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1 Introduction and preliminaries
Ulam [30] raised a question concerning the stability of group homomorphisms. The func-
tional equation

f (a + b) = f (a) + f (b)

is familiar as a Cauchy equation, in particular, every solution of a Cauchy equation is called
an additive mapping. Hyers [15] gave the first answer to the question of Ulam for Banach
spaces as follows.

Theorem 1.1 Let X and Y be Banach spaces. Assume that f : X → Y satisfies

∥
∥f (x + y) – f (x) – f (y)

∥
∥ ≤ ε

for all x, y ∈ X and some ε ≥ 0. Then there exists a unique additive mapping T : X → Y
such that ‖f (x) – T(x)‖ ≤ ε for all x ∈ X.

Hyers’ theorem was generalized by Aoki [1] for additive mappings and by Rassias [28]
for linear mappings by considering an unbounded Cauchy difference. A generalization of
Rassias’ theorem was given by Gavruta [13] by replacing the unbounded Cauchy difference
with a general control function. In 1982, Rassias [24] after the innovative approach of
the Rassias’ theorem [28] replaced ‖x‖p + ‖y‖p by ‖x‖p · ‖y‖q for p, q ∈ R with p + q �= 1.
A generalization of Hyers–Ulam stability problem for the quadratic functional equation
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was given by Skof [29] for mappings f : X → Y , where X is a normed space and Y is a
Banach space. Cholewa [10] noticed that the theorem of Skof is still true if the relevant
domain X is replaced by an abelian group. Czerwik [11] proved the Hyers–Ulam stability
of the quadratic functional equation. The stability problem of functional equations has
been discussed by many mathematicians using different spaces and mappings. Park and
Najati [22] proved the Hyers–Ulam stability of functional equations in real Banach spaces.
The stability problems of several functional equations have been extensively investigated
by a number of authors and there are many interesting results concerning this problem
(see [2, 3, 5, 16, 21, 24]).

In [26, 27], Rassias first introduced and investigated the cubic functional equation

f (x + 2y) + 3f (x) = 3f (x + y) + f (x – y) + 6f (y).

In [18], Jun and Kim considered the following cubic functional equation:

f (2x + y) + f (2x – y) = 2f (x + y) + 2f (x – y) + 12f (x). (1.1)

It is easy to show that the function f (x) = x3 satisfies the functional equation (1.1) and
every solution of the cubic functional equation is said to be a cubic mapping. Rassias [25]
first introduced and investigated the quartic functional equation.

f (2x + y) + f (2x – y) = 4f (x + y) + 4f (x – y) + 24f (x) – 6f (y) (1.2)

and Lee et al. [20] investigated the quartic functional equation (1.2). It is easy to show
that the function f (x) = x4 satisfies the functional equation (1.2) and every solution of the
quartic functional equation is said to be a quartic mapping.

We recall a fundamental result in fixed point theory. For some recent papers on fixed
point theory, see [4, 6, 14, 19].

Theorem 1.2 ([7, 12]) Let (U , d) be a complete generalized metric space and J : U → U be
a strictly contractive mapping with Lipschitz constant L < 1. Then, for each given element
x ∈ U , either

d
(

Jnx, Jn+1x
)

= ∞

for all nonnegative integers n or there is a positive integer n0 such that
(1) d(Jnx, Jn+1x) < ∞ for all n ≥ n0;
(2) the sequence {Jnx} converges to a fixed point y∗ of J ;
(3) y∗ is the unique fixed point of J in the set Y = {y ∈ U|d(Jn0 x, y) < ∞};
(4) d(y, y∗) ≤ 1

1–L d(y, Jy) for all y ∈ Y .

We will use the following notations:
• Mn(U) is the set of all n × n-matrices in U ;
• ejεM1,n(C) means that jth component is 1 and the other components are zero;
• EijεMn(C) is that the (i, j)-component is 1 and the other components are zero;
• Eij ⊗ xεMn(C) means that the (i, j)-component is x and the other components are zero;
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• for xεMn(U), yεMn(U),

x ⊕ y =

(

x 0
0 y

)

.

Note that (U ,‖ · ‖n) is a matrix normed space if and only if (Mn(U),‖ · ‖n) is a normed
space for each positive integer n and

‖AxB‖k ≤ ‖A‖‖B‖‖x‖n

holds for A ∈ Mn(C), x = [xij] ∈ Mn(C) and B ∈ Mn,k(C)) and that (U ,‖ · ‖n) is a matrix
Banach space if and only if U is a Banach space and (U ,‖ · ‖n) is a matrix normed space.
A matrix Banach space (U ,‖ · ‖n) is called a matrix Banach algebra if U is an algebra.
A matrix normed space (U ,‖ · ‖n) is called an L∞-matrix normed space if

‖x ⊕ y‖n+k = max
{‖x‖n,‖y‖k

}

holds for all x ∈ Mn(U), y ∈ Mk(U).
Let E, F be vector spaces. For a given mapping h : E → F and a given positive integer n,

define hn : Mn(E) → Mn(F) by

hn
(

[xij]
)

=
[

h(xij)
]

for all [xij] ∈ Mn(E).

