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Abstract
We study the nonasymptotic properties of a general norm penalized estimator, which
include Lasso, weighted Lasso, and group Lasso as special cases, for sparse
high-dimensional misspecified Cox models with time-dependent covariates. Under
suitable conditions on the true regression coefficients and random covariates, we
provide oracle inequalities for prediction and estimation error based on the group
sparsity of the true coefficient vector. The nonasymptotic oracle inequalities show
that the penalized estimator has good sparse approximation of the true model and
enables to select a few meaningful structure variables among the set of features.

Keywords: Proportional hazard model; Partial likelihood; Time-dependent data;
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1 Introduction
In recent years, high-throughput and nonparametric complex data have been frequently
collected in gene-biology, signal processing, neuroscience, and other scientific fields. With
massive data in regression problem, we encounter the situation that both the number of
covariates p and the sample size n are increasing, and p is a function of n, i.e., p =: p(n).
The curse of dimensionality with computational complexity forces us to make the vari-
able selection since the true regression coefficients β∗ often are sparse with few nonzero
components. Thus only a subset of the variable is preferable as important feature. The
sparse set of nonzero coordinates in β∗ also aims to choose the best model. A popular
approach is to penalize the log-likelihood by adding a penalty function, which will in-
tuitively lead to choosing a sparse model. One popular proposed method is Lasso (least
absolute shrinkage and selection operator), which was introduced in Tibshirani [23] as a
modification of the least square method in linear models. With the development of data
science, high-dimensional statistics, including various regularization methods (such as
group Lasso, weighted Lasso) have been sprung up by statisticians’ efforts for over two
decades.

Ever since the methodology of Lasso linear models, studying various penalty functions
(from data independent to data-driven penalty) and loss functions (from smooth to non-
smooth, from Lipschitz to non-Lipschitz) remains hot in high-dimensional statistics, even
though Lasso regularization has been thoroughly analyzed. However, arising in much

© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other
third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

https://doi.org/10.1186/s13660-020-02517-3
http://crossmark.crossref.org/dialog/?doi=10.1186/s13660-020-02517-3&domain=pdf
http://orcid.org/0000-0001-7566-2306
mailto:tingyanty@mail.ccnu.edu.cn
mailto:huimingzhang@um.edu.mo


Xiao et al. Journal of Inequalities and Applications        (2020) 2020:252 Page 2 of 33

practical application, predictors may have group structures. Yuan and Lin [29] study the
problem of selecting grouped variables for accurate prediction in linear regressions, and
their proposed group Lasso is an extension of Lasso for the purpose of the accuracy of es-
timation. When considering the variable selection in Cox models, massive data sets bring
researchers unprecedented computational challenges, see Tibshirani [24]. Fan and Li [9]
study the SCAD penalized partial likelihood approach for the Cox models, and the pro-
posed estimator enjoys the oracle property if a proper regularization parameter is cho-
sen. Zhang and Lu [34] consider different penalties for different coefficients (the adaptive
Lasso), and their idea is that “unimportant variables receive larger penalties than impor-
tant ones so that important variables tend to be retained in the selection process, whereas
unimportant variables are more likely to be dropped”. Theoretical properties, including
consistency and rate of convergence of this estimator called adaptive Lasso, are also shown
by Zhang and Lu [34] when the number of covariates is fixed.

A potential characterization, which appeared in large-scale gene data associated with
survival time, is that we only have a few (maybe several) significant predictors among p
(maybe thousands) covariates and p � n apparently. For example, the survival of patients
with diffuse large-B-cell lymphoma(DLBCL) after chemotherapy is affected by molecular
features of the tumors, which is measured by high-dimensional microarray gene expres-
sion. Rosenwald et al. [20] adopt Cox models to identify individual genes whose expression
correlated with the outcome, and the data contain n = 240 patients and p = 7399 gene ex-
pression levels associated with a good or an adverse outcome. The main challenge is that
directly utilizing low-dimensional (classical and traditional) statistical inference and com-
puting methods for these data is prohibitive. Fortunately, the regularized partial likelihood
method can perform parameter estimation and variable selection to enhance the predic-
tion accuracy and interpretability of the Cox models.

There is the fact that the Lasso estimator is not asymptotically normal, and accurate and
limit distribution of Lasso estimate is hard to derive and does not have explicit form, see
Knight and Fu [15]. To avoid this trouble, a popular method is to derive the nonasymptotic
oracle inequality based on some regularity conditions. Early in 2004, oracle inequalities
for prediction error were derived without sparsity or restricted eigenvalue conditions for
Lasso-type estimators [see Greenshtein and Ritov [10], Bartlett et al. [3]].

In the classical consistency analysis, the model size p is fixed, and the sample size n goes
to infinity. While we need nonasymptotic error bounds in high-dimensional statistical
consistency analysis when both model size p and sample size n go to infinity.

Let β∗ be the true regression coefficient obtained from regression data {Xi, Yi}n
i=1, where

Xi is p-dimensional covariates and Yi ∈ R is the response. A modern problem, which will
be the focus of this paper, is the behavior of β̂ when its dimension grows with the number
of samples. There are two types of statistical guarantees of a penalized estimate that are
of interest in this setting (as mentioned by Bartlett et al. [3]):

1. Prediction error (Persistence): β̂ performs well on future samples

(
i.e., E

[
X
(
β̂ – β∗)]2 (or its empirical version) is small, called persistence

)
.

2. �1-estimated error: β̂ approximates some “true” parameter β∗

(
i.e.,
∥∥β̂ – β∗∥∥

1 is small with high probability
)
.
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The two types of statistical guarantees can be obtained by following error bounds (say
oracle inequalities)

∥∥β̂ – β∗∥∥
1 ≤ Op(sλn), E

[
X
(
β̂ – β∗)]2 ≤ Op

(
sλ2

n
)
,

where λn → 0 is a tuning parameter and s := ‖β∗‖0.
Deriving oracle inequalities is a powerful mathematical skill that provides deep in-

sight into the nonasymptotic fluctuation of an estimator compared to the ideal unknown
parameter (it is called an oracle). Under linear models with group sparsity covariables,
Lounici et al. [18] show oracle inequalities for estimation error (in terms of mixed (2, p)-
norm) and prediction error (for fixed design). Blazere et al. [5] study the properties of
group Lasso estimator in sparse high-dimensional generalized linear models (GLMs) with
group sparsity of the covariates, and the oracle inequalities for the prediction and estima-
tion error. Structured sparsity has recently attracted attention to the high-dimensional
data. [36] focus on the oracle inequalities for GLMs with overlapping group structures.
Zhou et al. There have been considerable developments in oracle inequalities, not lim-
ited to the linear models and GLMs. Lemler [17] introduces a data-driven weighted Lasso
to estimate Cox models by approximating the intensity (without using partial likelihood),
and oracle inequalities in terms of an appropriate empirical K-L divergence are obtained.
By focusing on misspecified Cox models with their partial likelihood, Kong and Nan [16]
derive the nonasymptotic oracle inequalities for the weighted Lasso penalized negative
log partial likelihood function. Similar results have been proposed for Cox models with
time-dependent covariances, see Huang et al. [13] for using martingale analysis of KKT
conditions. Honda and Hardle [11] consider group SCAD-type and the adaptive group
Lasso estimator to do variable selection for Cox models with varying coefficients, and the
L2 convergence rate is obtained for increasing-dimension setting p/n → 0.

Contributions:
• The existing work on weighted group Lasso penalized Cox models has little attention

on theoretical results. Yan and Huang [28] propose a weighted group Lasso method
that selects important time-dependent variables with a group structure. We propose
the oracle inequalities for the prediction and estimation error under the random
design, which is different to Huang et al. [13] and Kong and Nan [16] (they do not
consider the random design and prediction error).

• Huang et al. [13] do not give a clear definition of the true coefficient, our true
coefficient in the oracle inequalities is defined by the minimizer of the expected loss
function. It is applicable for misspecified Cox models.

• We provide unified nonasymptotic results in terms of oracle inequalities for
prediction and estimation error, and this provides a theoretical justification for the
consistency of weighted group Lasso estimator in Cox models (time-dependent
covariates and random design).

The sections are presented as follows. Section 2 gives a brief review of Cox models. Sec-
tion 3 presents the weighted group Lasso penalty for misspecified Cox models. Section 4
shows the oracle inequalities for prediction and estimation for weighted group Lasso pe-
nalized partial likelihood for misspecified Cox models, while detailed proofs are included
in Sect. 5.
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2 A brief review of Cox models
The celebrated Cox models have provided a tremendously successful tool for explor-
ing the association of covariates with failure time and survival distributions. In order
to match the drop-out situation in clinical trails, we consider that the continuous sur-
vival time T∗

i is governed by random right censoring. For subject i, let Ti := Ti
∗ ∧ Ci be

the observed survival time which is right-censored by Ci. And the censored indicator is
denoted by �i = 1(Ti

∗ ≤ Ci). Let {zi(t)}n
i=1 be the p-dimensional time-dependent covari-

ates, where zi(t) := (zi1(t), . . . , zip(t))τ . Here we assume that the censoring is noninforma-
tive. The time-dependent covariates may degenerate to time-independent covariates, i.e.,
zik(t) ≡ zik for some index k. For example, the CD4 count (relate to longitudinal process)
is time-dependent. The time-independent covariates are baseline covariates (i.e., internal
variables), which includes treatment indicator ages, sex, treatment indicator, and so on.

Suppose that we observe n independent and identically distributed (i.i.d.) data

{
Ti,�i,

{
zi(t)

}
0≤t≤τ

}n
i=1, (2.1)

which is sampling from the random population (T ,�, {z(t)}0≤t≤τ ).
Let S(t|Z) = P(T > t|Z) be the conditional survival function, where Z is the sigma alge-

bra generated by some covariate variables. The relation of conditional distribution func-
tion and S(t|Z) is F(t|Z) = P(T ≤ t|Z) = 1 – S(t|Z). Denote f (t|Z) = d

dt F(t|Z) as the con-
ditional probability density function. Different from the linear model for modeling condi-
tional mean or the quantile regression for modeling conditional quantiles, the Cox models
(also called proportional hazards regression or Cox regressions) aim to model the condi-
tional hazard rate defined by

h(t|Z) := lim
h→0

P(t ≤ T < t + h|T ≥ t,Z)
h

=
f (t|Z)
S(t|Z)

= –
∂ log S(t|Z)

∂t
. (2.2)

The h(t|Z) is the conditional hazard rate at time t conditional on survival until time
t or later (i.e., T ≥ t). From (2.2), the S(t|Z) can be represented as the exponential
integral of the cumulative hazard function defined by H(t) =

∫ t
0 h(s) ds, i.e., S(t|Z) =

exp{– ∫ t
0 h(s) ds} ≡ e–H(t).

Having obtained the covariates {zi(t)}n
i=1, our aim is to model the conditional hazard

function of survival time {Ti}n
i=1 in a finite time interval [0, τ ] by the following semi-

parametric regressions:

hi(t) := h(t|zi) = h0(t) exp
{

zτ
i (t)β∗} for 0 ≤ t ≤ τ < ∞, (2.3)

where h0(t) is an unknown baseline hazard function, and β∗ ∈ R
p is an unknown param-

eter which needs to be estimated.
By profiling our the term h0(t), Cox [6] suggests that the inference on β∗ is based on the

random likelihood function

Ln(β ; T , z,�) =
n∏

i=1

{
ezτ

i (Ti)β

∑
j∈Ri

ezτ
j (Ti)β

}�i

, (2.4)

where Ri = {j : Tj ≥ Ti} is the risk set (set of individuals whose survival times are greater
than Ti). In a later paper, Cox [7] strictly derives the so-called partial likelihood function.
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Suppose that the observed time is a continuous variable, and there is no tie in the ob-
servation time. The joint likelihood for the i.i.d. data (2.1) can be written as follows:

Ln(β , z,�) =
∏

i:�i=1

f (Ti|zi)
∏

i:�i=0

(
1 – F(Ti|zi)

)

=
n∏

i=1

[
f (Ti|zi)

]�i[S(Ti|zi)
]1–�i =

n∏

i=1

[
h(Ti|zi)

]�i S(Ti|zi)

=
n∏

i=1

{
ezτ

i (Ti)βh0(Ti)
}�i exp

{
–
∫ Ti

0
h0(s)ezτ

i (s)β ds
}

= exp

{ n∑

i=1

[
�i
{

zτ
i (Ti)β + log h0(Ti)

}
–
∫ Ti

0
h0(s)ezτ

i (s)β ds
]}

, (2.5)

which contains the unknown h0(·).
The key to deriving (2.4) is by specifying a reasonable estimator ĥ0(·) for h0(·) in (2.3). As-

sume that h0(·) is discrete with mass h0(T(1)), . . . , h0(T(k)) at the ordered observed survival
time T(1) < · · · < T(k). Denote {z(o)(T(o)) : o = 1, . . . , k} as the k covariates corresponding to
the ordered observed survival times T(o). The baseline cumulative hazard function H0(t)
is modeled non-parametrically as the step function H0(t) =

∑k
o=1 h0(T(o))I(T(o) ≤ t), and

hence
∑n

i=1
∫ Ti

0 h0(s)ezτ
i (s)β ds =

∑n
i=1
∑k

o=1 h0(T(o))I(T(o) ≤ Ti)ezτ
i (T(o))β .

