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1 Introduction
Let P and Q be the classical Hardy operator and its adjoint on R

+ = (0, +∞),

Pf (x) =
1
x

∫ x

0
f (y) dy, Qf (x) =

∫ ∞

x

f (y)
y

dy.

It is well known that, for p > 1, ‖Pf ‖Lp(R+) ≤ p′‖f ‖Lp(R+) and ‖Qf ‖Lp(R+) ≤ p‖f ‖Lp(R+),
where p′ = p/(p – 1). For the boundedness of P and Q on L1(R+), we have that P is bounded
from L1(R+) to L1,∞(R+) but not bounded on L1(R+) and Q is bounded on L1(R+).

For earlier development of this kind of inequality and many applications in analysis, see
[2, 4–7, 10].

Let b ∈ Lloc(R+), the commutators of Hardy operators P and its adjoint Q are defined by

[b, P]f (x) = b(x)Pf (x) – P(bf )(x),

[b, Q]f (x) = b(x)Qf (x) – Q(bf )(x).

Long and Wang [9] established Hardy’s integral inequalities for commutators generated
by P and Q with CMO function. Li, Zhang, and Xue in [8] obtained some two-weight
inequalities for commutators generated by P and Q with CMO function. Zhao, Fu, and Lu
in [12] studied the boundedness on Hardy spaces for n-dimensional Hardy operators and
the commutators.

In this paper, we discuss the boundedness on the Hardy spaces for the Hardy operator
P, its adjoint operator Q, and their commutators with BMO and CMO functions.
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2 The boundedness of P and Q on Hardy spaces
Because R

+ is a space of homogeneous type with distance d(x, y) = |x – y| and Lebesgue
measure, we can define the Hardy space as Coifman and Weiss in [1]. We begin with the
definitions of the atom, the molecule, and the Hardy space on R

+.
A function a ∈ L∞(R+) is called (1,∞)-atom if it satisfies the following conditions:

(1) supp(a) ⊂ (x0, x0 + r], where x0 ≥ 0, r > 0; (2) ‖a‖L∞ ≤ r–1; (3)
∫

a(x) dx = 0.
Let ε > 0, we say that a function M on R

+ is a ε-molecule centered at x0 if

(∫
R+

∣∣M(x)
∣∣2 dx

)(∫
R+

∣∣M(x)
∣∣2|x – x0|1+ε dx

)1/ε

≤ 1

and
∫
R+

M(x) dx = 0.

The atomic Hardy space H1(R+) is defined by

H1(
R

+)
=

{
f ∈ L1(

R
+)

: f (x) =
∑

k

λkak(x), and
∑

k

|λk| < ∞
}

,

where each ak is a (1,∞)-atom. We set the H1(R+) norm of f by

‖f ‖H1 = inf

{ ∞∑
k

|λk|
}

,

where the infimum is taken over all the decompositions of f =
∑

k λkak as above.

Remark 2.1 P is not bounded on H1(R+). In fact, if we take f0(x) = 1
4χ(0,1] – 1

4χ(1,2], then we
have

Pf0(x) =

⎧⎪⎪⎨
⎪⎪⎩

1
4 , 0 < x ≤ 1,
1

2x – 1
4 , 1 < x ≤ 2,

0, 2 < x.

Obviously, f0 ∈ H1(R+); however
∫ +∞

0 Pf0(x) dx 	= 0, therefore P is not bounded on H1(R+).

Lemma 2.2 ([1]) If M is a ε-molecule centered at x0, then M ∈ H1(R+). Moreover, ‖M‖H1

depends only on the constant ε.

Theorem 2.3 Q is bounded on H1(R+).

Proof Assume that a is a (1,∞)-atom of H1(R+) with supp(a) ⊂ (x0, x0 + r], x0 ≥ 0, r > 0.
It is enough to prove that Qa is a 1-molecule.

∫
R+

∣∣Qa(x)
∣∣2 dx ·

∫
R+

∣∣Qa(x)
∣∣2|x – x0|2 dx

≤
∫ x0+r

x0

1
r2

∣∣∣∣
∫ x0+r

x

1
y

dy
∣∣∣∣
2

dx ·
∫ x0+r

x0

1
r2

∣∣∣∣
∫ x0+r

x

1
y

dy
∣∣∣∣
2

|x – x0|2 dx
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≤ 1
r2

∫ x0+r

x0

(
log

x0 + r
x

)2

dx ·
∫ x0+r

x0

(
log

x0 + r
x

)2

dx

≤ 4

and

∫ ∞

0
Qa(x) dx =

∫ ∞

0

∫ ∞

x

a(y)
y

dy dx =
∫ ∞

0

∫ y

0

a(y)
y

dy

=
∫ ∞

0
a(y) dx dy = 0.