Lemma 1.3 Let (U ,‖.‖n) be a matrix normed space.
• ‖Ekl ⊗ x‖n = ‖x‖ for x ∈ U .
• ‖xkl‖ ≤ ‖[xij]‖n ≤ ∑n

i,j=1 ‖xij‖ for [xij] ∈ Mn(U).
• limn→∞ xn = x if and only if limn→∞ xnij = xij for xn = [xij], x = [xij] ∈ Mk(U).

This paper is organized as follows: In Sects. 2 and 3, using the fixed point method, we
prove the Hyers–Ulam stability of the cubic and quartic functional equation

f (2x + y) + f (2x – y) = 3f (x + y) + f (–x – y) + 3f (x – y) + f (y – x)

+ 18f (x) + 6f (–x) – 3f (y) – 3f (–y) (1.3)

in matrix Banach algebras. In Sects. 4 and 5, using the fixed point method, we prove the
Hyers–Ulam stability of the additive and quartic functional equation

f (2x + y) + f (2x – y) = 2f (x + y) + 2f (–x – y) + 2f (x – y) + 2f (y – x)

+ 14f (x) + 10f (–x) – 3f (y) – 3f (–y) (1.4)

in matrix Banach algebras.
In 1996, Rassias and Isac [17] were the first to provide applications of stability theory of

functional equations for the proof of new fixed point theorems with applications. By using
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the fixed point method, the stability problems of several functional equations have been
extensively investigated by a number of authors (see [9, 23]).

Throughout this paper, we assume that X is a matrix normed space and that Y is a matrix
Banach algebra.

2 Fixed points and Hyers–Ulam stability of a cubic and quartic functional
equation: an even case

One can easily show that an even mapping f : X → Y satisfies (1.3) if and only if the even
mapping f : X → Y is a quartic mapping, i.e.,

f (2x + y) + f (2x – y) = 4f (x + y) + 4f (x – y) + 24f (x) – 6f (y)

and that an odd mapping f : X → Y satisfies (1.3) if and only if the odd mapping f : X → Y
is a cubic mapping, i.e.,

f (2x + y) + f (2x – y) = 2f (x + y) + 2f (x – y) + 12f (x).

It is easy to show that the function f (x) = ax3 + bx4 satisfies the functional equation (1.3).
For a given mapping f : X → Y , we define

Df (x, y) := f (2x + y) + f (2x – y) – 3f (x + y) – f (–x – y)

– 3f (x – y) – f (y – x) – 18f (x) – 6f (–x) + 3f (y) + 3f (–y)

for all x, y ∈ X.
Using the fixed point method, we prove the Hyers–Ulam stability of the functional equa-

tion Df (x, y) = 0 in matrix Banach algebras: an even case.

Theorem 2.1 Let f : X → Y be a mapping with f (0) = 0 for which there exists a function
ϕ : X2 → [0,∞) such that there exists an L < 1 satisfying

n
∑

i,j=1

ϕ(xij, yij) ≤
n

∑

i,j=1

1
16

Lϕ(2xij, 2yij), (2.1)

∥
∥Dfn

(

[xij], [yij]
)∥
∥

n ≤
n

∑

i,j=1

ϕ(xij, yij), (2.2)

for all [xij], [yij] ∈ Mn(X). Then there exists a unique quartic mapping Q : X → Y satisfying

∥
∥fn

(

[xij]
)

+ fn
(

–[xij]
)

– Qn
(

[xij]
)∥
∥

n ≤ L
32 – 32L

n
∑

i,j=1

(

ϕ(xij, 0) + ϕ(–xij, 0)
)

(2.3)

for all [xij] ∈ Mn(X).

Proof Setting n = 1 in (2.2), we get

∥
∥Df (x, y)

∥
∥ ≤ ϕ(x, y). (2.4)
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Letting y = 0 in (2.4), we get

∥
∥2f (2x) – 24f (x) – 8f (–x)

∥
∥ ≤ ϕ(x, 0) (2.5)

for all x ∈ X. Replacing x by –x in (2.5), we get

∥
∥2f (–2x) – 24f (–x) – 8f (x)

∥
∥ ≤ ϕ(x, 0) (2.6)

for all x ∈ X. Consider the set

S :=
{

g : X → Y , g(0) = 0
}

and introduce the generalized metric on S:

d(g, h) = inf
{

K ∈R+ :
∥
∥g(x) – h(x)

∥
∥ ≤ Kϕ(x, 0) + Kϕ(–x, 0),∀x ∈ X

}

.