From (2.5), the joint log-likelihood function is expressed as follows:

log Ln(β ; T , z,�)

=
k∑

o=1

{
zτ

(o)(T(o))β + log h0(T(o))
}

–
k∑

o=1

n∑

i=1

I(T(o) ≤ Ti)h0(T(o))ezτ
i (T(o))β

=
k∑

o=1

{
zτ

(o)(T(o))β + log h0(T(o))
}

–
k∑

o=1

∑

{j:Tj≥T(o)}
h0(T(o))e

zτ
j (T(o))β , (2.6)

where {j : Tj ≥ T(o)} denotes the set of individual js who are “at risk” for failure at time T(o).
Taking derivative on log Ln(β ; T , z,�) with respect to h0(T(o)), o = 1, . . . , k, we get

ĥ0(T(o)) =
[ ∑

{j:Tj≥T(o)}
ezτ

j (T(o))β
]–1

,

which is also called Breslow’s estimator for the baseline hazard function.
Plugging ĥ0(T(o)) into (2.6), we have

log Ln(β ; T , z,�) ∝
k∑

o=1

[
zτ

(o)(T(o))β – log
∑

{j:Tj≥T(o)}
ezτ

j (T(o))β
]

∝
n∑

i=1

{

zτ
i (Ti)β – log

[ n∑

j=1

1(Tj ≥ Ti) exp
{

zτ
j (Ti)β

}
]}

�i,

which gives (2.4).
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Following the counting process framework in Andersen and Gill [2], let Ni(t) = 1(Ti ≤
t,�i = 1) be the counting process, and denote Yi(t) =: 1(Ti ≥ t) to be the at-risk process
for subject i. The σ -filtration is defined by Ft = σ {Ni(s), Yi(s), zi(s), s ≤ t, i = 1, . . . , n}, which
represents the information that occurs up to time t. Let dNi(s) := 1{Ti ∈ [s, s + ds],�i = 1}.
The negative log-partial-likelihood (2.4) for data (2.1) is rewritten as follows:

�n(β ; T , z,�)

:= –
1
n

n∑

i=1

{

zτ
i (Ti)β – log

[ n∑

j=1

1(Tj ≥ Ti) exp
{

zτ
j (Ti)β

}
]}

�i

∝ –
1
n

( n∑

i=1

∫ t

0
zτ

i (u)β dNi(u) –
∫ t

0
log

[
1
n

n∑

j=1

1(Tj ≥ u) exp
{

zτ
j (u)β

}
]

dN(u)

)

= –
1
n

n∑

i=1

∫ t

0

[
zτ

i (u)β – log Rn(u,β)
]

dNi(u), (2.7)

where Rn(u,β) = 1
n
∑n

j=1 1(Tj ≥ u) exp{zτ
j (u)β} is the empirical relative risk function.

The negative log-partial likelihood function (2.7), as the summands are neither inde-
pendent nor Lipschitz, can be approximated by the following intermediate empirical loss
function:

�̃n(β ; T , z,�) = –
1
n

n∑

i=1

{
zτ

i (Ti)β – log R(Ti,β)
}
�i

= �n(β ; T , z,�) +
1
n

n∑

i=1

{
log

Rn(Ti,β)
R(Ti,β)

}
�i (2.8)

with expected relative risk function defined by R(t,β) = E[1(T ≥ t) exp{zτ (t)β}].
We define the loss function by l(β ; T , z,�) := –[zτ (t)β – log R(t,β)]�.
Let N(t) :=

∑n
i=1 Ni(t). The gradient of �n(β ; T , z,�) can be written as

∇�n(β ; T , z,�) :=
∂�n(β ; T , z,�)

∂β
= –

1
n

n∑

i=1

∫ t

0

[
zi(u) – zn(u,β)

]
dNi(u), (2.9)

where z̄n(u,β) = 1
n
∑n

j=1
Yj(u)e

zτj (u)β

Rn(u,β) zj(u) is the random weighted sum of covariates.
The ∇�n(β ; T , z,�) is called score process, which is a martingale adapted to the filtration

Ft . Furthermore, the Hessian matrix of �n(β ; T , z,�) is

∇2�n(β ; T , z,�) =
1
n

∫ t

0
Vn(u,β) dN(u),

where Vn(u,β) = 1
n
∑n

i=1
Yi(u)ezτi (u)β

Rn(u,β) [zi(s) – zn(u,β)][zi(s) – zn(u,β)]τ is the random weighted
sample covariance matrix. Readers can refer to technical details required to make the
counting process rigorous in Andersen et al. [1].

3 Weighted group lasso for misspecified Cox models
In this section, we present the concepts and mathematics notations for the penalized mis-
specified Cox models with the group structure.
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Many high-dimensional variables in microarrays data and other scientific applications
have a natural group structure. It is better to divide p variables into small sets of variables
based on biological knowledge, see Kanehisa and Goto [14], Wang et al. [27]. Suppose that
the p-dimensional covariate X is divided into Gn groups each of size dg for g ∈ {1, . . . , Gn},

Xi =
(
X1

i , . . . , Xg
i , . . . , XGn

i
)τ , i = 1, . . . , n,

where Xg
i = (Xg

i,1, . . . , Xg
i,dg

)T and
∑Gn

g=1 dg = p.
It is allowed that the number of groups increases with the sample size n and Gn � n.

We define the two quantities

dmax := max
g∈{1,...,Gn}

dg and dmin := min
g∈{1,...,Gn} dg ,

which are crucial constants in the theoretical analysis.
For β ∈ R

p, let βg be the sub-vector of β whose indexes correspond to the index set
of the gth group of X. Given a proper tuning parameter λ, we are interested in weighted
group Lasso estimator which achieves group sparsity. It is obtained as the solution of the
convex optimization problem:

β̂n = argmin
β∈Rp

{

�n(β ; T , z,�) + λ

Gn∑

g=1

wg
∥
∥βg∥∥

2

}

, (3.1)

where ‖ · ‖2 refers to the Euclidian norm and wg is a given weighted function.
If all dg are of size one and wg = 1, then

∑Gn
g=1 wg‖βg‖2 reduces to ‖β‖1 which is essen-

tially a Lasso problem; If all dg are of size one and {wj}p
j=1 are data-dependent weights (the

weights only depend on observed data). Let W = diag{w1, . . . , wp}, thus the weighted group
Lasso penalty

∑Gn
g=1 dg‖βg‖2 becomes weighted Lasso penalty ‖Wβ‖1. Increasing λ leads

to the shrinkage of βg tending to zero, which indicates that some blocks of β diminish to
zero simultaneously, and groups of predictors are eliminated from the model. Typically in
the reference, they usually choose wg :=

√
dg to penalize more heavily groups of large size.

For adaptive group Lasso in Cox models, Yan and Huang [28] use wg =
√

dg/‖β̃g‖, where
dg is the size of group g and β̃g is some consistent estimator of βg .

Taking the subdifferential of the objective function (3.1), we get the first order condition:

⎧
⎨

⎩

∂�n(β ;T ,z,�)
∂βg

|βg =β̂g
= λwk

β̂g
‖β̂g‖2

if β̂g �= 0,

‖ ∂�n(β ;T ,z,�)
∂βg

|βg =β̂g
‖2 ≤ λwk if β̂g = 0.

(3.2)

(It is also called Karush–Kuhn–Tucker (KKT) condition, see Sect. 2.2 of Huang et al. [13]
for un-group version.) From the adaptive estimation point of view, the weights in equa-
tion (3.1) can be determined from the observed data, where KKT conditions (3.2) hold
with high probability, for example, 1 – pr , r < 0. Applying the concentration inequalities
to martingale, the data-driven weights {wj}p

j=1 are obtained from the KKT conditions with
high probability, see Huang et al. [12] and the references therein. The motif of this work is
to derive nonasymptotic oracle inequalities in a mathematical view. The choice of optimal
adaptive weight and statistical inferences (confidence interval, testing the coefficient, FDR
control) is left for future studies.



Xiao et al. Journal of Inequalities and Applications        (2020) 2020:252 Page 8 of 33

In the high-dimensional settings, we study the estimation and prediction of the oracle
inequalities for the weighted group Lasso even when the number of groups is extremely
greater than the sample size, i.e., Gn � n. Define H∗ = {g : β∗

g �= 0} as the group index set
corresponding to the nonzero sub-vectors of β∗.

Let X1, . . . , Xn be a random sample from a measure P on a measurable space (X ,A). We
denote the empirical distribution as a discrete uniform measure Pn = n–1∑n

i=1 δXi , where
δx is the probability distribution that is degenerate at x.

The expected loss function is defined by

�(β ; T , z,�) = –E
[{

zτ (T)β – log R(T ,β)
}
�
]

=: El(β ; T , z,�).

Corresponding to the form of estimator, the true parameter of the misspecified Cox mod-
els is the minimizer of the expected loss function

β∗ = argmin
β∈Rp

Pl(β ; T , z,�) = argmin
β∈Rp

–E
{[

zτ (T)β – log R(T ,β)
]
�
}

, (3.3)

where R(t,β) = E[1(T ≥ t) exp{zτ (t)β}].
Definition (3.3) was pioneeringly studied in Struthers and Kalbfleisch [21] by clarifying

the true parameter as a solution of estimating equation neatly mentioned in the proof of
Lemma 3.1 in Andersen and Gill [2].

Here, the expectation of the random variables in the model is unknown, thus as well as
β∗. By solving the optimization problem in (3.3), β∗ satisfies

β∗ =
{
β ∈R

p : Pl̇(β ; T , z,�) = –E
[{

z(T) –
E[Y (t)z(T)ezτ (T)β ]

E[Y (t)ezτ (T)β ]

}
�

]
= 0
}

. (3.4)

In order to get the unique solution in (3.4), we require that the Hessian matrix for ex-
pected loss function

El̈(β ; T , z,�) = E
[{

E[Y (t)z(T)zτ (T)ezτ (T)β ]
E[Y (t)ezτ (T)β ]

–
E[Y (t)z(T)ezτ (T)β ]E[Y (t)zτ (T)ezτ (T)β ]

(E[Y (t)ezτ (T)β ])2

}
�

]
(3.5)

is nonpositive definite.
We aim to estimate sparse β∗ and to predict the hazard function h(t|zi(t)) condition-

ally on a given process zi(t). To facilitate the technical proof, additional assumptions are
required.

• (H.1): The covariates {zij(t)} are almost surely bounded by a positive constant L, i.e.,

sup
0≤t≤τ

max
1≤i≤n,1≤j≤p

∣∣zij(t)
∣∣≤ L, a.s.

• (H.2): Assume that the parameter space is compact, ‖β∗‖1 ≤ B, where B is a positive
constant.
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• (H.3): There exists a large constant M such that β̂ is in the weighted �2-ball

SM
(
β∗) :=

{

β ∈R
p :

Gn∑

g=1

wg
∥
∥βg – β∗g∥∥

2 ≤ M

}

.

• (H.4): Under � = 1, there exists a constant cl > 0 and cu < ∞ such that l̈(β ; t, z,�) is
uniformly positive definite for all β ∈ SM(β∗)

cuz(t)zτ (t) � E
[
l̈(β ; T , z,�)|z(t)

]� clz(t)zτ (t) a.s.