Hence Qã is a 1-molecule. Using Lemma 2.2, we have ‖Qa‖H1 ≤ C, C depends only on
the constant ε. This ends the proof. �

Theorem 2.4 P and Q are bounded from H1(R+) to L1(R+).

Proof It is sufficient to prove that

‖Pa‖L1 ≤ C, ‖Qa‖L1 ≤ C,

where a is a (1,∞)-atom and C is independent of a.
We first prove that

∫ ∞
0 |Pa(x)|dx ≤ C, where a is a (1,∞)-atom of H1(R+) and C is in-

dependent of a. Suppose that supp a ⊂ (x0, x0 + r], x0 ≥ 0, r > 0. Using conditions (2) and
(3) of a, we have

∫ ∞

0

∣∣Pa(x)
∣∣dx

=
∫ x0

0

∣∣∣∣1
x

∫ x

0
a(y) dy

∣∣∣∣dx +
∫ x0+r

x0

∣∣∣∣1
x

∫ x

0
a(y) dy

∣∣∣∣dx +
∫ ∞

x0+r

∣∣∣∣1
x

∫ x

0
a(y) dy

∣∣∣∣dx

≤
∫ x0+r

x0

1
x

∫ x

0

∣∣a(y)
∣∣dy dx

≤
∫ x0+r

x0

1
x

∫ x

0

1
r

dy dx = 1.

For the operator Q, by Lemma 2.2, we can get that Q is bounded from H1(R+) to L1(R+).
Here we give a direct proof. Suppose that a is a (1,∞)-atom of H1(R+), supp a ⊂ (x0, x0 + r]
and x0 > 0. If x0 = 0, the proof is more simple.

∫ ∞

0

∣∣Qa(x)
∣∣dx

=
∫ x0

0

∣∣∣∣
∫ ∞

x

a(y)
y

dy
∣∣∣∣dx +

∫ x0+r

x0

∣∣∣∣
∫ ∞

x

a(y)
y

dy
∣∣∣∣dx +

∫ ∞

x0+r

∣∣∣∣
∫ ∞

x

a(y)
y

dy
∣∣∣∣dx

≤
∫ x0

0

∣∣∣∣
∫ x0+r

x0

a(y)
y

dy
∣∣∣∣dx +

∫ x0+r

x0

∣∣∣∣
∫ ∞

x

a(y)
y

dy
∣∣∣∣dx

≤ x0

∫ x0+r

x0

|a(y)|
y

dy +
1
r

∫ x0+r

x0

∫ x0+r

x

1
y

dy dx
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≤ 1 +
1
r

∫ x0+r

x0

∫ y

x0

1
y

dx dy

= 1 +
1
r

∫ x0+r

x0

(
1 –

x0

y

)
dy ≤ 2.

The proof is complete. �

3 The boundedness for commutators on Hardy spaces
In this section, we give some results on the boundedness for the commutators generated
by P and Q with BMO and CMO functions on the Hardy spaces and other Hardy-type
spaces.

Let b ∈ Lloc(R+), we say that b ∈ BMO(R+) if, for any interval I ⊂R
+,

sup
I

1
|I|

∫
I

∣∣b(y) – bI
∣∣dy = ‖b‖BMO(R+) < ∞,

where bI = 1
|I|

∫
I b(x) dx and |I| is the length of I . The definition of BMO function and John–

Nirenberg inequality for the BMO function on spaces of homogeneous type imply that, for
any p ≥ 1, the following are true:

‖b‖BMO(R+) ≈ sup
I

inf
c∈C

(
1
|I|

∫
I

∣∣b(y) – c
∣∣p dy

)1/p

≈ sup
I

(
1
|I|

∫
I

∣∣b(y) – bI
∣∣p dy

)1/p

.