It is easy to show that (S, d) is complete (see [8, Theorem 2.5]).
Now we consider the linear mapping J : S → S such that

Jg(x) := 16g
(

x
2

)

for all x ∈ X. It follows from [7, Theorem 3.1] that

d(Jg, Jh) ≤ Ld(g, h)

for all g, h ∈ S.
Let g(x) := f (x) + f (–x) for all x ∈ X. Then g : X → Y is an even mapping. It follows from

(2.5) and (2.6) that

∥
∥2g(2x) – 32g(x)

∥
∥ ≤ ϕ(x, 0) + ϕ(–x, 0)

for all x ∈ X. So
∥
∥
∥
∥

g(x) – 16g
(

x
2

)∥
∥
∥
∥

≤ ϕ

(
x
2

, 0
)

+ ϕ

(
–x
2

, 0
)

≤ L
32

(

ϕ(x, 0) + ϕ(–x, 0)
)

for all x ∈ X. Hence d(g, Jg) ≤ L
32 .

By Theorem 1.2, there exists a mapping Q : X → Y satisfying the following:
(1) Q is a fixed point of J , i.e.,

Q
(

x
2

)

=
1

16
Q(x) (2.7)

for all x ∈ X. Then Q : X → Y is an even mapping. The mapping Q is a unique fixed point
of J in the set

M =
{

g ∈ S : d(f , g) < ∞}

.
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This implies that Q is a unique mapping satisfying (2.7) such that there exists a K ∈ (0,∞)
satisfying

∥
∥g(x) – Q(x)

∥
∥ ≤ K

(

ϕ(x, 0) + ϕ(–x, 0)
)

for all x ∈ X.
(2) d(Jng, Q) → 0 as m → ∞. This implies the equality

lim
m→∞ 16mg

(
x
2

)

= Q(x) (2.8)

for all x ∈ X.
(3) d(g, Q) ≤ 1

1–L d(g, Jg), which implies the inequality

d(g, Q) ≤ L
32 – 32L

.

This implies that the inequality (2.3) holds.
It follows from (2.1), (2.2) and (2.8) that

∥
∥DQ(x, y)

∥
∥ = lim

m→∞ 16m
∥
∥
∥
∥

Dg
(

x
2m ,

y
2m

)∥
∥
∥
∥

≤ lim
m→∞ 16m

(

ϕ

(
x

2m ,
y

2m

)

+ ϕ

(

–
x

2m , –
y

2m

))

= 0

for all x, y ∈ X. So DQ(x, y) = 0 for all x, y ∈ X. Since Q : X → Y is even, the mapping
Q : X → Y is a quartic mapping.

By Lemma 1.3, there exists a unique quartic mapping Q : X → Y satisfying (2.3), as de-
sired. �

Example 2.2 Let ϕ : R2 → [0,∞) be a function defined by

ϕ(x) =

⎧

⎪⎪⎨

⎪⎪⎩

0, if x = 0,

ζx4, if |x| < 1,

ζ , otherwise,

where ζ > 0 is a constant. Define a function fq : R →R by

fq(x) =
∞

∑

n=0

ϕ(2nx)
16n .

Then fq satisfies the functional inequality

∣
∣Dfq(x, y)

∣
∣ ≤ 28 × 16ζ

15
(|x|4 + |y|4) (2.9)
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for all x ∈R. Let

gq(x) = fq(x) + fq(–x),

gq(x) = ζx4,

gq(x/2) =
ζx4

24 ,

for all x ∈ R. We define the set S = {gq : R → R, gq(0) = 0} and consider the generalized
metric on S as described in the proof of the above theorem. Also consider the mapping
J : S → S such that

Jgq(x) = 16g(x/2) = g(x).

Now

lim
m→∞ 16mg(x/2) = lim

m→∞ 16m ζx4

24

= lim
m→∞ 16m ζx4

24(1–m)

= Q(x).

It is clear that

Q(x/2) =
1

16
Q(x).

Moreover, we have

∥
∥g(x) – 16g(x/2)

∥
∥ =

∥
∥
∥
∥
ζx4 – 16

ζx4

24

∥
∥
∥
∥

≤ ϕ

(
x
2

, 0
)

+ ϕ

(
–x
2

, 0
)

≤ L
32

ϕ(x, 0) + ϕ(–x, 0).

Hence

d(g, Lg) ≤ L
32

.

Also we can show that

d(g, Q) ≤ 1
1 – L

d(g, Jg).

The above result implies the following:

d(g, Q) ≤ 32
32 – 32L

.

