-Lipschitzian and D is a diagonal scaling matrix. Given x0, x1 ∈ H , let {xn} be a
sequence generated by Algorithm 3, where λn ∈ (0, 2

L ). Suppose that
(i) 0 < lim infn→∞ λn ≤ lim supn→∞ λn < 2

L ;
(ii)

∑∞
n=0 ‖e(yn)‖ < ∞;

(iii)
∑∞

n=0 ‖θ (yn)‖ < ∞;
(iv)

∑∞
n=0 δn‖xn – xn–1‖ < ∞.

Then {xn} converges weakly to a solution of the minimization problem of (1.1).

Proof Step 1. Show that {xn} is bounded. For any z ∈ S,

‖x2n+2 – z‖ = ‖Vλ2n+1 y2n+1 + ẽ2n+1 – z‖
≤ ‖y2n+1 – z‖ + ‖ẽ2n+1‖
=

∥
∥x2n+1 + δ2n+1(x2n+1 – x2n) – z

∥
∥ + ‖ẽ2n+1‖

≤ ‖x2n+1 – z‖ + δ2n+1‖x2n+1 – x2n‖ + ‖ẽ2n+1‖. (3.25)

Applying conditions (ii) and (iv), we deduce that {x2n} is bounded. Since

‖x2n+1 – z‖ = ‖Vλ2n y2n + ẽ2n – z‖
= ‖Vλ2n x2n + ẽ2n – z‖
≤ ‖x2n – z‖ + ‖ẽ2n‖. (3.26)

It is easy to get that {xn} is bounded and so are {yn} and {Vλn yn}. Also, it follows from
(3.25) and (3.26) that {xn} is quasi-Fejer monotone with respect to S. By Lemma 2.10,
limn→∞ ‖xn – z‖ exists.

Step 2. Show that limn→∞ ‖xn+1 – xn‖ = 0 and limn→∞ ‖xn – Vλn xn‖ = 0. Firstly, fix z ∈ S,
by Lemma 2.2 and Schwartz’s inequality, we have

‖y2n+1 – z‖2 =
∥
∥x2n+1 + δ2n+1(x2n+1 – x2n) – z

∥
∥2

≤ ‖x2n+1 – z‖2 + 2
〈
x2n+1 – z + δ2n+1(x2n+1 – x2n), δ2n+1(x2n+1 – x2n)

〉

≤ ‖x2n+1 – z‖2

+ 2δ2n+1‖x2n+1 – x2n‖
(‖x2n+1 – z‖ + δ2n+1‖x2n+1 – x2n‖

)
. (3.27)

Since Vλn is 2+λnL
4 -av, we see that

Vλn = proxλng(I – λn∇f ) = (1 – wn)I + wnTn, (3.28)
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where wn = 2+λnL
4 , Tn is nonexpansive. From condition (ii), we get 1

2 < lim infn→∞ wn ≤
lim supn→∞ wn < 1. Combining (3.23) and (3.26), we obtain

‖x2n+2 – z‖2 = ‖Vλ2n+1 y2n+1 + ẽ2n+1 – z‖2

= ‖Vλ2n+1 y2n+1 – z‖2 + 2〈Vλ2n+1 y2n+1 – z, ẽ2n+1〉 + ‖ẽ2n+1‖2

≤ ‖y2n+1 – z‖2 + ‖ẽ2n+1‖
(
2‖y2n+1 – z‖ + ‖ẽ2n+1‖

)

≤ ‖x2n+1 – z‖2 + 2δ2n+1‖x2n+1 – x2n‖
(‖x2n+1 – z‖ + δ2n+1‖x2n+1 – x2n‖

)

+ M3‖ẽ2n+1‖, (3.29)

where M3 = sup{2‖y2n+1 – z‖ + ‖ẽ2n+1‖}.
With the help of equality (3.28), we have

‖x2n+1 – z‖2

= ‖Vλ2n y2n + ẽ2n – z‖2

=
∥
∥(1 – w2n)x2n + w2nT2nx2n – z

∥
∥2 + 2〈Vλ2n x2n – z, ẽ2n〉 + ‖ẽ2n‖2

≤ (1 – w2n)‖x2n – z‖2 + w2n‖T2nx2n – T2nz‖2 – w2n(1 – w2n)‖T2nx2n – x2n‖2

+
(
2‖x2n – z‖ + ‖ẽ2n‖

)‖ẽ2n‖
≤ ‖x2n – z‖2 – w2n(1 – w2n)‖T2nx2n – x2n‖2 + M4‖ẽ2n‖, (3.30)

where M4 = sup{2‖x2n – z‖ + ‖ẽ2n‖}.
Substituting (3.30) into (3.29), we get

‖x2n+2 – z‖2

≤ ‖x2n – z‖2 + 2δ2n+1‖x2n+1 – x2n‖
(‖x2n+1 – z‖ + δ2n+1‖x2n+1 – x2n‖

)

– w2n(1 – w2n)‖T2nx2n – x2n‖2 + M3‖ẽ2n+1‖ + M4‖ẽ2n‖. (3.31)