Remark 3.1 Let b ∈ BMO(R+), then [b, P] is not bounded from H1(R+) to L1(R+). In fact,
if we take

b(x) =

⎧⎪⎪⎨
⎪⎪⎩

1, 0 < x ≤ 1,

–1, 1 < x ≤ 2,

0, 2 < x,

f (x) =

⎧⎪⎪⎨
⎪⎪⎩

1, 0 < x ≤ 1,

–1, 1 < x ≤ 2,

0, 2 < x,

it is easy to see that b ∈ BMO(R+) for any 1 ≤ p < ∞ and f ∈ H1(R+), then

[b, P]f (x) =
1
x

∫ x

0

[
b(x) – b(y)

]
f (y) dy =

⎧⎨
⎩

0, 0 < x ≤ 1,

– 2
x , 1 < x.

We have
∫ +∞

0

∣∣[b, P]f (x)
∣∣dx =

∫ +∞

1

2
x

dx = +∞.

So, the commutator [b, P] is not bounded from H1(R+) to L1(R+).

Theorem 3.2 Let b ∈ BMO(R+), then [b, P] is bounded from H1(R+) to L1,∞(R+). More
precisely,

∥∥[b, P]f
∥∥

L1,∞(R+) ≤ C‖b‖BMO(R+)‖f ‖H1(R+).
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Proof It is sufficient to prove that, for any λ > 0,

λ
∣∣{x ∈R

+ :
∣∣[b, P]a(x)

∣∣ > λ
}∣∣ ≤ C‖b‖BMO,

where a is a (1,∞)-atom of H1(R+), C is independent of a.
Let supp(a) ⊂ (x0, x0 + r] for r > 0. Then

[b, P]a(x) =
1
x

∫ x

0

(
b(x) – b(y)

)
a(y) dy

=
1
x

∫ x

0

(
b(x) – b(x0,x0+r]

)
a(y) dy +

1
x

∫ x

0

(
b(x0,x0+r] – b(y)

)
a(y) dy

= J1 + J2.

So we have

∣∣{x ∈R
+ :

∣∣[b, P]a(x)
∣∣ > λ

}∣∣ ≤
∣∣∣∣
{

x ∈R
+ : |J1| ≥ λ

2

}∣∣∣∣ +
∣∣∣∣
{

x ∈R
+ : |J2| ≥ λ

2

}∣∣∣∣.

Using Chebyshev’s inequality yields

λ

2

∣∣∣∣
{

x ∈R
+ : |J1| >

λ

2

}∣∣∣∣ ≤
∫ +∞

0
|J1|dx

=
∫ x0+r

0
|J1|dx +

∫ +∞

x0+r
|J1|dx

= J11 + J12.

Since P is bounded on Lp(R) for all 1 < p < ∞, using Hölder’s inequality, we obtain

J11 =
∫ x0+r

x0

∣∣(b(x) – b(x0,x0+r]
)
Pa(x)

∣∣dx

≤
(∫ x0+r

x0

∣∣b(x) – b(x0,x0+r]
∣∣p dx

)1/p(∫ x0+r

x0

∣∣Pa(x)
∣∣p′

dx
)1/p′

≤ pp′
r1/p

(
1
r

∫ x0+r

x0

∣∣b(x) – b(x0,x0+r]
∣∣p dx

)1/p(∫ x0+r

x0

∣∣a(x)
∣∣p′

dx
)1/p′

≤ C‖b‖BMO,

where we exploited condition (2) of the (1,∞)-atom a.
If x ∈ (x0 + r,∞), using condition (3) of the (1,∞)-atom a, we have

Pa(x) =
1
x

∫ x

0
a(y) dy =

1
x

∫ x0+r

0
a(y) dy = 0.

So, J12 = 0.



Niu et al. Journal of Inequalities and Applications        (2020) 2020:254 Page 6 of 11

We next estimate the term |{x ∈ R
+ : |J2| ≥ λ/2}|, which is divided into two parts: |{x ∈

(0, x0 + r] : |J2| ≥ λ/2}| and |{x ∈ (x0 + r,∞) : |J2| ≥ λ/2}|. Moreover,

λ

2

∣∣∣∣
{

x ∈ (0, x0 + r] : |J2| ≥ λ

2

}∣∣∣∣
≤

∫ x0+r

0
|J2|dx

=
∫ x0+r

x0

∣∣∣∣1
x

∫ x

x0

(
b(x0,x0+r] – b(y)

)
a(y) dy

∣∣∣∣dx

≤
∫ x0+r

x0

1
x

(∫ x0+r

x0

∣∣b(x0,x0+r] – b(y)
∣∣p dy

) 1
p
(∫ x

x0

∣∣a(y)
∣∣p′

dy
) 1

p′
dx

≤ r1/p–1
∫ x0+r

x0

1
(x – x0)1/p

(
r–1

∫ x0+r

x0

∣∣b(x0,x0+r] – b(y)
∣∣p dy

) 1
p

dx

≤ C‖b‖BMO.