Therefore all the conditions are fulfilled and by Lemma 1.3, Q : R →R satisfies (2.3).
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Corollary 2.3 Let p > 4 and φ ≥ 0 be real numbers and f : X → Y be a mapping such that

∥
∥Dfn

(

[xij], [yij]
)∥
∥

n ≤ φ

n
∑

i,j=1

(‖xij‖p + ‖yij‖p + ‖xij‖ p
2 · ‖yij‖ p

2
)

(2.10)

for all [xij], [yij] ∈ Mn(X). Then there exists a unique quartic mapping Q : X → Y satisfying

∥
∥fn

(

[xij]
)

+ fn
(

–[xij]
)

– Qn
(

[xij]
)∥
∥

n ≤ φ

2p – 16

n
∑

i,j=1

‖xij‖p

for all [xij] ∈ Mn(X).

Proof The proof follows from Theorem 2.1 by taking L = 24–p and

ϕ(x, y) = φ
(‖x‖p + ‖y‖p + ‖x‖ p

2 · ‖y‖ p
2
)

for all x, y ∈ X. �

Remark 2.4 Let f : X → Y be a mapping with f (0) = 0 for which there exists a function
ϕ : X2 → [0,∞) satisfying (2.2) and

n
∑

i,j=1

ϕ(xij, yij) ≤ 16L
n

∑

i,j=1

ϕ

(
xij

2
,

yij

2

)

(2.11)

for all [xij], [yij] ∈ Mn(X) and for some L with 0 < L < 1. By a similar method to the proof
of Theorem 2.1, one can show that there exists a unique quartic mapping Q : X → Y sat-
isfying

∥
∥fn

(

[xij]
)

+ fn
(

–[xij]
)

– Qn
(

[xij]
)∥
∥

n ≤ L
32 – 32L

n
∑

i,j=1

(

ϕ(xij, 0) + ϕ(–xij, 0)
)

for all [xij] ∈ Mn(X).
Similarly, one can obtain a similar result to Corollary 2.3: Let 0 < p < 4 and φ ≥ 0 be real

numbers and f : X → Y be a mapping satisfying (2.10). Then there exists a unique quartic
mapping Q : X → Y

∥
∥fn

(

[xij]
)

+ fn
(

–[xij]
)

– Qn
(

[xij]
)∥
∥

n ≤ φ

16 – 2p

n
∑

i,j=1

‖xij‖p

for all [xij] ∈ Mn(X).

3 Fixed points and Hyers–Ulam stability of a cubic and quartic functional
equation: an odd case

Using the fixed point method, we prove the Hyers–Ulam stability of the functional equa-
tion Df (x, y) = 0 in matrix Banach algebras: an odd case.
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Theorem 3.1 Let f : X → Y be a mapping with f (0) = 0 for which there exists a function
ϕ : X2 → [0,∞) such that there exists an L < 1 satisfying (2.2) and

n
∑

i,j=1

ϕ(xij, yij) ≤
n

∑

i,j=1

1
8

Lϕ(2xij, 2yij) (3.1)

for all [xij], [yij] ∈ Mn(X). Then there exists a unique cubic mapping C : X → Y satisfying

∥
∥fn

(

[xij]
)

– fn
(

–[xij]
)

– Cn
(

[xij]
)∥
∥

n ≤ L
16 – 16L

n
∑

i,j=1

(

ϕ(xij, 0) + ϕ(–xij, 0)
)

(3.2)

for all [xij] ∈ Mn(X).

Proof Setting n = 1 in (2.2), we get

∥
∥Df (x, y)

∥
∥ ≤ ϕ(x, y). (3.3)

Letting y = 0 in (3.3), we get

∥
∥2f (2x) – 24f (x) – 8f (–x)

∥
∥ ≤ ϕ(x, 0) (3.4)

for all x ∈ X. Replacing x by –x in (3.4), we get

∥
∥2f (–2x) – 24f (–x) – 8f (x)

∥
∥ ≤ ϕ(x, 0) (3.5)

for all x ∈ X.
Consider the set

S :=
{

g : X → Y , g(0) = 0
}

and introduce the generalized metric on S:

d(g, h) = inf
{

K ∈R+ :
∥
∥g(x) – h(x)

∥
∥ ≤ Kϕ(x, 0) + Kϕ(–x, 0),∀x ∈ X

}

.

It is easy to show that (S, d) is complete (see [8, Theorem 2.5]).
Now we consider the linear mapping J : S → S such that

Jg(x) := 16g
(

x
2

)

for all x ∈ X. It follows from [7, Theorem 3.1] that

d(Jg, Jh) ≤ Ld(g, h)

for all g, h ∈ S.
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Let g(x) := f (x) – f (–x) for all x ∈ X. Then g : X → Y is an odd mapping. It follows from
(3.3) and (3.4) that

∥
∥2g(2x) – 16g(x)

∥
∥ ≤ ϕ(x, 0) + ϕ(–x, 0)

for all x ∈ X. So

∥
∥
∥
∥

g(x) – 8g
(

x
2

)∥
∥
∥
∥

≤ ϕ

(
x
2

, 0
)

+ ϕ

(

–
x
2

, 0
)

≤ L
16

(

ϕ(x, 0) + ϕ(–x, 0)
)

for all x ∈ X. Hence d(g, Jg) ≤ L
16 .