(H.1) and (H.2) are standard assumptions in deriving consistency property for regular-
ized GLMs, see Blazere et al. [5], Zhang and Wu [33]. (H.2) is also used in Zhao et al. [35]
for the increasing dimensional Cox models with interval-censored data. (H.3) has been
addressed by Kong and Nan [16]. (H.4) makes sure the object function for a minimizer of
population expected loss is strongly convex, a similar assumption is used in Andersen and
Gill [2], Fan and Li [9].

As mentioned by one reviewer, we often assume that the data are generated from the
model with some baseline hazard function and some true parameter β∗. In (3.3), the true
parameter is defined as the minimizer of true loss function. We present it in detail from
Theorem 1 in Struthers and Kalbfleisch [21].

Lemma 3.1 (Consistency) Let the expectation E be taken with respect to randomness of
{(Ti,�i, zi(t))}n

i=1 from the true model. Consider the following notations for r = 0, 1, 2:

S(r)(t) = n–1
n∑

i=1

Yi(t)h0(t)ezτ
i (t)β∗

zi(t)⊗r , s(r)(t) = E
[
S(r)(t)

]
,

S(r)(β , t) = n–1
n∑

i=1

Yi(t)ezτ
i (t)βzi(t)⊗r , s(r)(β , t) = E

[
S(r)(β , t)

]
,

where, for a column vector a, a⊗2 refers to the matrix aaT , a⊗1 refers to the vector a, and
a⊗0 refers to the scalar 1. Consider the following conditions.

Condition 3.1 There exists a neighborhood SM(β∗) of β∗ such that, for each t < ∞,

sup
x∈[0,t],β∈SM(β∗)

∣
∣S(0)(β , x) – s(0)(β ; x)

∣
∣→ 0, in probability as n → ∞.

Condition 3.2 (a). The s(0)(β , x) is bounded away from zero on SM(β∗) × [0, t], and
s(0)(β , x) and s(1)(β , x) are bounded on SM(β∗) × [0, t]; (b). For each t < ∞, we have
∫ t

0 s(2)(x) dx < ∞.

• When the data are generated from the correctly specified Cox models (2.3), under
Conditions 3.1 and 3.2, we have that the maximum partial likelihood estimator β̂ is a
consistent estimator for β∗, where β∗ is the solution to the equation h(β) = 0 with

h(β) :=
∫ ∞

0
s(1)(t) dt –

∫ ∞

0

s(1)(β , t)
s(0)(β , t)

s(0)(t) dt.
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• When the model is misspecified, i.e., suppose that the true hazard function is
hi(t) �= h0(t)ezτ

i (t)β∗ . If S(r)(t) and s(r)(t) are replaced by
S(r)

m (t) := n–1∑n
i=1 Yi(t)hi(t)zi(t)⊗r and s(r)

m (t) := E[S(r)
m (t)] in Conditions 3.1 and 3.2,

then the solution of the equation hm(β) = 0 with

hm(β) :=
∫ ∞

0
s(1)

m (t) dt –
∫ ∞

0

s(1)(β , t)
s(0)(β , t)

s(0)
m (t) dt (3.6)

is the pseudo-true parameter β∗.
Since dMi(t) := dNi(t) – 1(Ti ≥ t)h0(t)ezτ

i (t)β∗ dt is mean-zero Ft-martingale from the
theory in Andersen and Gill [2], by comparing the empirical version (2.9) and the pop-
ulation version (3.4) with the limits s(0)(t), s(1)(t) and s(0)(β , t), s(1)(β , t), we can see that
(3.4) coincides with (3.6). Moreover, our assumptions (H.1)–(H.5) verify Conditions 3.1
and 3.2 without confliction if the uniform law of large numbers is applied by using the
compactness of β∗ and the boundedness of covariates.

4 Oracle inequalities for estimation and prediction
As a powerful mathematical skill, oracle inequalities provide deep insight into the
nonasymptotic fluctuation of an estimator compared to the unknown true parameter.
A comprehensive theory of oracle inequalities in high-dimensional regressions has been
developed for Lasso and its generalization, see Chap. 7 of Wainwright [26].

4.1 Key of nonasymptotic analysis
In this section, nonasymptotic oracle inequalities for weighted group Lasso estimates of
Cox models are sought, as well as assumptions of the required restricted eigenvalue (such
as group stabil condition). The proof leans on several steps:

• Step1: To avoid ill behavior of Hessian, propose the restricted eigenvalue condition or
other analogous conditions about the design matrix.

• Step2: Find the tuning parameter based on high-probability event (KKT conditions or
other KKT-like conditions).

• Step3: According to some restricted eigenvalue assumptions and tuning parameter
selection, derive the oracle inequalities via the definition of weighted group Lasso
optimality and the minimizer under unknown expected risk function and some basic
inequalities. There are three sub-steps:
– (i) Under the KKT-like conditions, show that the error vector β̂ – β∗ is in some

restricted set with structure sparsity, and moreover check that β̂ – β∗ is in a big
compact set;

– (ii) Show that likelihood-based divergence of β̂ and β∗ can be lower bounded by
some quadratic distance between β̂ and β∗;

– (iii) By some elementary inequalities and (ii), show that
∑Gn

g=1 wg‖β̂g
n – β∗g‖2 is in a

smaller compact set with radius of optimal rate (proportional to λ).
As mentioned by one reviewer, our general framework of the proof is quite standard, but

consecutive steps of defining some high-probability events rely on nontrivial new results.
For simplicity, we introduce and use the notation in empirical processes, see van der Vaart
and Wellner [25].

Let X1, . . . , Xn be a random sample from a measure P on a measurable space (X ,A). We
denote the empirical distribution as a discrete uniform measure Pn = n–1∑n

i=1 δXi , where
δx is the probability distribution that degenerates at x.
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Given a measurable function f : X �→R, we write Pnf for the expectation of f under the
empirical measure Pn, and Pf for the expectation under P. Thus

Pnf =
1
n

n∑

i=1

f (Xi), Pf =
∫

f dP.

The Pnf is called empirical processes index by n. In fact, we treat Pn and P as operators
rather than the measure.

It follows from (2.8) and Pnl(β ; T , z,�) := �̃n(β ; T , z,�) that

�n(β ; T , z,�) = Pnl(β ; T , z,�) –
1
n

n∑

i=1

{
log

Rn(Ti,β)
R(Ti,β)

}
�i. (4.1)

4.2 Define some events with high probability
Using the definition of β̂n in (3.3), we have

�n(β̂n; T , z,�) + λ

Gn∑

g=1

wg
∥
∥β̂g

n
∥
∥

2 ≤ �n
(
β∗; T , z,�

)
+ λ

Gn∑

g=1

wg
∥
∥β∗g∥∥

2. (4.2)

Hence we get

P
(
l(β̂n; T , z,�) – l

(
β∗; T , z,�

))
+ λ

Gn∑

g=1

wg
∥∥β̂g

n
∥∥

2

≤ [�n
(
β∗; T , z,�

)
– Pl

(
β∗; T , z,�

)]
–
[
�n(β̂n; T , z,�) – Pl(β̂n; T , z,�)

]

+ λ

Gn∑

g=1

wg
∥
∥β∗g∥∥

2. (4.3)

Then, by (4.1), the first and second terms in the right-hand side of (4.3) are

[
�n
(
β∗; T , z,�

)
– Pl

(
β∗; T , z,�

)]

=
[
Pnl
(
β∗; T , z,�

)
– Pl

(
β∗; T , z,�

)]
–

1
n

n∑

i=1

{
log

Rn(Ti,β∗)
R(Ti,β∗)

}
�i,

[
�n(β̂n; T , z,�) – Pl(β̂n; T , z,�)

]

=
[
Pnl(β̂n; T , z,�) – Pl(β̂n; T , z,�)

]
–

1
n

n∑

i=1

{
log

Rn(Ti, β̂n)
R(Ti, β̂n)

}
�i.

It implies

[
�n
(
β∗; T , z,�

)
– Pl

(
β∗; T , z,�

)]
–
[
�n(β̂n; T , z,�) – Pl(β̂n; T , z,�)

]

= (Pn – P)
(
l
(
β∗; T , z,�

)
– l(β̂n; T , z,�)

)
– Dn

(
β̂ ,β∗), (4.4)

where

Dn
(
β̂ ,β∗) :=

[
1
n

n∑

i=1

{
log

Rn(Ti,β∗)
R(Ti,β∗)

}
�i –

1
n

n∑

i=1

{
log

Rn(Ti, β̂n)
R(Ti, β̂n)

}
�i

]

.
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To obtain oracle inequalities for the weighed group Lasso applied to misspecified
Cox models, it is necessary to study the rate of convergence of the empirical process
(Pn – P)(l(β∗; T , z,�) – l(β̂n; T , z,�)) and Dn(β̂ ,β∗). The centralized empirical loss (Pn –
P)(l(β∗; T , z,�) – l(β̂n; T , z,�)) and the normalized error Dn(β̂ ,β∗) represent the fluctua-
tion between the expected loss and sample loss. It will be shown that

(Pn – P)
(
l
(
β∗; T , z,�

)
– l(β̂n; T , z,�)

)
and Dn

(
β̂ ,β∗)

have stochastic Lipschitz properties with respect to
∑Gn

g=1 wg‖β̂g
n – β∗g‖2.

The concentration inequalities are essential tools to obtain an upper bound of (4.4),
which is proportional to a regularization parameter that ensures good statistical properties
of the regularized estimator with high probability.

Define F(s, z) as the joint distribution of (Ti, zτ
i (t)). Let β̃ := (β̃1, . . . , β̃p)T with the com-

ponents {β̃j}p
j=1 between {β̂j}p

j=1 and {β∗
j }p

j=1, respectively, via first-order Taylor’s expansions
of the function

ft(β) = log R(t,β) = log E
[
1(Ti ≥ t)ezτ

i (t)β] = log
∫

1(s ≥ t)ezτ
i (t)β dF(s, z)

with derivative

dft(β)
dβj

=
∫

zτ
ij(s)1(s ≥ t)ezτ

i (t)β dF(s, z)
∫

1(s ≥ t)ezτ
i (t)β dF(s, z)

, j = 1, 2, . . . , p.

Plugging t = Ti, we have componentwise Taylor’s expansion

log R
(
Ti,β∗) – log R(Ti, β̂n) =

∫
zij(s)1(s ≥ Ti)ezτ

i (Ti)β̃ dF(s, z)
∫

1(s ≥ Ti)ezτ
i (Ti)β̃ dF(s, z)

(
β∗

j – β̂j
)
, j = 1, 2, . . . , p.