For the last term, we have

∣∣∣∣
{

x ∈ (x0 + r,∞) : |J2| ≥ λ

2

}∣∣∣∣
=

∣∣∣∣
{

x ∈ (x0 + r,∞) :
1
x

∣∣∣∣
∫ x0+r

x0

(
b(x0,x0+r] – b(y)

)
a(y) dy

∣∣∣∣ ≥ λ

2

}∣∣∣∣

≤
∣∣∣∣
{

x : x0 + r < x ≤ 2
λ

∣∣∣∣
∫ x0+r

x0

(
b(x0,x0+r] – b(y)

)
a(y) dy

∣∣∣∣
}∣∣∣∣

≤ 2
λ

∣∣∣∣
∫ x0+r

x0

(
b(x0,x0+r] – b(y)

)
a(y) dy

∣∣∣∣

≤ 2
λ

(∫ x0+r

x0

∣∣b(x0,x0+r] – b(y)
∣∣p dy

) 1
p
(∫ x0+r

x0

∣∣a(y)
∣∣p′

dy
) 1

p′

≤ 2
λ

· ‖b‖BMO.

Combining all the above estimates, we complete the proof. �

Theorem 3.3 Let b ∈ BMO(R+), then [b, Q] is bounded from H1(R+) to L1(R+). More pre-
cisely, there exists a constant C > 0 such that, for any f ∈ H1(R+),

∥∥[b, Q]f
∥∥

L1 ≤ C‖b‖BMO‖f ‖H1 .

Proof It is sufficient to prove that

∥∥[b, Q]a
∥∥

L1 ≤ C‖b‖BMO,

where a is a (1,∞)-atom and C is independent of a.
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Using the condition supp(a) ⊂ (x0, x0 + r], x0 ≥ 0, r > 0, we have

∫ +∞

0

∣∣[b, Q]a
∣∣dx

=
∫ x0

0

∣∣∣∣
∫ ∞

x

(
b(x) – b(y)

)a(y)
y

dy
∣∣∣∣dx

+
∫ x0+r

x0

∣∣∣∣
∫ +∞

x

(
b(x) – b(y)

)a(y)
y

dy
∣∣∣∣dx +

∫ ∞

x0+r

∣∣∣∣
∫ ∞

x

(
b(x) – b(y)

)a(y)
y

dy
∣∣∣∣dx

=
∫ x0

0

∣∣∣∣
∫ ∞

x

(
b(x) – b(y)

)a(y)
y

dy
∣∣∣∣dx +

∫ x0+r

x0

∣∣∣∣
∫ +∞

x

(
b(x) – b(y)

)a(y)
y

dy
∣∣∣∣dx

= K1 + K2.

Suppose that x0 > 0. If x0 = 0, the proof is similar and simple. For K1, we have the follow-
ing estimate:

K1 ≤
∫ x0

0

∣∣∣∣
∫ x0+r

x0

(
b(x) – c

)a(y)
y

dy
∣∣∣∣dx +

∫ x0

0

∣∣∣∣
∫ x0+r

x0

(
c – b(y)

)a(y)
y

dy
∣∣∣∣dx

≤
∫ x0

0

∣∣b(x) – c
∣∣
∣∣∣∣
∫ x0+r

x0

|a(y)|
y

dy
∣∣∣∣dx + r–1

∫ x0+r

x0

∣∣c – b(y)
∣∣dy

≤ 1
x0

(∫ x0

0

∣∣b(x) – c
∣∣dx

)∫ x0+r

x0

∣∣a(x)
∣∣dx + r–1

∫ x0+r

x0

∣∣c – b(y)
∣∣dy

≤ 1
x0

∫ x0

0

∣∣b(x) – c
∣∣dx + r–1

∫ x0+r

x0

∣∣c – b(y)
∣∣dy,

where c ∈C is an arbitrary complex number. Hence

K1 ≤ inf
c∈C

1
x0

∫ x0

0

∣∣b(x) – c
∣∣dx + inf

c∈C
r–1

∫ x0+r

x0

∣∣c – b(y)
∣∣dy

≤ 2‖b‖BMO.