By Theorem 1.2, there exists a mapping C : X → Y satisfying the following:
(1) C is a fixed point of J , i.e.,

C
(

x
2

)

=
1
8

C(x) (3.6)

for all x ∈ X. Then C : X → Y is an odd mapping. The mapping C is a unique fixed point
of J in the set

M =
{

g ∈ S : d(f , g) < ∞}

.

This implies that C is a unique mapping satisfying (3.6) such that there exists a K ∈ (0,∞)
satisfying

∥
∥g(x) – C(x)

∥
∥ ≤ K

(

ϕ(x, 0) + ϕ(–x, 0)
)

for all x ∈ X.
(2) d(Jng, C) → 0 as m → ∞. This implies the equality

lim
m→∞ 8mg

(
x

2m

)

= C(x) (3.7)

for all x ∈ X.
(3) d(g, C) ≤ L

16–16L , which implies the inequality (3.2) holds.
It follows from (3.1), (2.2) and (3.7) that

∥
∥DC(x, y)

∥
∥ = lim

m→∞ 8m
∥
∥
∥
∥

Dg
(

x
2m ,

y
2m

)∥
∥
∥
∥

≤ lim
m→∞ 8m

(

ϕ

(
x

2m ,
y

2m

)

+ ϕ

(

–
x

2m , –
y

2m

))

= 0,

for all x, y ∈ X. So DC(x, y) = 0 for all x, y ∈ X. Since C : X → Y is odd, the mapping C :
X → Y is a cubic mapping. By Lemma 1.3, there exists a unique cubic mapping C : X → Y
satisfying (3.2), as desired. �
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Corollary 3.2 Let p > 3 and φ ≥ 0 be real numbers and f : X → Y be a mapping satisfying
(2.10). Then there exists a unique cubic mapping C : X → Y satisfying

∥
∥fn

(

[xij]
)

– fn
(

–[xij]
)

– Cn
(

[xij]
)∥
∥

n ≤ φ

2p – 8

n
∑

i,j=1

‖xij‖p

for all [xij] ∈ Mn(X).

Proof The proof follows from Theorem 3.1 by taking L = 23–p and

ϕ(x, y) = φ
(‖x‖p + ‖y‖p + ‖x‖ p

2 · ‖y‖ p
2
)

for all x, y ∈ X. �

Combining Corollaries 2.3 and 3.2, we get the following.

Theorem 3.3 Let p > 4 and φ ≥ 0 be real numbers and f : X → Y be a mapping satisfying
(2.10). Then there exist a unique quartic mapping Q : X → Y and a unique cubic mapping
C : X → Y satisfying

∥
∥2fn

(

[xij]
)

– Qn
(

[xij]
)

– Cn
(

[xij]
)∥
∥

n ≤
(

1
2p – 16

+
1

2p – 8

)

φ

n
∑

i,j=1

‖xij‖p

for all [xij] ∈ Mn(X).

Remark 3.4 Let f : X → Y be a mapping with f (0) = 0 for which there exists a function
ϕ : X2 → [0,∞) satisfying (2.2) and

n
∑

i,j=1

ϕ(xij, yij) ≤ 8L
n

∑

i,j=1

ϕ

(
xij

2
,

yij

2

)

for all [xij], [yij] ∈ Mn(X) and for some L with 0 < L < 1. By a similar method to the proof of
Theorem 3.1, one can show that there exists a unique cubic mapping C : X → Y satisfying

∥
∥fn

(

[xij]
)

– fn
(

–[xij]
)

– Qn
(

[xij]
)∥
∥

n ≤ L
16 – 16L

n
∑

i,j=1

(

ϕ(xij, 0) + ϕ(–xij, 0)
)

for all [xij] ∈ Mn(X).
Similarly, one can obtain a similar result to Corollary 3.2: Let 0 < p < 3 and φ ≥ 0 be real

numbers and f : X → Y be a mapping satisfying (2.10). Then there exists a unique cubic
mapping C : X → Y satisfying

‖fn
(

[xij]
)

– fn
(

–[xij]
)

– Qn
(

[xij]
)‖n ≤ φ

8 – 2p

n
∑

i,j=1

‖xij‖p

for all [xij] ∈ Mn(X).
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Combining Remarks 2.4 and 3.4, we get the following.

Theorem 3.5 Let 0 < p < 3 and φ ≥ 0 be real numbers and f : X → Y be a mapping sat-
isfying (2.10). Then there exist a unique quartic mapping Q : X → Y and a unique cubic
mapping C : X → Y satisfying

∥
∥2fn

(

[xij]
)

– Qn
(

[xij]
)

– Cn
(

[xij]
)∥
∥

n ≤
(

1
16 – 2p +

1
8 – 2p

)

φ

n
∑

i,j=1

‖xij‖p

for all [xij] ∈ Mn(X).