Hence, we have the following result:

w2n(1 – w2n)‖T2nx2n – x2n‖2

≤ ‖x2n – z‖2 – ‖x2n+2 – z‖2 + 2δ2n+1‖x2n+1 – x2n‖
(‖x2n+1 – z‖ + δ2n+1‖x2n+1 – x2n‖

)

+ M3‖ẽ2n+1‖ + M4‖ẽ2n‖. (3.32)

Noting the fact that 1
2 < lim infn→∞ wn ≤ lim supn→∞ wn < 1, we deduce from (3.32) that

∞∑

n=0

‖T2nx2n – x2n‖2 < ∞. (3.33)

In particular, limn→∞ ‖T2nx2n – x2n‖ = 0. Now we have

‖x2n+1 – x2n‖ ≤ w2n‖T2nx2n – x2n‖ + ‖ẽ2n‖ → 0. (3.34)
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Similarly, we argue that

∞∑

n=0

‖T2n+1y2n+1 – y2n+1‖2 < ∞. (3.35)

Observe that

x2n+2 = (1 – w2n+1)y2n+1 + w2n+1T2n+1y2n+1 + ẽ2n+1. (3.36)

From (3.35) and condition (ii), we get

‖x2n+2 – y2n+1‖ ≤ w2n+1‖T2n+1y2n+1 – y2n+1‖ + ‖ẽ2n+1‖ → 0. (3.37)

It follows from (3.36) and condition (iv) that

‖x2n+2 – x2n+1‖ ≤ ‖x2n+2 – y2n+1‖ + ‖y2n+1 – x2n+1‖
= ‖x2n+2 – y2n+1‖ + δ2n+1‖x2n+1 – x2n‖ → 0. (3.38)

Combining (3.34) and (3.38), we obtain limn→∞ ‖xn+1 – xn‖ = 0. This yields

‖xn – Vλn xn‖ ≤ ‖xn – xn+1‖ + ‖xn+1 – Vλn yn‖ + ‖Vλn yn – Vλn xn‖
≤ ‖xn – xn+1‖ + ‖ẽn‖ + ‖yn – xn‖ → 0. (3.39)

Step 3. Show that

ωw(xn) ⊂ S. (3.40)

Since λn is bounded, we may assume that the subsequence λnk converges to some λ. It can
be proved by a method similar to step 3 in Theorem 3.1. We conclude that (3.40) holds.
By Lemma 2.9, we get {xn} converges weakly. �

4 Numerical illustrations
In this section, we consider the following two examples to demonstrate the effectiveness
of the algorithms and convergence of Theorem 3.1 and Theorem 3.3.

Example 4.1 Let H = R
N . Define h(x) = 1

10 x. Take f (x) = 1
2‖Ax – b‖2, then we obtain that

∇f (x) = AT (Ax–b) with Lipschitz constant L = ‖AT A‖, where AT represents the transpose
of A. Take g = ‖x‖1, then

proxλg x = arg min
v∈H

{
1

2λ
‖v – x‖2 + ‖v‖1

}
.

In [15], we know that

proxλn‖·‖1 x =
[
proxλn|·| x(1), proxλn|·| x(2), . . . , proxλn|·| x(N)

]T ,
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where proxλn|·| x(i) = max{|x(i)| – λn, 0} sign(x(i)), and x(i) denotes the ith element of x,
i = 1, 2, . . . , N . Let D be a diagonal matrix with the element yn(i). That is, Dii = yn(i), i =
1, 2, . . . , N . Given αn = 1

100n , λn = 1
30L

n+1
n+2 , and

δn =

⎧
⎨

⎩

1
n2‖xn–xn–1‖ , ‖xn – xn–1‖ �= 0,

0, ‖xn – xn–1‖ = 0

for every n ≥ 0. Generate an M ∗ N random matrix A whose entries are sampled inde-
pendently from uniformly distribution. Generate randomly a vector b from a Gaussian
distribution of zero mean and unit variance.

According to the iterative process of Theorem 3.1, the sequence {xn} is generated by
⎧
⎨

⎩
yn = xn + δn(xn – xn–1),

xn+1 = αnh(yn) + (1 – αn)(proxλng(yn – λnD(yn)AT (Ayn – b) + e(yn)).
(4.1)

Next, we use MATLAB software for numerical implementation. Set M = 100, N = 1000.
Under the same parameters, contrast with iterative algorithm (4.2) in reference [6]. Take
different error limit ε, we obtain the numerical experiment results in Table 1, where n and t
denote the iterative number and running time(tic/toc), respectively. We use ‖xn+1 –xn‖ < ε

as the stopping criteria.

xn+1 = αnh(xn) + (1 – αn)(proxλng
(
xn – λnDAT (Axn – b) + e(xn)

)
. (4.2)

In addition, we compare the values of ‖xn+1 – xn‖ at the same number of iterations of
(4.1) and (4.2). The results can be seen in Fig. 1. We also present different running time
and the number of iterations at different stopping criteria ε. See Fig. 2.