For K2, using the Lp-boundedness of Q and condition (2) of a, we get

K2 =
∫ x0+r

x0

∣∣∣∣
∫ x0+r

x

(
b(x) – b(y)

)a(y)
y

dy
∣∣∣∣dx

≤
∫ x0+r

x0

∣∣(b(x) – b(x0,x0+r]
)
Qa(x)

∣∣dx

+
∫ x0+r

x0

∫ x0+r

x

∣∣b(x0,x0+r] – b(y)
∣∣ |a(y)|

y
dy dx

≤
(∫ x0+r

x0

∣∣b(x) – b(x0,x0+r]
∣∣p dy

)1/p(∫ x0+r

x0

∣∣Qa(x)
∣∣p′

dy
)1/p′

+
∫ x0+r

x0

∫ y

x0

∣∣b(x0,x0+r] – b(y)
∣∣ |a(y)|

y
dx dy

≤
(∫ x0+r

x0

∣∣b(x) – b(x0,x0+r]
∣∣p dy

)1/p(∫ x0+r

x0

∣∣a(x)
∣∣p′

dy
)1/p′
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+
1
r

∫ x0+r

x0

∣∣b(x0,x0+r] – b(y)
∣∣dy

≤ C‖b‖BMO.

Combining all the above estimates, we complete the proof. �

Perez in [11] introduced a kind of Hardy spaces associated with BMO functions and
proved the boundedness on these Hardy spaces for the commutators of singular integrals
with BMO functions. Now we define similar Hardy spaces on R

+. Let b ∈ BMO(R+), the
function a is called b-atom if there is an interval (x0, x0 + r], x0 ≥ 0, r > 0, satisfying

(i) supp(a) ⊂ (x0, x0 + r], (ii) ‖a‖L∞ ≤ r–1,

(iii)
∫

a(y) dy = 0 and (iv)
∫

a(y)b(y) dy = 0.

The space H1
b (R+) consists of the subspace of L1(R+) of functions f , which can be written

as f =
∑

j λjaj, where aj are b-atoms and λj are complex numbers with
∑

j |λj| < ∞. The
H1

b (R+) norm of f is defined by

‖f ‖H1
b (R+) = inf

{∑
j

|λj|
}

,

where the infimum has taken over all the decompositions of f =
∑

j λjaj as above.

Theorem 3.4 Let b ∈ BMO(R+), then [b, P] is bounded from H1
b (R+) to L1(R+).

Proof We only need to prove that, for any b-atom a, we have

∥∥[b, P]a
∥∥

L1 ≤ C‖b‖BMO.

Using conditions (iii), (iv) and supp(a) ⊂ (x0, x0 + r], x0 ≥ 0, r > 0, we have

∫ +∞

0

∣∣[b, P]a
∣∣dx

=
∫ x0

0

∣∣∣∣1
x

∫ x

0

(
b(x) – b(y)

)
a(y) dy

∣∣∣∣dx

+
∫ x0+r

x0

∣∣∣∣1
x

∫ x

0

(
b(x) – b(y)

)
a(y) dy

∣∣∣∣dx +
∫ ∞

x0+r

∣∣∣∣1
x

∫ x

0

(
b(x) – b(y)

)
a(y) dy

∣∣∣∣dx

=
∫ x0+r

x0

∣∣∣∣1
x

∫ x

0

(
b(x) – b(y)

)
a(y) dy

∣∣∣∣dx

≤
∫ x0+r

x0

∣∣∣∣1
x

∫ x

0

(
b(x) – c

)
a(y) dy

∣∣∣∣dx +
∫ x0+r

x0

∣∣∣∣1
x

∫ x

0

(
c – b(y)

)
a(y) dy

∣∣∣∣dx

= L1 + L2,

where c ∈C is an arbitrary complex number.
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For L1, let p > 1, using Hölder’s inequality, the Lp′ boundedness of the Hardy operator
P, and conditions (ii) of b-atom a, we have

L1 ≤
∫ x0+r

x0

∣∣(b(x) – c
)
Pa(x)

∣∣dx

≤
(∫ x0+r

x0

∣∣b(x) – c
∣∣p dx

)1/p(∫ x0+r

x0

∣∣Pa(x)
∣∣p′

dx
)1/p′

≤ p′
(∫ x0+r

x0

∣∣b(x) – c
∣∣p dx

)1/p(∫ x0+r

x0

∣∣a(x)
∣∣p′

dx
)1/p′

≤ p′
(

1
r

∫ x0+r

x0

∣∣b(x) – c
∣∣p dx

)1/p

.