Considering the first term in (4.4), we have

(Pn – P)
(
l
(
β∗; T , z,�

)
– l(β̂n; T , z,�)

)

= –
1
n

n∑

i=1

[
zτ

i (Ti)β∗ – log R
(
Ti,β∗)]�i +

1
n

n∑

i=1

[
zτ

i (Ti)β̂n – log R(Ti, β̂n)
]
�i

– E
{[

zτ (T)β∗ – log R
(
T ,β∗)]�

}
+ E
{[

zτ (T)β̂n – log R(T , β̂n)
]
�
}

=
–1
n

n∑

i=1

p∑

j=1

(
β∗ – β̂

)[
zij(Ti)�i – E

(
zij(Ti)�i

)]

+
–1
n

n∑

i=1

p∑

j=1

(
β∗

j – β̂j
)
(∫

zij(s)1(s ≥ Ti)ezτ
i (Ti)β̃ dF(s, z)

∫
1(s ≥ Ti)ezτ

i (Ti)β̃ dF(s, z)

– E
∫

zij(s)1(s ≥ Ti)ezτ
i (Ti)β̃ dF(s, z)

∫
1(s ≥ Ti)ezτ

i (Ti)β̃ dF(s, z)

)

=
Gn∑

g=1

(
β∗

g – β̂g
)–1

n

n∑

i=1

[zτ
ig(Ti)
wg

�i – E
(
zτ

ig(Ti)�i
)]
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+
Gn∑

g=1

(
β∗

g – β̂g
)–1

n

n∑

i=1

(∫
zig(s)1(s ≥ Ti)ezτ

i (Ti)β̃ dF(s, z)
∫

1(s ≥ Ti)ezτ
i (Ti)β̃ dF(s, z)

– E
∫

zig(s)1(s ≥ Ti)ezτ
i (Ti)β̃ dF(s, z)

∫
1(s ≥ Ti)ezτ

i (Ti)β̃ dF(s, z)

)

≤
Gn∑

g=1

wg
∥
∥β∗

g – βg
∥
∥

2 ·
∥∥
∥∥
∥

1
n

n∑

i=1

[
�i

zT
ig(Ti)
wg

– E
(zτ

ig(Ti)
wg

�i

)]∥∥
∥∥
∥

2

+
Gn∑

g=1

wg
∥
∥β∗

g – βg
∥
∥

2 ·
∥∥
∥∥
∥

1
n

n∑

i=1

(∫
zig(s)1(s ≥ Ti)ezτ

i (Ti)β̃ dF(s, z)

wg
∫

1(s ≥ Ti)ezτ
i (Ti)β̃ dF(s, z)

– E
∫

zig(s)1(s ≥ Ti)ezτ
i (Ti)β̃ dF(s, z)

wg
∫

1(s ≥ Ti)ezτ
i (Ti)β̃ dF(s, z)

)∥∥∥
∥∥

2

. (4.5)

To get the stochastic Lipschitz properties, we define the following two events:

A1 =
Gn⋂

g=1

{∥∥∥
∥∥

1
n

n∑

i=1

[zτ
ig(Ti)
wg

�i – E
(zτ

ig(Ti)
wg

�i

)]∥∥∥
∥∥

2

≤ λa1

}

,

A2 =
Gn⋂

g=1

{∥∥∥
∥∥

1
n

n∑

i=1

(∫
zig(s)1(s ≥ Ti)ezτ

i (Ti)β̃ dF(s, z)

wg
∫

1(s ≥ Ti)ezτ
i (Ti)β̃ dF(s, z)

– E
∫

zig(s)1(s ≥ Ti)ezτ
i (Ti)β̃ dF(s, z)

wg
∫

1(s ≥ Ti)ezτ
i (Ti)β̃ dF(s, z)

)∥∥∥
∥∥

2

≤ λa2

}

.

The random sum in event A2 is not independent, which renders this problem more chal-
lenging. We need to check a uniform version of the event A2 in terms of β . Concentration
inequalities for suprema empirical processes are powerful to check that event A2 holds
with high probability. It will be derived from Talagrand’s sharper bounds for suprema
empirical processes, which is a generalization of Dvoretzky–Kiefer–Wolfowitz inequality,
see Talagrand [22]. Like an index function class for the empirical distribution function,
boundedness assumption (H.1) on the components of z(t) guarantees the conditions for
concentrations of suprema empirical processes.

Next, an upper bound is obtained for the centralized empirical process (Pn – P)[l(β∗;
T , z,�) – l(β̂n; T , z,�)].

Proposition 4.1 Assume that (H.1)–(H.3) are true. On the event A = A1 ∩ A2, we have
P(A) ≥ 1 – 2dmax(2Gn)1–A2 . Moreover, the upper bound (4.6) holds with the probability as
least 1 – 2dmax(2Gn)1–A2 ,

(Pn – P)
(
l
(
β∗; T , z,�

)
– l(β̂n; T , z,�)

)≤ λa

Gn∑

g=1

wg
∥∥β̂g

n – β∗g∥∥
2, (4.6)
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where λa := λa1 + λa2 with

λa1 =
L
√

2dmax

wmin

√
log(2Gn)

n
and

λa2 =
2L

√
2dmax

wmin

(√
log 2p

n
+Ae2LB

√
log(2Gn)

n

)
.

(4.7)

This proposition states that the difference between the centralized empirical processes
is bounded from above by the tuning parameter multiplied by the weighted group Lasso
norm of the difference between the estimated parameter and the true parameter β∗.

For the normalized error Dn(β ,β∗), set

B =
{

sup
β∈SM(β∗)

|Dn(β ,β∗)|
∑Gn

g=1 wg‖βg – β∗g‖2
≤ λa

}
,

where Dn(β ,β∗) := 1
n [
∑n

i=1 {log Rn(Ti ,β∗)
R(Ti ,β∗) }–

∑n
i=1 {log Rn(Ti ,β)

R(Ti ,β) }]�i and λa2 is a suitable tuning
parameter.

Observe that

Dn
(
β ,β∗) :=

∣∣
∣∣
∣

1
n

[ n∑

i=1

{
log

Rn(Ti,β∗)
R(Ti,β∗)

}
–

n∑

i=1

{
log

Rn(Ti,β)
R(Ti,β)

}]

�i

∣∣
∣∣
∣

=

∣
∣∣
∣∣

1
n

n∑

i=1

[

log
1
n

n∑

j=1

1(Tj ≥ Ti)ezτ
i (Ti)β

R(Ti,β)
– log

1
n

n∑

j=1

1(Tj ≥ Ti)ezτ
i (Ti)β∗

R(Ti,β∗)

]

�i

∣
∣∣
∣∣

≤ sup
0≤t≤τ

∣
∣∣
∣∣
log

1
n

n∑

j=1

1(Tj ≥ t)ezτ
i (t)β

R(t,β)
– log

1
n

n∑

j=1

1(Tj ≥ t)ezτ
i (t)β∗

R(t,β∗)

∣
∣∣
∣∣

=:

∣∣
∣∣
∣
log

1
n

n∑

i=1

1(Ti ≥ ts)ezT
i (ts)β

R(ts,β)
– log

1
n

n∑

i=1

1(Ti ≥ ts)ezT
i (ts)β∗

R(ts,β∗)

∣∣
∣∣
∣

(4.8)

for certain random variable ts on a compact set [0, τ ].
By the first order Taylor’s expansion of the function gts (β) := log( 1

n
∑n

i=1
1(Ti≥ts)ezτi (ts)β

R(ts ,β) ), let
the corresponding mean value β̃ = (β̃1, . . . , β̃p)T be between β∗

j and βj for each j = 1, 2, . . . , p.
We have

Dn
(
β ,β∗)

=

∣
∣∣∣
∣

p∑

j=1

(
β∗

j – βj
)
[ n∑

i=1

1(Ti ≥ ts)ezτ
i (ts)β̃

R(ts, β̃)

]–1

×
n∑

i=1

{
1(Ti ≥ ts)zij(ts)ezτ

i (ts)β̃R(ts, β̃)
R2(ts, β̃)

–
1(Ti ≥ ts)ezτ

i (ts)β̃E[1(T ≥ ts)zij(ts)ezτ (ts)β̃ ]
R2(ts, β̃)

}∣∣∣
∣∣

=

∣∣
∣∣
∣

p∑

j=1

(
β∗

j – βj
){ 1

n
∑n

i=1 1(Ti ≥ ts)zij(ts)ezτ
i (ts)β̃

1
n
∑n

i=1 1(Ti ≥ ts)ezτ
i (ts)β̃

–
E[1(T ≥ ts)zij(T)ezτ (ts)β̃ ]

E[1(T ≥ ts)ezτ (ts)β̃ ]

}∣∣
∣∣
∣
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=

∣∣
∣∣
∣

G∑

g=1

wg
(
β∗

g – βg
)T
{ 1

n
∑n

i=1 1(Ti ≥ ts)
zig (ts)

wg
ezτ

i (ts)β̃

1
n
∑n

i=1 1(Ti ≥ ts)ezτ
i (ts)β̃

–
E[1(T ≥ ts)

zig (ts)
wg

ezτ (ts)β̃ ]

E[1(T ≥ ts)ezτ (ts)β̃ ]

}∣∣
∣∣
∣

≤
G∑

g=1

wg
∥
∥β∗

g – βg
∥
∥

2

∥∥
∥∥

∑n
i=1 1(Ti ≥ ts)

zig (ts)
wg

ezτ
i (ts)β̃

∑n
i=1 1(Ti ≥ ts)ezτ

i (ts)β̃

–
E[1(T ≥ ts)

zig (ts)
wg

ezτ (ts)β̃ ]

E[1(T ≥ ts)ezτ (ts)β̃ ]

∥
∥∥
∥

2
. (4.9)

From the following decomposition and inequality
∥∥
∥∥

an

bn
–

a
b

∥∥
∥∥

2
=
∥∥
∥∥

1
bn

[
(an – a) +

a
b

(bn – b)
]∥∥
∥∥

2
≤ 1

|bn|
(

‖an – a‖2 +
‖a‖2

|b| |bn – b|
)

,

which implies that

Dn
(
β ,β∗)

=

∣∣
∣∣
∣

1
n

n∑

i=1

1(Ti ≥ ts)ezτ
i (ts)β̃

∣∣
∣∣
∣

–1{ G∑

g=1

wg
∥
∥β∗

g – βg
∥
∥

2

×
[∥∥
∥∥
∥

1
n

n∑

i=1

1(Ti ≥ ts)zig(ts)
wg

ezτ
i (ts)β̃ – E

[
1(T ≥ ts)

zig(ts)
wg

ezτ (ts)β̃
]∥∥
∥∥
∥

2

+
‖E[1(T ≥ ts)

zig (ts)
wg

ezτ (ts)β̃ ]‖2

|E[1(T ≥ ts)ezτ (ts)β̃ ]|

×
∣
∣∣
∣∣
1
n

n∑

i=1

1(Ti ≥ ts)ezτ
i (ts)β̃ – E

[
1(T ≥ ts)ezτ (ts)β̃]

∣
∣∣
∣∣

]}

≤
∣∣∣
∣∣

1
n

n∑

i=1

1(Ti ≥ ts)ezτ
i (ts)β̃

∣∣∣
∣∣

–1 G∑

g=1

wg
∥∥β∗

g – βg
∥∥

2

×
{∥∥∥
∥∥

1
n

n∑

i=1

1(Ti ≥ ts)zig(ts)
wg

ezτ
i (ts)β̃ – E

[
1(T ≥ ts)

zig(ts)
wg

ezτ (ts)β̃
]∥∥∥
∥∥

2

+
L
√

dg

wmin

∣∣
∣∣
∣

1
n

n∑

i=1

1(Ti ≥ ts)ezτ
i (ts)β̃ – E

[
1(T ≥ ts)ezτ (ts)β̃]

∣∣
∣∣
∣

}

, (4.10)

where the last inequality is from

‖E[1(T ≥ ts)
zig (ts)

wg
ezτ (ts)β̃ ]‖

|E[1(T ≥ ts)ezτ (ts)β̃ ]| =
1

wg

√√
√√
√

dg∑

j=1

(
E
[

1(T ≥ ts)zij(ts)ezτ (ts)β̃

E[1(T ≥ ts)ezτ (ts)β̃ ]

])2

≤ L
√

dg

wmin

by using assumptions (H.1)–(H.2).
If we have β̂ ∈ SM(β∗) for some finite M, thus β̃ ∈ SM(β∗) by

Gn∑

g=1

wg
∥∥β̃g – βg∗∥∥

2 ≤
Gn∑

g=1

wg

√√√
√√

dg∑

j=1

t2
j
∣∣β̂j – β∗

j
∣∣2 ≤

Gn∑

g=1

wg
∥∥β̂g

n – β∗g∥∥
2 ≤ M.
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Note that summation (4.10) contains a common random variable ts which renders (4.10)
to be a dependent summation. In order to bound the quotient and the two centralized
summations, we denote three events by B0, B1, B2, respectively:

B0 =

{

sup
ts∈[0,τ ],

β∈SM(β∗)

1
n

n∑

j=1

1(Tj ≥ ts)ezτ
i (ts)β ≥ U

}

,

B1 =

{ Gn⋂

g=1

∥∥
∥∥
∥

1
n

n∑

i=1

1(Ti ≥ ts)
zig(ts)ezτ

i (ts)β

wg
– E
[

1(T ≥ ts)
zig(ts)ezτ (ts)β

wg

]∥∥
∥∥
∥

2

≤ λb1U

}

,

and

B2 =

{

sup
ts∈[0,τ ],

β∈SM(β∗)

∣∣
∣∣
∣

1
n

n∑

i=1

1(Ti ≥ ts)ezτ
i (ts)β̃ – E

[
1(T ≥ ts)ezτ (ts)β̃]

∣∣
∣∣
∣
≤ λb2U

}

. (4.11)

To solve the problem, we need the concentration inequalities for the suprema of the em-
pirical processes in {Bl}2

l=0 uniformly in t ∈ [0, τ ] and β ∈ SM(β∗), see Sect. 2.14 of van der
Vaart and Wellner [25].