It can be easily seen from Table 1, Fig. 1, and Fig. 2 that Algorithm 1 is faster than iterative
formula (4.2) without inertial step. At the same stopping criteria, the values of ‖xn+1 – xn‖
and ‖Axn – b‖ of Algorithm 1 are smaller.

In what follows, we give an example in an infinite dimensional space.

Example 4.2 Suppose that H = L2([0, 1]) with the norm ‖x‖ = (
∫ 1

0 (x(t))2 dt) 1
2 and the

inner product 〈x, y〉 =
∫ 1

0 x(t)y(t) dt, ∀x, y ∈ H . Define h(x) = 1
2 x and Ax(t) = tx(t). Let

f (x) = 1
2‖Ax(t)–u(t)‖2 and g(x) be the indicator function of C, respectively, where u(t) ∈ H

is a fixed function and C = {x ∈ H|‖x‖ ≤ 1}.

By the definition of f and g , we obtain

∇f (x) = A∗(Ax – u)

Table 1 Comparison of Algorithm 1 (IA) with the algorithm without inertia step (UA) for Example 4.1.
x0 = randn(N, 1)

ε IA UA

n t ‖xn+1 – xn‖ ‖Axn – b‖ n t ‖xn+1 – xn‖ ‖Axn – b‖
10–3 143 0.0546 7.8635× 10–7 7.9601 685 0.4510 9.8753× 10–4 8.7650
10–5 636 0.8414 6.6975× 10–8 2.8313 5768 3.8915 9.2786× 10–5 3.6433
10–7 1391 1.0010 8.3482× 10–9 0.8189 14,768 6.0098 9.9947× 10–8 1.3663
10–9 2023 1.0035 1.7182× 10–12 0.1473 56,077 7.0788 9.9989× 10–10 0.5936
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Figure 1 The comparison of ‖xn+1 – xn‖ of inertial acceleration (IA) and without inertial acceleration (UA) for
(M,N) = (100, 1000) of Example 4.1

Figure 2 The comparison of running time and iteration steps of inertial acceleration (IA) and without inertial
acceleration (UA) with the same stopping criteria for (M,N) = (100, 1000) of Example 4.1

and

proxλg x = arg min
v∈H

{
1

2λ
‖v – x‖2 + ιC(v)

}
= PC(x),

where ιC denotes the indicator function and

ιC(x) =

⎧
⎨

⎩
0, if x ∈ C,

∞, if x /∈ C.

We also deduce the adjoint operator of A is still A, i.e., A∗ = A. Take D(xn) = I , set the
parameters αn = 1

1000n and λn = n
L∗(n+1) , according to the iterative algorithm of Theorem 3.1,

we get the following sequence {xn}:
⎧
⎨

⎩
yn = xn + δn(xn – xn–1),

xn+1 = 1
1000n

1
2 yn + (1 – 1

1000n )PC(yn – n
L(n+1) A(Ayn – u)).
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Table 2 Comparison of Algorithm 3 (AIA) with Algorithm 1 (IA) for Example 4.2. u = et , x0 = t, x1 = t2

ε AIA IA

n t ‖xn+1 – xn‖ ‖xn‖ n t ‖xn+1 – xn‖ ‖xn‖
10–3 17 0.0007 9.0023× 10–4 1.0001 21 0.0011 9.0302× 10–4 1.0001
10–7 101 0.0025 9.9998× 10–8 1.0000 132 0.0034 9.9989× 10–8 1.0000
10–8 316 0.0063 8.3482× 10–9 1.0000 715 0.0072 9.9947× 10–8 1.0000
10–9 996 0.0206 1.7182× 10–12 1.0000 1087 0.0317 9.9989× 10–10 1.0000

Table 3 Comparison of Algorithm 3 (AIA) with Algorithm 1 (IA) for Example 4.2. u = sin t, x0 = t,
x1 = 2t

ε AIA IA

n t ‖xn+1 – xn‖ ‖xn‖ n t ‖xn+1 – xn‖ ‖xn‖
10–3 127 0.0051 9.3714× 10–4 1.0001 130 0.0053 9.7883× 10–4 1.0001
10–5 525 0.0145 8.2615× 10–6 1.0000 534 0.0182 9.1975× 10–6 1.0000
10–7 1052 0.0299 9.4418× 10–8 1.0000 1077 0.0343 9.8397× 10–8 1.0000
10–8 2011 0.0611 9.9554× 10–9 1.0000 2071 0.0697 9.9885× 10–9 1.0000

The numerical integration method used in this example is the trapezoidal formula. We test
these two algorithms with different stopping criteria. The numerical results are shown in
Table 2.

In what follows, we present a comparison of inertial proximal gradient algorithm (IA)
and alternated inertial proximal gradient algorithm (AIA). Set e(yn) = 1

n2 as the outer per-
turbation, the numerical results are reported in Table 3.

It is observed that the norm of xn is close to 1 with the increase of iteration steps. From
this example, the alternated inertia algorithm needs fewer iterations and less running time
than inertia algorithm, but there is not much difference between the two algorithms.
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