For L2, using Hölder’s inequality and conditions (ii) of b-atom a, we obtain

L2 ≤
∫ x0+r

x0

(
1
x

∫ x

0

∣∣b(y) – c
∣∣p dy

)1/p(1
x

∫ x

x0

∣∣a(y)
∣∣p′

dy
)1/p′

dx

≤ 1
r

∫ x0+r

x0

(
1
x

∫ x

0

∣∣b(y) – c
∣∣p dy

)1/p

dx.

Hence

L1 + L2 ≤ p′ inf
c∈C

(
1
r

∫ x0+r

x0

∣∣b(x) – c
∣∣p dx

)1/p

+
1
r

∫ x0+r

x0

inf
c∈C

(
1
x

∫ x

0

∣∣b(y) – c
∣∣p dy

)1/p

dx

≤ C‖b‖BMO.

This ends the proof. �

Let 1 ≤ p < ∞, we say that b ∈ CMOp(R+) if

‖b‖CMOp = sup
r>0

(
1
r

∫ r

0

∣∣b(y) – b(0,r]
∣∣p dy

)1/p

< ∞.

By the definition of CMOp function, for any p ≥ 1, we have

‖b‖CMOp ≈ sup
r>0

inf
c∈C

(
1
r

∫ r

0

∣∣b(y) – c
∣∣p dy

)1/p

.

It is easy to see BMO(R+) � CMOp(R+), where 1 ≤ p < ∞. CMOq(R+) � CMOp(R+) for
1 ≤ p < q < ∞.

Let 1 < p ≤ ∞, a function a is called central (1, p)-atom, if it satisfies the following con-
ditions: (1) supp(a) ⊂ (0, r], where r > 0; (2) ‖a‖Lp ≤ r1/p–1; (3)

∫
a(x) dx = 0.

The central atomic Hardy space H1.p
c (R+) is defined by

H1,p
c

(
R

+)
=

{
f ∈ L1(

R
+)

: f (x) =
∑

k

λkak(x), and
∑

k

|λk| < ∞
}

,
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where each ak is a central (1, p)-atom. We set the H1,p
c (R+) norm of f by

‖f ‖H1,p
c

= inf

{ ∞∑
k

|λk|
}

,

where the infimum is taken over all the decompositions of f =
∑

k λkak as above.
Similar to the proof in García-Cuerva [3], we can obtain that the dual space of H1.p

c (R+)
is CMOp′ (R+) for 1 < p ≤ ∞.

Taking the same example in Remark 3.1, we can show that, for 1 < p < ∞ and b ∈
CMOp(R+), the commutator [b, P] is not bounded from H1,p′

c (R+) to L1(R+). Similar to
the proof of Theorem 3.2 and Theorem 3.3, we can prove the following theorem and omit
the details here.

Theorem 3.5 Let 1 < p < ∞ and b ∈ CMOp(R+), then [b, P] is bounded from H1,p′
c (R+) to

L1,∞(R+) and [b, Q] bounded from H1,p′
c (R+) to L1(R+).

Let p ≥ 1 and b ∈ CMOp(R+), the function a is called central (1, p, b)-atom if there
exists r > 0, satisfying (i). supp(a) ⊂ (0, r], (ii). ‖a‖Lp ≤ r1/p–1, (iii).

∫
a(y) dy = 0, (iv).∫

a(y)b(y) dy = 0.
The space H1,p

b,c (R+) consists of the subspace of L1(R+) of functions f , which can be writ-
ten as f =

∑
j λjaj, where aj are central (1, p, b)-atoms and λj are complex numbers with∑

j |λj| < ∞. The H1,p
b,c (R+) norm of f is defined by

‖f ‖H1,p
b,c

= inf

{∑
j

|λj|
}

,

where the infimum has taken over all the decompositions of f =
∑

j λjaj as above.
It is easy to see H1,p

b,c (R+) � H1,p
c (R+). Similar to the proof of Theorem 3.4, we can obtain

the following and omit the details here.

Theorem 3.6 Let 1 < p < ∞ and b ∈ CMOp(R+), then [b, P] is bounded from H1,p′
b,c (R+) to

L1(R+).
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