Let B = B0 ∩ B1 ∩ B2. We aim to show that each event in {Bl}2
l=0 holds with high prob-

ability. Thus B is also a high probability event via utilizing the basic inequality P(B) ≥
P(B0) + P(B1) + P(B2) – 2.

Based on (4.10), we obtain the following local stochastic Lipschitz condition under the
event B:

|Dn(β̂ ,β∗)|
∑Gn

g=1 wg‖β̂g
n – β∗g‖2

≤ sup
β∈SM(β∗)

|Dn(β ,β∗)|
∑Gn

g=1 wg‖βg – β∗g‖2
≤ λb,

where λb can be viewed as the local stochastic Lipschitz constant.
The following proposition is a similar but significant improvement of Corollary 2 in

Kong and Nan [16] from the Lasso to the group Lasso case and from the fixed design to
the random design.

Proposition 4.2 Let pτ := P(T1 ≥ τ ) > 0, and D2(
√

2) be a universal constant. Under
(H.1)–(H.3) and some constant A2 > 2, we have P(B) ≥ 1 – 2e–np2

τ /2 – dmaxD2(
√

2)A2 log(Gn)
4n ×

G2–A2
n – D2(

√
2)A2 log p
4n p–A2 with

λb1 =
2
√

2LAe2LB√
dmax

pτ wmin

√
log(Gn)

n
and λb2 =

√
2Ae2LB

pτ

√
log p

n
. (4.12)

Moreover, let λb := λb1 + λb2, we have

Dn
(
β̂ ,β∗)≤ λb

Gn∑

g=1

wg
∥
∥β̂g

n – β∗g∥∥
2

with probability at least 1 – 2e–np2
τ /2 – dmaxD2(

√
2)A2 log

4n G2–A2
n – D2(

√
2)A2 log p
4n p–A2 .

If the true model is sparse and log p = o(n), then the two propositions above illustrate
that P(A), P(B) → 1 as p, n → ∞.
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4.3 Sharp oracle inequalities from restricted eigenvalue conditions
In this section, we give sharp bounds for estimation and prediction errors for Cox models
using a weaker condition similar to the restricted eigenvalue condition of Bickel et al. [4].

Consider linear models {E[Yi|Xi] = Xτ
i (t)β∗}n

i=1 with random covariate vectors {Xi}n
i=1.

The key condition to derive oracle inequalities rests on the correlation between the co-
variates, i.e., on the behavior of the sample covariance matrix 
n = 1

n
∑n

i=1 XiXT
i , which is

necessarily singular when p > n. Let S be any subset of {1, 2, . . . , p}. The restricted eigen-
value condition (RE in short) of p × p matrix 
n is defined by

RE(η, S,
n) = inf
0 �=b∈C(η,S)

(bT
nb)1/2

‖b‖2
> 0, (4.13)

where C(η, S) = {b ∈R
p : ‖bSc‖1 ≤ η‖bS‖1}, η > 0.

It should be noted that if we omit the sparse restricted set C(η, S), (4.13) leads to
bT 
nb
‖b‖2

2
> RE2(η, S,
n). Thus it means that the smallest eigenvalue of the sample covariance

matrix �n is positive, which is impossible when p > n (�n is not full rank). To avoid the low
rank of �n, Bickel et al. [4] consider the restricted eigenvalue condition under the sparse
restricted set C(η, S) as considerable relation in the sparse high-dimensional estimation.
The restricted eigenvalue is from the restricted strong convexity, which enforces a type of
strong convexity condition for the negative log-likelihood function of linear models under
certain sparse restrict set.

A shortcoming for (4.13) is that we cannot assume that RE(η, S,
n) > 0 happens with
high probability 1. Instead, we replace 
n by a non-random version: 
 = E
n. Observe
that bT 
nb

‖bS‖2
2

≥ bT 
nb
‖b‖2

2
> 0 if (4.13) holds. So bT
nb ≥ k‖bS‖2

2 > k‖bS‖2
2 – ε for a constant k > 0

and a relax constant ε > 0. Technically, for group penalty, here we use a condition which
is a modified version of the restricted eigenvalue conditions presented in Blazere et al. [5]
for generalized linear models. Define by H∗ = {g : β∗g �= 0} the index set of the groups and
γ ∗ := |H∗|

Definition (Group stabil condition) Let c0, ε, k > 0 be given constants. Let 
 be the p ×
p non-random matrix, which satisfies the group stabil condition GS(c0, ε, k, H∗) if there
exists k > 0 such that

δT
δ ≥ k
∑

g∈H∗

∥
∥δg∥∥2

2 – ε, ∀δ ∈ S
(
c0, H∗), (4.14)

where the restricted set is defined as S(c0, H∗) := {δ :
∑

g∈H∗c wg‖δg‖2 ≤ c0
∑

g∈H∗ wg‖δg‖2}.

S(c0, H∗) is a restricted cone set with group sparsity, which is similar to the condition
used by Lounici et al. [18] to prove oracle inequalities for group Lasso in linear models.
The ε is an error or relax term that can be set to zero, and we can view k as the smallest
generalized eigenvalue of 
.

If we assume that the group stabil condition is satisfied for the covariance matrix 
 :=
E[z(t)zτ (t)] under the restricted cone set S(c0, H∗) with δ = β̂n – β∗, then we check that
β̂n – β∗ ∈ S(1, H∗) holds with high probability. With the preparation above, we are now
able to present the main result of this paper, which provides sharper and minimax optimal
bounds for the estimation and prediction error when the true model is sparse and log p is
small as compared to n.
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Theorem 4.1 Let γ ∗ :=
∑

g∈H∗ dg , pτ := P(T1 ≥ τ ) > 0 and D2(
√

2) be a universal constant.
Assume that (H.1)–(H.4) and group stabil condition GS(1, εn, k, H∗) are satisfied for 
 :=
E[z(t)zτ (t)]. If λ is chosen such that

λ ≥ λa1 + λa2 + λb1 + λb2 given by (4.7) and (4.12).

Then, with probability at least (A2 > 2
)

1 – 2dmax(2Gn)–A2/2 – 2e–np2
τ /2 –

dmaxD2(
√

2)A2 log(Gn)
4n

G2–A2
n –

D2(
√

2)A2 log p
4n

p–A2
,

we have β̂n – β∗ ∈ S(1, H∗) and

Gn∑

g=1

wg
∥∥β̂g

n – β∗g∥∥
2 ≤ 8γ ∗λ

kcl
+

clεn

2λ
,

where c1 > 0 is a constant given in (H.4).
Moreover, if a new covariate z∗(t) (the test data) is an independent copy of z(t) (as the

training data) and E∗ represents expectation only about z∗(t), then the square prediction
error under � = 1 is

E∗[z∗τ (t)
(
β̂n – β∗)]2 ≤ 32γ ∗λ2

kc2
l

+ 2εn

under the event A∩B.

Consider εn = 0. The obtained results are for the fixed design which is analogous to the
bounds in Lounici et al. [18] who show the optimal convergence rate of the group Lasso
estimator for linear models under the fixed design. Note that if γ ∗ = O(1) then the bound
on the estimation error is of the order O(

√
log p

n ) + O(
√

log(Gn)
n ) and the weighted group

Lasso estimator still remains consistent for the �2,1-estimation error and for the square
prediction error under the group stabil condition if the number of groups increases almost
as fast as eo(n). The terms

√
log p and

√
log Gn are the price to pay for the unknown group

sparsity of β∗. If the relax error εn is a big order of λ, it leads to the convergence rate εn for
the estimation error

∑Gn
g=1 wg‖β̂g

n – β∗g‖2.
From Theorem 4.1, if all dg = 1, it enables us to derive analogous results for un-weighted

Lasso penalty in what follows.

Corollary 4.1 Let γ ∗ := ‖β∗‖0, pτ := P(T1 ≥ τ ) > 0, and D2(
√

2) be a universal con-
stant in the proof. Assume that (H.1)–(H.4) and condition GS(1, εn, k) are fulfilled for

 := E[z(t)zτ (t)]. If λ is chosen such that

λ ≥ √
2L
(
3 + 2Ae2LB)

√
log(2p)

n
+

√
2(2L + 1)Ae2LB

pτ

√
log p

n
.

Then, with probability at least

1 – 2(2p)–A2/2 – 2e–np2
τ /2 –

D2(
√

2)A2 log p
4n

p2–A2
–

D2(
√

2)A2 log p
4n

p–A2 (
A2 > 2

)
,
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we have β̂n – β∗ ∈ S(1, H∗) and

∥∥β̂n – β∗∥∥
1 ≤ 8γ ∗λ

kcl
+

clεn

2λ
, E∗[z∗τ (t)

(
β̂n – β∗)]2 ≤ 32γ ∗λ2

kc2
l

+ 2εn.

Corollary 4.1 presents an upper bound of the �1-estimation error, which is similar to
the existing result in Theorem 3.2 in Huang et al. [13] for classical Lasso penalized Cox
models. The advantages of Corollary 4.1 are that the restricted eigenvalue condition is not
stochastic and Theorem 3.2 in Huang et al. [13] requires further analysis of the restricted
eigenvalue condition to guarantee a high-probability event. Another significant difference
is that oracle inequalities in Huang et al. [13] require that the sample size is larger than a
given constant. Our oracle inequalities are valid for any finite n under the given high-
probability event.

5 Proofs
5.1 Proofs of Theorem 4.1
The proof is based on the following three steps.

Step1: Check β̂n – β∗ ∈ S(1, H∗).
Using Proposition 4.1 and Proposition 4.2 to bound the empirical process on the event

A∩B by (4.4), we have

(Pn – P)
(
�
(
β∗; T , z,�

)
– �(β̂n; T , z,�)

)

= (Pn – P)
(
l
(
β∗; T , z,�

)
– l(β̂n; T , z,�)

)
– Dn

(
β̂ ,β∗)

≤ (λa + λb)
Gn∑

g=1

wg
∥∥β̂g

n – β∗g∥∥
2 = λ

Gn∑

g=1

wg
∥∥β̂g

n – β∗g∥∥
2. (5.1)

From (4.3), (5.1) implies

P
(
l(β̂n; T , z,�) – l

(
β∗; T , z,�

))
+ λ

Gn∑

g=1

wg‖β̂n‖2

≤ λ

Gn∑

g=1

wg
∥
∥β̂g

n – β∗g∥∥
2 + λ

Gn∑

g=1

wg
∥
∥β∗g∥∥

2. (5.2)

By adding λ
∑Gn

g=1 wg‖β̂g
n – β∗g‖2 to both sides of inequality (5.2), on A∩B, we can obtain

that

λ

Gn∑

g=1

wg
∥
∥β̂g

n – β∗g∥∥
2 + P

(
l(β̂n; T , z,�) – l

(
β∗; T , z,�

))

≤ λ

Gn∑

g=1

wg
(∥∥β̂g

n – β∗g∥∥
2 +
∥
∥β∗g∥∥

2 –
∥
∥β̂g

n
∥
∥

2

)
. (5.3)
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If g /∈ H∗, then ‖β̂g
n – β∗g‖2 + ‖β∗g‖2 – ‖β̂g

n‖ = 0, and otherwise ‖β∗g‖2 – ‖β̂g
n‖2 ≤ ‖β̂g

n –
β∗g‖2. So the last term in inequality (5.3) can be rewritten as

λ

Gn∑

g=1

wg
∥∥β̂g

n – β∗g∥∥
2 + P

(
l(β̂n; T , z,�) – l

(
β∗; T , z,�

))≤ 2λ
∑

g∈H∗
wg
∥∥β̂g

n – β∗g∥∥
2. (5.4)

By the definition of β∗, we have P(l(β̂n; T , z,�) – l(β∗; T , z,�)) > 0 and therefore

∑

g /∈H∗
wg
∥
∥β̂g

n – β∗g∥∥
2 ≤

∑

g∈H∗
wg
∥
∥β̂g

n – β∗g∥∥
2,

i.e., β̂n – β∗ ∈ S(1, H∗).
Step2: Find a lower bound for P(l(β̂n; T , z,�) – l(β∗; T , z,�)).
The next proposition provides the desired lower bound.