4 Fixed points and Hyers–Ulam stability of an additive and quartic functional
equation: an even case

One can easily show that an even mapping f : X → Y satisfies (1.4) if and only if the even
mapping f : X → Y is a quartic mapping, i.e.,

f (2x + y) + f (2x – y) = 4f (x + y) + 4f (x – y) + 24f (x) – 6f (y)

and that an odd mapping f : X → Y satisfies (1.4) if and only if the odd mapping f : X → Y
is an additive mapping, i.e.,

f (x + y) = f (x) + f (y).

It is easy to show that the function f (x) = ax + bx4 satisfies the functional equation (1.4).
For a given mapping f : X → Y , we define

Cf (x, y) := f (2x + y) + f (2x – y) – 2f (x + y) – 2f (–x – y) – 2f (x – y)

– 2f (y – x) – 14f (x) – 10f (–x) + 3f (y) + 3f (–y)

for all x, y ∈ X.
Using the fixed point method, we prove the Hyers–Ulam stability of the functional equa-

tion Cf (x, y) = 0 in matrix Banach algebras: an even case.

Theorem 4.1 Let f : X → Y be a mapping with f (0) = 0 for which there exists a function
ϕ : X2 → [0,∞) such that there exists an L < 1 such that

n
∑

i,j=1

ϕ(xij, yij) ≤
n

∑

i,j=1

L
16

ϕ(2xij, 2yij), (4.1)

∥
∥Cfn

(

[xij], [yij]
)∥
∥

n ≤
n

∑

i,j=1

ϕ(xij, yij), (4.2)

for all [xij], [yij] ∈ Mn(X). Then there exists a unique quartic mapping Q : X → Y satisfying

∥
∥fn

(

[xij]
)

+ fn
(

–[xij]
)

– Qn
(

[xij]
)∥
∥

n ≤ L
32 – 32L

n
∑

i,j=1

(

ϕ(xij, 0) + ϕ(–xij, 0)
)

(4.3)

for all [xij] ∈ Mn(X).
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Proof Setting n = 1 in (4.2), we have

∥
∥Df (x, y)

∥
∥ ≤ ϕ(x, y) (4.4)

for all x, y ∈ X. Letting y = 0 in (4.4), we obtain

∥
∥2f (2x) – 18f (x) – 14f (–x)

∥
∥ ≤ ϕ(x, 0) (4.5)

for all x ∈ X. Replacing x by –x in (4.5), we get

∥
∥2f (–2x) – 18f (–x) – 14f (x)

∥
∥ ≤ ϕ(–x, 0) (4.6)

for all x ∈ X.
Consider the set

S :=
{

g : X → Y , g(0) = 0
}

and introduce the generalized metric on S:

d(g, h) = inf
{

K ∈R+ :
∥
∥g(x) – h(x)

∥
∥ ≤ Kϕ(x, 0) + Kϕ(–x, 0),∀x ∈ X

}

.

It is easy to show that (S, d) is complete (see [8, Theorem 2.5]).
Now we consider the linear mapping J : S → S such that

Jg(x) := 16g
(

x
2

)

for all x ∈ X. It follows from the proof of [7, Theorem 3.1] that

d(Jg, Jh) ≤ Ld(g, h)

for all g, h ∈ S.
Let g(x) := f (x) + f (x) for all x ∈ X. Then g : X → Y is an even mapping. It follows from

(4.5) and (4.6) that

∥
∥2g(2x) – 32g(x)

∥
∥ ≤ ϕ(x, 0) + ϕ(–x, 0)

for all x ∈ X. So

‖g(x) – 16g
(

x
2

)

≤ ϕ

(
x
2

, 0
)

+ ϕ

(

–
x
2

, 0
)

≤ L
32

(

ϕ(x, 0) + ϕ(–x, 0)
)

for all x ∈ X. Hence d(g, Jg) ≤ L
32 .

The rest of the proof is similar to the proof of Theorem 2.1. �

Corollary 4.2 Let p > 4 and φ ≥ 0 be real numbers and f : X → Y be a mapping such that

∥
∥Cfn

(

[xij], [yij]
)∥
∥

n ≤ φ

n
∑

i,j=1

(‖xij‖p + ‖yij‖p + ‖xij‖ p
2 · ‖yij‖ p

2
)

(4.7)
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for all [xij], [yij] ∈ Mn(X). Then there exists a unique quartic mapping Q : X → Y satisfying

∥
∥fn

(

[xij]
)

+ fn
(

–[xij]
)

– Qn
(

[xij]
)∥
∥

n ≤ φ

2p – 16

n
∑

i,j=1

‖xij‖p

for all [xij] ∈ Mn(X).