Proposition 5.1 Under (H.4), conditioning on � = 1, we have

P
(
l(β̂n; T , z,�) – l

(
β∗; T , z,�

))≥ cl

2
E∗[z∗τ

i (t)
(
β̂n – β∗)]2 (5.5)

with cl > 0 is a constant given in (H.4).

Proof By the second order Taylor’s expansion of the function β �→ l(β ; T , z,�), let the
corresponding mean value β̃ = (β̃1, . . . , β̃p)T be between β∗

j and βj for each j = 1, 2, . . . , p.
Let zτ (t)β̃ be the intermediate point between zτ (t)β∗ and zτ (t)β̂n given by a second order

Taylor’s expansion of l(β∗; T , z,�). Then, conditioning on � = 1, we have

P
(
l(β̂n; T , z,�) – l

(
β∗; T , z,�

))

= E∗[E
{

l(β ; T , z,�) – l
(
β∗; T , z,�

)|zτ
i (t)
}]∣∣

β=β̂n

= E∗E
[{

l
(
β ; T , z∗,�

)
– l
(
β∗; T , z∗,�

)|z∗τ
i (t)

}]∣∣
β=β̂n

= E∗E
{

[
(
β – β∗)τ l̇

(
β∗, z∗,�

)
+

1
2
(
β – β∗)τ l̈

(
β̃ , z∗,�

)(
β – β∗)

}∣∣∣∣
β=β̂n

,

β̃ ∈ SM
(
β∗)

=
{(

β – β∗)τ E∗E
[
l̇
(
β∗, z∗,�

)]}∣∣
β=β̂n

+
1
2
(
β – β∗)τ E∗E

{
l̈
(
β̃ , z∗,�

)}(
β – β∗)∣∣

β=β̂n

[
By (H.4)

]

≥ cl

2
E∗E
{[

z∗τ (t)
(
β̂n – β∗)]2} =

cl

2
E∗[z∗τ

i (t)
(
β̂n – β∗)]2, (5.6)

where the second last equality is obtained by estimating the equation in (3.4). �

From Proposition 5.1 and (5.4), it deduced that

λ

Gn∑

g=1

wg
∥∥β̂g

n – β∗g∥∥
2 +

cl

2
E∗[z∗τ (t)

(
β̂n – β∗)]2 ≤ 2λ

∑

g∈H∗
wg
∥∥β̂g

n – β∗g∥∥
2. (5.7)
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Step 3: Squeeze error bounds from group stabil condition
Let 
 be the p × p covariance matrix whose entries are E[zj(t)zk(t)] = E∗[zj(t)zk(t)]. We

have

E∗[z∗τ (t)
(
β̂n – β∗)]2 =

(
β̂n – β∗)τ E∗[z(t)zτ (t)

](
β̂n – β∗) =

(
β̂n – β∗)τ


(
β̂n – β∗)

since we assume that 
 := E[z(t)zτ (t)] satisfies the group stabil condition GS(1, εn, k, H∗)
after β̂n – β∗ ∈ S(1, H∗) is verified. Multiplying cl/2 in (4.14), we have

cl

2
(
β̂n – β∗)T


(
β̂n – β∗)≥ kcl

2
∑

g∈H∗
wg
∥∥β̂g

n – β∗g∥∥2
2 –

clεn

2
.

Then substitute the above inequality to (5.7), by using the Cauchy–Schwarz inequality, we
get

λ

Gn∑

g=1

wg
∥∥β̂g

n – β∗g∥∥
2 +

kcl

2
∑

g∈H∗
wg
∥∥β̂g

n – β∗g∥∥2
2

≤ 2λ

√∑

g∈H∗
dg

√∑

g∈H∗
wg
∥
∥β̂g

n – β∗g∥∥2
2 +

clεn

2
.

Now the fact that 2xy ≤ tx2 + y2/t for all t > 0 leads to the following inequality:

λ

Gn∑

g=1

wg
∥
∥β̂g

n – β∗g∥∥
2 +

kcl

2
∑

g∈H∗
wg
∥
∥β̂g

n – β∗g∥∥2
2

≤ 4tλ2γ ∗ +
1
t
∑

g∈H∗
wg
∥
∥β̂g

n – β∗g∥∥2
2 +

clεn

2
. (5.8)

Putting t := 2
kcl

in (5.8), we have the oracle inequality

Gn∑

g=1

wg
∥∥β̂g

n – β∗g∥∥
2 ≤ 8γ ∗λ

kcl
+

clεn

2λ
.

Finally, for the prediction oracle inequality, it is deduced from (5.7) that

λ

Gn∑

g=1

wg
∥
∥β̂g

n – β∗g∥∥
2 +

cl

2
E∗[z∗τ (t)

(
β̂n – β∗)]2

≤ 2λ

( Gn∑

g=1

wg
∥
∥β̂g

n – β∗g∥∥
2 –
∑

g /∈H∗
wg
∥
∥β̂g

n – β∗g∥∥
2

)

. (5.9)

Therefore,

cl

2
E∗[z∗τ (t)

(
β̂n – β∗)]2 ≤ 2λ

Gn∑

g=1

wg
∥
∥β̂g

n – β∗g∥∥
2.
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Note that the term
∑

g /∈H∗ wg‖β̂g
n – β∗g‖2 =

∑
g /∈H∗ wg‖β̂g

n‖2 that we have discarded for the
first inequality sign in the above expression is very small on the set {g : β∗g = 0}.

Then using oracle inequality for
∑Gn

g=1 wg‖β̂g
n – β∗g‖2 leads to

cl

2
E∗[z∗τ (t)

(
β̂n – β∗)]2 ≤ 2λ

Gn∑

g=1

wg
∥∥β̂g

n – β∗g∥∥
2 = 2λ

(
8γ ∗λ

kcl
+

clεn

2λ

)
=

16γ ∗λ2

kcl
+ clεn.

Finally we conclude the proof by using Propositions 4.1 and 4.2. We show that the desired
oracle inequalities hold with high probability under the event A∩B.

5.2 Proofs of the propositions
5.2.1 Proof of Proposition 4.1
First we show that the summation is satisfied by applying Hoeffding’s inequality, see Wain-
wright [26].

Lemma 5.1 (Hoeffding’s inequality) Let X1, . . . , Xn be independent random variables on R

satisfying bound condition ai ≤ Xi ≤ bi for i = 1, 2, . . . , n. Then we have

P

(∣∣
∣∣
∣

n∑

i=1

(Xi – EXi)

∣∣
∣∣
∣
≥ t

)

≤ 2 exp

{
–2t2

∑n
i=1 (bi – ai)2

}
.

For A1 =
⋂Gn

g=1{‖ 1
n
∑n

i=1 [
zτ

ig (Ti)
wg

�i – E(
zτ

ig (Ti)
wg

�i)]‖2 ≤ λa1}, let W g
i :=

zτ
ig (Ti)
wg

�i – E(
zτ

ig (Ti)
wg

�i)
and

W g
ij :=

zτ
ij(Ti)
wg

�i – E
(zτ

ij(Ti)
wg

�i

)
, j = 1, . . . , dg ; i = 1, . . . , n.

We have

P
(
Ac

1
)≤

Gn∑

g=1

P

{∥∥∥
∥∥

1
n

n∑

i=1

W g
i

∥
∥∥
∥∥

2

2

> λ2
a1

}

≤
Gn∑

g=1

dg∑

j=1

P

{∣∣∣
∣∣

1
n

n∑

i=1

W g
ij

∣
∣∣
∣∣

>
λa1√

dg

}

(5.10)

due to {‖ 1
n
∑n

i=1 W g
i ‖2

2 > λ2
a1} ⊂⋃j∈Groupg ,|Groupg |=dg {| 1

n
∑n

i=1 W g
ij |2 > λ2

a1
dg

}.

Applying Hoeffding’s inequality with ai = –L
nwmin

≤ 1
n

zτ
ij(Ti)
wg

�i ≤ L
nwmin

= bi, we obtain

P

{∣∣
∣∣∣

1
n

n∑

i=1

W g
ij

∣∣
∣∣∣

>
λa1√

dg

}

≤ 2 exp

(
–

nw2
minλ

2
a1

2L2dg

)
≤ 2 exp

(
–

nw2
minλ

2
a1

2L2dmax

)
. (5.11)

Finally, from (5.10) and (5.11), it is deduced that

P
(
Ac

1
)≤ 2dmaxGn exp

(
–

nw2
minλ

2
a1

2L2dmax

)
=: dmax(2Gn)1–A2

, (5.12)

which gives λa1 = L
√

2dmax
wmin

√
log(2Gn)

n .
For A′

2, we resort to McDiarmid’s concentration inequalities with bounded difference
condition for random vectors, see Wainwright [26].
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Lemma 5.2 Suppose that X1, . . . , Xn are independent random vectors all taking values in
the set A, and assume that f : An →R is a function satisfying the bounded difference con-
dition

sup
x1,...,xn ,x′

k∈A

∣∣f (x1, . . . , xn) – f
(
x1, . . . , xk–1, x′

k , xk+1, . . . , xn
)∣∣≤ ck .

Then, for all t > 0,

P
[∣∣f (X1, . . . , Xn) – E

{
f (X1, . . . , Xn)

}∣∣≥ t
]≤ 2 exp

(

2t2
/ n∑

i=1

c2
i

)

.

If there are no absolute signs in the above event, then the upper bound is changed by
exp(2t2/

∑n
i=1 c2

i ).

Similar to the treatment of A1, let

Zg
i (β) :=

∫
zτ

ig(s)1(s ≥ Ti)ezτ
i (Ti)β dF(s, z)

wg
∫

1(s ≥ Ti)ezτ
i (Ti)β dF(s, z)

– E
(∫ zτ

ig(s)1(s ≥ Ti)ezτ
i (Ti)β dF(s, z)

wg
∫

1(s ≥ Ti)ezτ
i (Ti)β dF(s, z)

)

and

Zg
ij(β) :=

∫
zτ

ij(s)1(s ≥ Ti)ezτ
i (Ti)β dF(s, z)

wg
∫

1(s ≥ Ti)ezτ
i (Ti)β dF(s, z)

– E
(∫ zτ

ij(s)1(s ≥ Ti)ezτ
i (Ti)β dF(s, z)

wg
∫

1(s ≥ Ti)ezτ
i (Ti)β dF(s, z)

)
,

j = 1, . . . , dg ; i = 1, . . . , n.

Then A2 :=
⋂Gn

g=1 {‖ 1
n
∑n

i=1 Zg
i ‖2 ≤ λa2}. We have

P
(
Ac

2
)≤

Gn∑

g=1

P

{∥∥∥
∥∥

1
n

n∑

i=1

Zg
i (β)

∥
∥∥
∥∥

2

2

> λ2
a1

}

≤
Gn∑

g=1

dg∑

j=1

P

{∣∣∣
∣∣
1
n

n∑

i=1

Zg
ij(β)

∣
∣∣
∣∣

>
λa2√

dg

}

≤
Gn∑

g=1

dg∑

j=1

P

{

sup
β∈SM(β∗)

∣∣∣
∣∣
1
n

n∑

i=1

Zg
ij(β)

∣∣∣
∣∣

>
λa2√
dmax

}

. (5.13)

Let

f (z1, . . . , zn) = sup
β∈SM(β∗)

∣∣
∣∣
∣

1
n

n∑

i=1

{∫ zτ
ij(Ti)1(s ≥ Ti)ezτ

i (Ti)β dF(s, z)

wg
∫

1(s ≥ Ti)ezτ
i (s)β dF(s, z)

– E
(∫ zτ

ij(Ti)1(s ≥ Ti)ezτ
i (s)β dF(s, z)

wg
∫

1(s ≥ Ti)ezτ
i (Ti)β dF(s, z)

)}∣∣∣
∣∣

and

f (z1, . . . , zk–1, z̃k , zk+1, . . . , zn)

= sup
β∈SM(β∗)

∣∣
∣∣∣

1
n

n∑

i=1,i�=k

{∫ zτ
ij(s)1(s ≥ Ti)ezτ

i (Ti)β dF(s, z)

wg
∫

1(s ≥ Ti)ezτ
i (Ti)β dF(s, z)



Xiao et al. Journal of Inequalities and Applications        (2020) 2020:252 Page 24 of 33

– E
(∫ zτ

ij(s)1(s ≥ Ti)ezτ
i (Ti)β dF(s, z)

wg
∫

1(s ≥ Ti)ezτ
i (Ti)β dF(s, z)