Proof The proof follows from Theorem 4.1 by taking L = 24–p and

ϕ(x, y) = φ
(‖x‖p + ‖y‖p + ‖x‖ p

2 · ‖y‖ p
2
)

for all x, y ∈ X. �

Remark 4.3 Let f : X → Y be a mapping with f (0) = 0 for which there exists a function
ϕ : X2 → [0,∞) satisfying (4.2) and

n
∑

i,j=1

ϕ(xij, yij) ≤
n

∑

i,j=1

16Lϕ

(
xij

2
,

yij

2

)

(4.8)

for all [xij], [yij] ∈ Mn(X) and for some L with 0 < L < 1. By a similar method to the proof
of Theorem 4.1, one can show that there exists a unique quartic mapping Q : X → Y sat-
isfying

∥
∥fn

(

[xij]
)

+ fn
(

–[xij]
)

– Qn
(

[xij]
)∥
∥

n ≤ 1
32 – 32L

n
∑

i,j=1

(

ϕ(xij, 0) + ϕ(–xij, 0)
)

for all [xij] ∈ Mn(X). Similarly, one can obtain a similar result to Corollary 4.2: Let 0 < p < 4
and φ ≥ 0 be real numbers and f : X → Y be a mapping satisfying (4.7). Then there exists
a unique quartic mapping Q : X → Y

∥
∥fn

(

[xij]
)

+ fn
(

–[xij]
)

– Qn
(

[xij]
)∥
∥

n ≤ φ

16 – 2p

n
∑

i,j=1

‖xij‖p

for all [xij] ∈ Mn(X).

5 Fixed points and Hyers–Ulam stability of an additive and quartic functional
equation: an odd case

Using the fixed point method, we prove the Hyers–Ulam stability of the functional equa-
tion Cf (x, y) = 0 in matrix Banach algebras: an odd case.

Theorem 5.1 Let f : X → Y be a mapping with f(0) = 0 for which there exists a function
ϕ : X2 → [0,∞) satisfying (4.2) such that there exists an L < 1 such that

n
∑

i,j=1

ϕ(xij, yij) ≤
n

∑

i,j=1

1
2

Lϕ(2xij, 2yij)
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for all [xij], [yij] ∈ Mn(X). Then there exists a unique additive mapping A : X → Y satisfying

∥
∥fn

(

[xij]
)

– fn
(

–[xij]
)

– An
(

[xij]
)∥
∥

n ≤ L
4 – 4L

n
∑

i,j=1

(

ϕ(xij, 0) + ϕ(–xij, 0)
)

(5.1)

[xij] ∈ Mn(X).

Proof Setting n = 1 in (4.2), we get

∥
∥Cf (x, y)

∥
∥ ≤ ϕ(x, y) (5.2)

for all x, y ∈ X. Letting y = 0 in (5.2), we have

∥
∥2f (2x) – 18f (x) – 14f (–x)

∥
∥ ≤ ϕ(x, 0) (5.3)

for all x ∈ X. Replacing x by –x in (5.3), we obtain

∥
∥2f (–2x) – 18f (–x) – 14f (x)

∥
∥ ≤ ϕ(x, 0) (5.4)

for all x ∈ X.
Consider the set

S :=
{

g : X → Y , g(0) = 0
}

and introduce the generalized metric on S:

d(g, h) = inf
{

K ∈R+ :
∥
∥g(x) – h(x)

∥
∥ ≤ Kϕ(x, 0) + Kϕ(–x, 0),∀x ∈ X

}

.

It is easy to show that (S, d) is complete (see [8, Theorem 2.5]).
Now we consider the linear mapping J : S → S such that

Jg(x) := 2g
(

x
2

)

for all x ∈ X. It follows from the proof of [7, Theorem 3.1] that

d(Jg, Jh) ≤ Ld(g, h)

for all g, h ∈ S.
Let g(x) := f (x) – f (–x) for all x ∈ X. Then g : X → Y is an odd mapping. It follows from

(5.3) and (5.4) that

∥
∥2g(2x) – 4g(x)

∥
∥ ≤ ϕ(x, 0) + ϕ(–x, 0)

for all x ∈ X. So

‖g(x) – 2g
(

x
2

)

≤ ϕ

(
x
2

, 0
)

+ ϕ

(

–
x
2

, 0
)

≤ L
4
(

ϕ(x, 0) + ϕ(–x, 0)
)

for all x ∈ X. Hence d(g, Jg) ≤ L
4 .
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The rest of the proof is similar to the proofs of Theorems 2.1 and 3.1. �

Example 5.2 Let ϕ : R2 → [0,∞) be a function defined by

ϕ(x) =

⎧

⎪⎪⎨

⎪⎪⎩

0, if x = 0,

ζx, if |x| < 1,

ζ , otherwise,

where ζ > 0 is a constant. Define a function fq : R →R by

fq(x) =
∞

∑

n=0

ϕ(2nx)
2n .