)}

+
1
n

{∫ zτ
kj(s)1(s ≥ Tk)ezτ

k (Tk )β dF(s, z)

wg
∫

1(s ≥ Tk)ezτ
k (Tk )β dF(s, z)

– E
(∫ zτ

kj(s)1(s ≥ Tk)ezτ
k (Tk )β dF(s, z)

wg
∫

1(s ≥ Tk)ezτ
k (Tk )β dF(s, z)

)}∣∣
∣∣∣
. (5.14)

Then we have

f (z1, . . . , zn) – f (z1, . . . , zk–1, z̃k , zk+1, . . . , zn) (5.15)

≤ sup
β∈SM(β∗)

∣∣
∣∣

1
n

{∫ zτ
kj(s)1(s ≥ Tk)ezτ

k (Tk )β dF(s, z)

wg
∫

1(s ≥ Tk)ezτ
k (Tk )β dF(s, z)

– E
(∫ zτ

kj(s)1(s ≥ Tk)ezτ
k (Tk )β dF(s, z)

wg
∫

1(s ≥ Tk)ezτ
k (Tk )β dF(s, z)

)}

–
1
n

{∫ z̃τ
kj(s)1(s ≥ Tk)ez̃τ

k (Tk )β dF(s, z)

wg
∫

1(s ≥ Tk)ez̃τ
k (Tk )β dF(s, z)

– E
(∫ z̃τ

kj(s)1(s ≥ Tk)ez̃τ
k (Tk )β dF(s, z)

wg
∫

1(s ≥ Tk)ez̃τ
k (Tk )β dF(s, z)

)}∣∣∣
∣. (5.16)

Note that, for j = 1, . . . , dg and i = 1, . . . , n, we have

–
Le2LB

wmin
= –

∫
L1(s ≥ Ti)eLB dF(s, z)

wmin
∫

1(s ≥ Ti)e–LBF(s, z)
≤
∫

zτ
ij(s)1(s ≥ Ti)ezτ

i (s)β dF(s, z)

wg
∫

1(s ≥ Ti)ezτ
i (s)β dF(s, z)

≤
∫

L1(s ≥ Ti)eLB dF(s, z)
wmin

∫
1(s ≥ Ti)e–LB dF(s, z)

=
Le2LB

wmin
. (5.17)

For fixed j, (5.15) gives

∣∣f (z1, . . . , zn) – f (z1, . . . , zk–1, z̃k , zk+1, . . . , xn)
∣∣≤ 4Le2LB

nwmin

for all z1, . . . , zn, z̃k .
Lemma 5.2 implies

P

{

sup
β∈SM(β∗)

∣∣∣
∣∣

1
n

n∑

i=1

Zg
ij(β)

∣∣∣
∣∣
≥ E

(

sup
β∈SM(β∗)

∣∣∣
∣∣
1
n

n∑

i=1

Zg
ij(β)

∣∣∣
∣∣

)

+ t

}

≤ exp

(
–

nt2w2
min

8L2e4LB

)
.

It is sufficient to estimate the sharper upper bounds of E(supβ∈SM(β∗) | 1
n
∑n

i=1 Zg
ij(β)|) by

the symmetrization theorem and the contraction theorem below, which can be found in
van der Vaart and Wellner [25], Wainwright [26].
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Lemma 5.3 (Symmetrization theorem) Let ε1, . . . , εn be a Rademacher sequence with uni-
form distribution on {–1, 1}, independent of X1, . . . , Xn and f ∈F . Then we have

E

[

sup
f ∈F

∣∣
∣∣
∣

n∑

i=1

[
f (Xi) – E

{
f (Xi)

}]
∣∣
∣∣
∣

]

≤ 2E

[

Eε

{

sup
f ∈F

∣∣
∣∣
∣

n∑

i=1

εif (Xi)

∣∣
∣∣
∣

}]

,

where E[·] refers to the expectation w.r.t. X1, . . . , Xn and Eε{·} w.r.t. ε1, . . . , εn.

Using the symmetrization theorem, we have

E

[

sup
β∈SM(β∗)

∣∣
∣∣
∣

1
n

n∑

i=1

{∫
zij(s)1(s ≥ Ti)ezτ

i (Ti)β dF(s, z)
wg
∫

1(s ≥ Ti)ezτ
i (Ti)β dF(s, z)

– E
(∫ zτ

ij(s)1(s ≥ Ti)ezτ
i (Ti)β dF(s, z)

wg
∫

1(s ≥ Ti)ezτ
i (Ti)β dF(s, z)

)}∣∣∣
∣∣

]

≤ 2E

[

Eε

{

sup
β∈SM(β∗)

∣∣
∣∣
∣

n∑

i=1

εi
∫

zij(s)1(s ≥ Ti)ezτ
i (Ti)β dF(s, z)

nwg
∫

1(s ≥ Ti)ezτ
i (Ti)β dF(s, z)

∣∣
∣∣
∣

}]

≤ 2
nwmin

E

(

sup
β∈SM(β∗)

∣∣∣
∣∣

n∑

i=1

wi(β)εi

∣∣∣
∣∣

)

, (5.18)

where wi(β) :=
∫

zij(s)1(s≥Ti)e
zτi (Ti)β dF(s,z)

∫
1(s≥Ti)e

zτi (Ti)β dF(s,z)
for i = 1, 2, . . . , n.

For any wi(β), we can find a sequence of random vectors {ai}n
i=1 ∈ R

p with ‖ai‖∞ = 1 and
vector b ∈R

p with ‖b‖1 ≤ L such that

–L ≤ wi(β) = aT
i b ≤ ‖ai‖∞‖b‖1 = ‖b‖1 ≤ L.

Then we have

2
nwmin

E

(

sup
β∈SM(β∗)

∣
∣∣
∣∣

n∑

i=1

wi(β)εi

∣
∣∣
∣∣

)

≤ 2
nwmin

E

(

sup
β∈SM(β∗)

∣
∣∣
∣∣

n∑

i=1

p∑

j=1

εiaijbj

∣
∣∣
∣∣

)

=
2

nwmin
E

(

sup
β∈SM(β∗)

∣∣
∣∣
∣

p∑

j=1

( n∑

i=1

εiaij

)

bj

∣∣
∣∣
∣

)

[
By Hölder’s inequality

]

≤ 2
nwmin

E

(

sup
‖b‖1≤L

max
1≤j≤p

∣
∣∣
∣∣

n∑

i=1

εiaij

∣
∣∣
∣∣
· ‖b‖1

)

≤ 2L
nwmin

E

(

max
1≤j≤p

∣∣
∣∣∣

n∑

i=1

εiaij

∣∣
∣∣∣

)

=
2L

nwmin
E

(

Eε max
1≤j≤p

∣∣
∣∣∣

n∑

i=1

εiaij

∣∣
∣∣∣

)

.

Next, we are going to use the following maximal inequality for bounded variables; see [31]
for more discussions.
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Lemma 5.4 (Maximal inequality) Let X1, . . . , Xn be independent random vectors that take
values in a measurable space X and f1, . . . , fn be real-valued functions in X which satisfy,
for all j = 1, . . . , p and all i = 1, . . . , n,

Efj(Xi) = 0,
∣
∣fj(Xi)

∣
∣≤ aij.

Then

E

(

max
1≤j≤p

∣∣
∣∣∣

n∑

i=1

fj(Xi)

∣∣
∣∣∣

)

≤√2 log(2p) max
1≤j≤p

√√
√√

n∑

i=1

a2
ij.

By Proposition 5.4, with E[ziεiaij] = 0 and εiaij ≤ max1≤i≤n ‖ai‖∞ = 1, we get

E

(

sup
β∈SM(β∗)

∣∣
∣∣
∣

1
n

n∑

i=1

Zg
ij(β)

∣∣
∣∣
∣

)

≤ 2L
nwmin

E

(

max
1≤j≤p

∣∣
∣∣
∣

n∑

i=1

εiaij

∣∣
∣∣
∣

)

≤ 2L
nwmin

√
2 log 2p

√
n =

2L
wmin

√
2 log 2p

n
.

Then

P

{

sup
β∈SM(β∗)

∣
∣∣
∣∣

1
n

n∑

i=1

Zg
ij(β)

∣
∣∣
∣∣
≥ 2L

wmin

√
2 log 2p

n
+ t

}

≤ P

{

sup
β∈SM(β∗)

∣∣
∣∣
∣

1
n

n∑

i=1

Zg
ij(β)

∣∣
∣∣
∣
≥ E

(

sup
β∈SM(β∗)

∣∣
∣∣
∣

1
n

n∑

i=1

Zg
ij(β)

∣∣
∣∣
∣

)

+ t

}

≤ exp

(
–

nt2w2
min

8L2e4LB

)
.

Therefore, (5.13) can be further bounded by letting λa2√
dmax

= 2L
wmin

√
2 log 2p

n + t

P
(
Ac

2
)≤

Gn∑

g=1

dg∑

j=1

P

{

sup
β∈SM(β∗)

∣
∣∣
∣∣
1
n

n∑

i=1

Zg
ij(β)

∣
∣∣
∣∣

>
λa2√

dg

}

≤ 2dmaxGn exp

(
–

nt2w2
min

8L2e4LB

)
. (5.19)

Let 2dmaxGn exp(– nt2w2
min

8L2e4LB ) = dmax(2Gn)1–A2 , which gives

t =
2
√

2ALe2LB

wmin

√
log(2Gn)

n
.

Finally, we have

P
(
Ac

2
)≤ dmax(2Gn)1–A2

(5.20)

by letting λa2 = 2L
√

2dmax
wmin

(
√

log 2p
n +Ae2LB

√
log(2Gn)

n ). Together with (5.12), it gives

P(A) = P(A1 ∩A2) ≥ P(A1) + P(A2) – 1 ≥ 1 – 2dmax(2Gn)1–A2 .

Then (4.6) is obtained by using (4.5) conditioning on the event A1 ∩A2.
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5.2.2 Proof of Proposition 4.2
For the event B0, we need the exponential concentration inequality for the uniform con-
vergence of empirical distribution function

Fn(x) =
1
n

n∑

i=1

1{Xi ≤ x}, x ∈R.

Lemma 5.5 (DKW inequality, Massart [19]) For x ∈R, the DKW inequality bounds the
probability that the random function Fn(x) differs from F(x) by more than a given constant
ε > 0:

P
(

sup
x∈R

∣
∣Fn(x) – F(x)

∣
∣ > ε

)
≤ 2e–2nε2 .

[8] proves the inequality with an unspecified multiplicative constant multiples of the expo-
nent in the tail bounds. Massart [19] shows that the DKW inequality has the multiplying
constant 2. Let pτ := P(T1 ≥ τ ) = 2UeLB, so U = pτ e–LB/2. We have

P
(
Bc

0
)

= P
(

sup
ts∈[0,τ ],β∈SM(β∗)

B1n(ts,β) ≤ U
)

≤ P

(

sup
ts∈[0,τ ],β∈SM(β∗)

1
n

n∑

j=1

1(Tj ≥ ts)ezτ
i (ts)β ≤ U

)

≤ P

(
1
n

n∑

j=1

1(Tj ≥ τ )e–LB ≤ U

)

= P

(
1
n

n∑

j=1

1(Tj ≥ τ ) – E
[
1(T1 ≥ τ )

]≤ UeLB – P(T1 ≥ τ )

)

≤ P

(∣∣
∣∣
∣
1
n

n∑

j=1

1(Tj ≥ τ ) – P(T1 ≥ τ )

∣∣
∣∣
∣
≥ pτ

2

)

≤ P

(

sup
τ∈R

∣∣
∣∣
∣

1
n

n∑

j=1

1(Tj ≥ τ ) – E
[
1(T1 ≥ τ )

]
∣∣
∣∣
∣
≥ pτ

2

)

≤ 2e–np2
τ /2. (5.21)

Let (F ,‖ · ‖) be a subset of a normed space of real functions f : X → R in some set X .
Define the Lr(Q)-norm by ‖f ‖Lr(Q) = (

∫ |f |r dQ)1/r . For probability measures Q, we have
Lr(Q)-spaces endowed by the Lr(Q)-norm. Given two functions l(·) and u(·), the bracket
[l, u] is the set of all functions f ∈ F with l(x) ≤ f (x) ≤ u(x) for all x ∈ X . An ε-bracket is
a bracket [l, u] with ‖l – u‖Lr (Q) < ε, see van der Vaart and Wellner [25]. The bracketing
number N[ ](ε,F , Lr(Q)) is the minimum number of ε-brackets covered by F , i.e.,

N[ ]
(
ε,F , Lr(Q)

)
= inf

{

n : ∃l1, u1, . . . , ln, un s.t.
n⋃

i=1

[li, ui] = F and ‖ln – un‖Lr(Q) < ε

}

.