Then fq satisfies the functional inequality

∣
∣Dfq(x, y)

∣
∣ ≤ 56ζ

(|x| + |y|) (5.5)

for all x ∈ R. By the same procedure as in Example 2.2, we can find a mapping Aq satisfying
the inequality (5.1).

Corollary 5.3 Let p > 3 and φ ≥ 0 be real numbers and f : X → Y be a mapping satisfying
(4.7). Then there exists a unique cubic mapping A : X → Y satisfying

∥
∥fn

(

[xij]
)

– fn
(

–[xij]
)

– An
(

[xij]
)∥
∥

n ≤ φ

2p – 2

n
∑

i,j=1

‖xij‖p

for all [xij] ∈ Mn(X).

Proof The proof follows from Theorem 5.1 by taking L = 21–p and

ϕ(x, y) = φ
(‖x‖p + ‖y‖p + ‖x‖ p

2 · ‖y‖ p
2
)

for all x, y ∈ X. �

Combining Corollaries 4.2 and 5.3, we get the following.

Theorem 5.4 Let p > 4 and φ ≥ 0 be real numbers and f : X → Y be a mapping satisfying
(4.7). Then there exist a unique quartic mapping Q : X → Y and a unique additive mapping
A : X → Y satisfying

∥
∥2fn

(

[xij]
)

– Qn
(

[xij]
)

– Cn
(

[xij]
)∥
∥

n ≤
(

1
2p – 16

+
1

2p – 2

)

φ

n
∑

i,j=1

‖xij‖p

for all [xij] ∈ Mn(X).
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Remark 5.5 Let f : X → Y be a mapping with f (0) = 0 for which there exists a function
ϕ : X2 → [0,∞) satisfying (4.2) and

n
∑

i,j=1

ϕ(xij, yij) ≤
n

∑

i,j=1

ϕ

(
xij

2
,

yij

2

)

for all [xij], [yij] ∈ Mn(X) and for some L with 0 < L < 1. By a similar method to the proof
of Theorem 5.1, one can show that there exists a unique additive mapping A : X → Y
satisfying

∥
∥fn

(

[xij]
)

– fn
(

–[xij]
)

– An
(

[xij]
)∥
∥

n ≤ 1
4 – 4L

n
∑

i,j=1

(

ϕ(xij, 0) + ϕ(–xij, 0)
)

for all [xij] ∈ Mn(X).
Similarly, one can obtain a similar result to Corollary 5.3: Let 0 < p < 3 and φ ≥ 0 be real

numbers and f : X → Y be a mapping satisfying (4.7). Then there exists a unique additive
mapping A : X → Y satisfying

∥
∥fn

(

[xij]
)

+ fn
(

–[xij]
)

– An
(

[xij]
)∥
∥

n ≤ φ

2 – 2p

n
∑

i,j=1

‖xij‖p

for all [xij] ∈ Mn(X).

Combining Remarks 4.3 and 5.5, we get the following.

Theorem 5.6 Let 0 < p < 1 and φ ≥ 0 be real numbers and f : X → Y be a mapping sat-
isfying (4.7). Then there exist a unique quartic mapping Q : X → Y and a unique additive
mapping A : X → Y satisfying

∥
∥2fn

(

[xij]
)

– Qn
(

[xij]
)

– An
(

[xij]
)∥
∥

n ≤
(

1
16 – 2p +

1
2 – 2p

)

φ

n
∑

i,j=1

‖xij‖p

for all [xij] ∈ Mn(X).
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(2000)
27. Rassias, J.M.: Solution of the Ulam stability problem for cubic mappings. Glas. Mat. Ser. III 36(56), 63–72 (2001)
28. Rassias, Th.M.: On the stability of the linear mapping in Banach spaces. Proc. Am. Math. Soc. 72, 297–300 (1978)
29. Skof, F.: Propriet‘a locali e approssimazione di operatori. Rend. Semin. Mat. Fis. Milano 53, 113–129 (1983)
30. Ulam, S.M.: Problems in Modern Mathematics. Wiley, New York (1960)


	Hyers-Ulam stability of functional inequalities: a ﬁxed point approach
	Abstract
	MSC
	Keywords

	Introduction and preliminaries
	Fixed points and Hyers-Ulam stability of a cubic and quartic functional equation: an even case
	Fixed points and Hyers-Ulam stability of a cubic and quartic functional equation: an odd case
	Fixed points and Hyers-Ulam stability of an additive and quartic functional equation: an even case
	Fixed points and Hyers-Ulam stability of an additive and quartic functional equation: an odd case
	Acknowledgements
	Funding
	Availability of data and materials
	Competing interests
	Authors' contributions
	Author details
	Publisher's Note
	References