For the event B1, let Bg
i (β) := 1(Ti ≥ ts)

zig (ts)ezτi (ts)β

wg
– E[1(T ≥ ts)

zig (T)ezτ (T)β

wg
] and

Bg
ij(β) := 1(Ti ≥ ts)

zig(ts)ezτ
i (ts)β

wg
– E
[

1(T ≥ ts)
zig(T)ezτ (T)β

wg

]
, j = 1, . . . , dg ; i = 1, . . . , n.
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Similar to the analysis of A1 and A2, we have

P
(
Bc

1
)≤

Gn∑

g=1

P

{∥∥∥
∥∥

1
n

n∑

i=1

Bg
i (β)

∥∥∥
∥∥

2

2

> λ2
b1U2

}

≤
Gn∑

g=1

dg∑

j=1

P

{∣∣
∣∣
∣
1
n

n∑

i=1

1(Ti ≥ ts)
zij(ts)ezτ

i (ts)β

wg

– E
[

1(T ≥ ts)
zij(ts)ezτ (ts)β

wg

]∣∣
∣∣
∣

>
λb1U
√

dg

}

≤
Gn∑

g=1

dg∑

j=1

P

{

sup
ts∈[0,τ ],

β∈SM(β∗)

∣∣
∣∣
∣

1
n

n∑

i=1

1(Ti ≥ ts)
zij(ts)ezτ

i (ts)β

wg

– E
[

1(T ≥ ts)
zij(ts)ezτ (ts)β

wg

]∣∣
∣∣
∣

>
λb1U√

dmax

}

. (5.22)

Then we will apply sub-Gaussian concentration for suprema of the empirical processes as
the following event:

B1gj =

{

sup
ts∈[0,τ ],

β∈SM(β∗)

∣
∣∣
∣∣
1
n

n∑

i=1

1(Ti ≥ ts)
zij(ts)ezτ

i (ts)β

wg
– E
[

1(T ≥ ts)
zij(T)ezτ (T)β

wg

]∣∣∣
∣∣
≤ λb1U√

dmax

}

,

j = 1, . . . , dg ; g = 1, . . . , Gn,

with bracketing numbers {N[ ](ε,B1gj, L2(P))} relative to L2(P)-norm, see Theorem 2.14.9
of van der Vaart and Wellner [25].

Lemma 5.6 (Sharper bounds for suprema of empirical processes, Talagrand [22]) Con-
sider a probability space (�,
, P) and n i.i.d. random variables X1, . . . , Xn, valued in �, of
law P. Let F be a class of measurable functions f : X �→ [0, 1] that satisfy

N[ ]
(
ε,F , L2(P)

)≤
(

K
ε

)V

for every 0 < ε < K .

Then, for every t > 0,

P

(√
nsup

f ∈F

∣∣
∣∣
∣
1
n

n∑

i=1

f (Xi) – Ef (Xi)

∣∣
∣∣
∣
≥ t

)

≤
(

D(K)t√
V

)V

e–2t2

for a constant D(K) that depends on K only.

The explicit constant D(K) can be found in Zhang [30], who studies the tail bounds
for the supremums of the empirical process {n–1/2∑n

i=1[f (Xi) – Ef (Xi)]}, where {Xi} is a
sequence of (non-i.i.d, unbounded) independent random vectors with values in a general
measurable space (X ,A), and f is a measurable real function on (X ,A).
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In what follows, we assume that z(t) is non-random. For {B1gj} in (5.22), we have the
function classes

F1gj =
{

ft,β (x, z) = 1(x ≥ t)
[z1j(t)ezτ (t)β + LeLB]wmin

2LeLBwg
: t ∈ [0, τ ],β ∈ R

p
}

,

j = 1, . . . , dg ; g = 1, . . . , Gn,

so 0 ≤ ft,β (x, z) ≤ 1.
In B2, we focus on the class of functions 0 ≤ gt,β (x, z) ≤ 1,

G2 =
{

gt,β (x, z) = 1(x ≥ t)ezτ (t)β–LB : t ∈ [0, τ ],β ∈R
p}.

Let �x� be the smallest integer that is greater than or equal to x. For any ε ∈ (0, 1), let ts be
the sth �1/ε� quantile of T1, thus

P(T1 ≤ ts) = iε, s = 1, . . . , �1/ε� – 1, t0 = 0, t�1/ε� = ∞.

For F1gj and G2, we consider two types of brackets of the forms

[
LF

jg,k(x, z), UF
jg,k(x, z)

]

:=
[

1(x ≥ sk)
(zjezτ β + LeLB)wmin

2LeLBwg
, 1(x ≥ sk–1)

(zjezτ β + LeLB)wmin

2LeLBwg

]
,

j = 1, . . . , dg ; g = 1, . . . , Gn; z = (z1, . . . , zp)τ := (L, . . . , L)τ ∈R
p

and

[
LG

k (x, z), UG
k (x, z)

]
:=
[

1(x ≥ sk)
ezτ β

eLB , 1(x ≥ sk–1)
ezτ β

eLB

]

for a grid of points –∞ = s0 < s1 < · · · < s�1/ε� = ∞ with the property F(sk) – F(sk–1) < ε for
all i.

Then, for given j and g , the bracket functions satisfy

UF
jg,k(x, z) ≤ fs,β (x, z) ≤ LF

jg,k(x, z), k = 0, 1, 2, . . .

UG
k (x, z) ≤ gs,β(x, z) ≤ LG

k (x, z), k = 0, 1, 2, . . .

provided sk–1 < s ≤ sk .
For {B1gj}, the L2(P)-norm of UF

jg,k(x, z) – LF
jg,k(x, z) is

∥
∥UF

jg,k(x, z) – LF
jg,k(x, z)

∥
∥

L2(P)

=
{

ET
[
UF

jg,k(T , z) – LF
jg,k(T , z)

]2}1/2

≤
{

ET

[
(zjezτ β + LeLB)wmin

2LeLBwg

{
1(T ≥ sk) – 1(T > sk–1)

}
]2}1/2

≤ {P(sk–1 < T ≤ sk–1)
}1/2 =

{
F(sk) – F(sk–1)

}1/2 <
√

ε.
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For B2, the L2(P)-norm for UG
k (x, z) – LG

k (x, z) is

∥
∥UG

k (x, z) – LG
k (x, z)

∥
∥

L2(P) =
{

ET
[
UG

k (T , z) – LG
k (T , z)

]2}1/2

≤
{

ET

[
(zjezτ β + LeLB)wmin

2LeLBwg

{
1(T ≥ sk) – 1(T > sk–1)

}
]2}1/2

≤ {P(sk–1 < T ≤ sk–1)
}1/2 =

{
F(sk) – F(sk–1)

}1/2 <
√

ε.

In both cases, by the definition of bracketing number, we get

N[ ]
(√

ε,F , L2(P)
)≤ �1/ε� ≤ 2/ε.

Hence, N[ ](ε,F , L2(P)) ≤ 2/ε2.
For the event B1 with relation (5.22), we get K =

√
2 and V = 2 in Lemma 5.6. Then,

conditioning on the random design z, with Lemma 5.6 we define

P(B1gj) = P

{∣∣∣
∣∣
1
n

n∑

i=1

1(Ti ≥ ts)
zij(ts)

wg
ezτ

i (ts)β – ET

[
1(T ≥ ts)zij

zij(ts)
wg

ezτ
i (ts)β

]∣∣∣
∣∣
≤ 2LeLBt

wmin

}

= EzP

{

sup
ts∈[0,τ ],

β∈SM(β∗)

∣∣
∣∣∣
1
n

n∑

i=1

1(Ti ≥ ts)zij(ts)[ezτ
i (ts)β + LeLB]wmin

2LeLBwg

– ET

[
1(T ≥ ts)zij(T)[ezτ

i (ts)β + LeLB]wmin

2LeLBwg

]∣∣∣
∣∣
≤ t
∣∣
∣z

}

≤ Ez
D2(

√
2)t2

2
e–2nt2

=
D2(

√
2)t2

2
e–2nt2

.

Note that U = pτ e–LB/2, thus we put 2LeLBt
wmin

= λb1U√
dmax

= λb1pτ e–LB

2
√

dmax
in (5.22), which implies

P
(
Bc

1
)≤

Gn∑

g=1

dg∑

j=1

P(B1gj) ≤ dmaxGn
D2(

√
2)t2

2
e–2nt2

with t = λb1pτ e–2LBwmin
4L

√
dmax

.

Let dmaxGn
D2(

√
2)t2

2 e–2nt2 = dmaxGn
D2(

√
2)t2

2 (Gn)1–A2 , it gives t = A√
2

√
log(Gn)

n . Then we have

P
(
Bc

1
)≤ dmaxGnD2(

√
2)A2 log(Gn)

4n
(Gn)1–A2

(5.23)

with the tuning parameter λb1 determined by

λb1 =
4tL
√

dg

pτ e–2LBwmin
=

2
√

2LAe2LB√dg

pτ wmin

√
log(Gn)

n
.

For the event B2, we have K =
√

2 and V = 2 in Lemma 5.6. Define

P
(
Bc

2
)

= EzP

{

sup
ts∈[0,τ ],

β∈SM(β∗)

∣∣
∣∣
∣

1
n

n∑

i=1

1(Ti ≥ ts)ezτ
i (ts)β – ET

[
1(T ≥ ts)ezτ (T)β]

∣∣
∣∣
∣
≤ eLBt

∣
∣∣z

}
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= P

{

sup
ts∈[0,τ ],

β∈SM(β∗)

∣∣
∣∣
∣

1
n

n∑

i=1

1(Ti ≥ ts)ezτ
i (ts)β–LB – ET

[
1(T ≥ ts)ezτ (T)β–LB]

∣∣
∣∣
∣
≤ t
∣
∣∣z

}

≤ D2(
√

2)t2

2
e–2nt2

.

Note that U = pτ e–LB/2, thus we set eLBt = λb1U = λb1pτ e–LB

2 in (4.11). It gives P(Bc
2) ≤

D2(
√

2)t2

2 e–2nt2 with t = λb2pτ e–2LB

2 .

Assign D2(
√

2)t2

2 e–2nt2 = D2(
√

2)t2

2 p–A2 , it implies t = A√
2

√
log p

n . Therefore, the tuning param-
eter λb2 is determined by

λb2 =
√

2Ae2LB

pτ

√
log p

n

such that

P
(
Bc

2
)≤ D2(

√
2)t2

2
e–2nt2 =

D2(
√

2)A2 log p
4n

p–A2 . (5.24)

Finally, we obtain by combining (5.21), (5.23), and (5.24)

P(B) ≥ P(B0) + P(B1) + P(B2) – 2

≥ 1 – 2e–np2
τ /2 –

dmaxGnD2(
√

2)A2 log(Gn)
4n

G1–A2
n –

D2(
√

2)A2 log p
4n

p–A2
.

6 Conclusions and future study
In this paper, we focus on the survival analysis problem by proportional hazard regres-
sions, which includes situations when both the number of covariates p and sample size
n are increasing, and p � n. When p > n, the classical partial likelihood estimation is
over-parameterized and requires Lasso or weighted group Lasso regularization estima-
tion to obtain a stable and satisfactory fitting of proportional hazard regressions. Under
the group stabil condition, the sharp oracle inequalities for weighted group Lasso regular-
ized misspecified Cox models are derived. The upper bound of their �2,1-estimation error
is determined by the tuning parameter with the rate O(

√
log p

n ) + O(
√

log(Gn)
n ). The obtained

nonasymptotic oracle inequalities imply that the penalized estimator is consistent when
log p/n → 0 under mild conditions. The rate is rate-optimality in the minimax sense.

In the future study, the statistical inferences (confidence interval and testing for the co-
efficient, FDR control) are left for further studies.
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